/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "alu.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AL/al.h" #include "AL/alc.h" #include "AL/efx.h" #include "alcmain.h" #include "alcontext.h" #include "almalloc.h" #include "alnumeric.h" #include "alspan.h" #include "alstring.h" #include "async_event.h" #include "atomic.h" #include "bformatdec.h" #include "core/ambidefs.h" #include "core/bs2b.h" #include "core/bsinc_tables.h" #include "core/cpu_caps.h" #include "core/devformat.h" #include "core/filters/biquad.h" #include "core/filters/nfc.h" #include "core/filters/splitter.h" #include "core/fpu_ctrl.h" #include "core/mastering.h" #include "core/mixer/defs.h" #include "core/uhjfilter.h" #include "effects/base.h" #include "effectslot.h" #include "front_stablizer.h" #include "hrtf.h" #include "inprogext.h" #include "math_defs.h" #include "opthelpers.h" #include "ringbuffer.h" #include "strutils.h" #include "threads.h" #include "vecmat.h" #include "voice.h" #include "voice_change.h" struct CTag; #ifdef HAVE_SSE struct SSETag; #endif #ifdef HAVE_SSE2 struct SSE2Tag; #endif #ifdef HAVE_SSE4_1 struct SSE4Tag; #endif #ifdef HAVE_NEON struct NEONTag; #endif struct CopyTag; struct PointTag; struct LerpTag; struct CubicTag; struct BSincTag; struct FastBSincTag; static_assert(MaxResamplerPadding >= BSincPointsMax, "MaxResamplerPadding is too small"); static_assert(!(MaxResamplerPadding&1), "MaxResamplerPadding is not a multiple of two"); namespace { constexpr uint MaxPitch{10}; static_assert((BufferLineSize-1)/MaxPitch > 0, "MaxPitch is too large for BufferLineSize!"); static_assert((INT_MAX>>MixerFracBits)/MaxPitch > BufferLineSize, "MaxPitch and/or BufferLineSize are too large for MixerFracBits!"); using namespace std::placeholders; float InitConeScale() { float ret{1.0f}; if(auto optval = al::getenv("__ALSOFT_HALF_ANGLE_CONES")) { if(al::strcasecmp(optval->c_str(), "true") == 0 || strtol(optval->c_str(), nullptr, 0) == 1) ret *= 0.5f; } return ret; } float InitZScale() { float ret{1.0f}; if(auto optval = al::getenv("__ALSOFT_REVERSE_Z")) { if(al::strcasecmp(optval->c_str(), "true") == 0 || strtol(optval->c_str(), nullptr, 0) == 1) ret *= -1.0f; } return ret; } } // namespace /* Cone scalar */ const float ConeScale{InitConeScale()}; /* Localized Z scalar for mono sources */ const float ZScale{InitZScale()}; namespace { struct ChanMap { Channel channel; float angle; float elevation; }; using HrtfDirectMixerFunc = void(*)(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const al::span InSamples, float2 *AccumSamples, float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize); HrtfDirectMixerFunc MixDirectHrtf{MixDirectHrtf_}; inline HrtfDirectMixerFunc SelectHrtfMixer(void) { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixDirectHrtf_; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixDirectHrtf_; #endif return MixDirectHrtf_; } inline void BsincPrepare(const uint increment, BsincState *state, const BSincTable *table) { size_t si{BSincScaleCount - 1}; float sf{0.0f}; if(increment > MixerFracOne) { sf = MixerFracOne / static_cast(increment); sf = maxf(0.0f, (BSincScaleCount-1) * (sf-table->scaleBase) * table->scaleRange); si = float2uint(sf); /* The interpolation factor is fit to this diagonally-symmetric curve * to reduce the transition ripple caused by interpolating different * scales of the sinc function. */ sf = 1.0f - std::cos(std::asin(sf - static_cast(si))); } state->sf = sf; state->m = table->m[si]; state->l = (state->m/2) - 1; state->filter = table->Tab + table->filterOffset[si]; } inline ResamplerFunc SelectResampler(Resampler resampler, uint increment) { switch(resampler) { case Resampler::Point: return Resample_; case Resampler::Linear: #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Resample_; #endif #ifdef HAVE_SSE4_1 if((CPUCapFlags&CPU_CAP_SSE4_1)) return Resample_; #endif #ifdef HAVE_SSE2 if((CPUCapFlags&CPU_CAP_SSE2)) return Resample_; #endif return Resample_; case Resampler::Cubic: return Resample_; case Resampler::BSinc12: case Resampler::BSinc24: if(increment <= MixerFracOne) { /* fall-through */ case Resampler::FastBSinc12: case Resampler::FastBSinc24: #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Resample_; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return Resample_; #endif return Resample_; } #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Resample_; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return Resample_; #endif return Resample_; } return Resample_; } } // namespace void aluInit(void) { MixDirectHrtf = SelectHrtfMixer(); } ResamplerFunc PrepareResampler(Resampler resampler, uint increment, InterpState *state) { switch(resampler) { case Resampler::Point: case Resampler::Linear: case Resampler::Cubic: break; case Resampler::FastBSinc12: case Resampler::BSinc12: BsincPrepare(increment, &state->bsinc, &bsinc12); break; case Resampler::FastBSinc24: case Resampler::BSinc24: BsincPrepare(increment, &state->bsinc, &bsinc24); break; } return SelectResampler(resampler, increment); } void ALCdevice::ProcessHrtf(const size_t SamplesToDo) { /* HRTF is stereo output only. */ const uint lidx{RealOut.ChannelIndex[FrontLeft]}; const uint ridx{RealOut.ChannelIndex[FrontRight]}; MixDirectHrtf(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer, HrtfAccumData, mHrtfState->mTemp.data(), mHrtfState->mChannels.data(), mHrtfState->mIrSize, SamplesToDo); } void ALCdevice::ProcessAmbiDec(const size_t SamplesToDo) { AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo); } void ALCdevice::ProcessAmbiDecStablized(const size_t SamplesToDo) { /* Decode with front image stablization. */ const uint lidx{RealOut.ChannelIndex[FrontLeft]}; const uint ridx{RealOut.ChannelIndex[FrontRight]}; const uint cidx{RealOut.ChannelIndex[FrontCenter]}; AmbiDecoder->processStablize(RealOut.Buffer, Dry.Buffer.data(), lidx, ridx, cidx, SamplesToDo); } void ALCdevice::ProcessUhj(const size_t SamplesToDo) { /* UHJ is stereo output only. */ const uint lidx{RealOut.ChannelIndex[FrontLeft]}; const uint ridx{RealOut.ChannelIndex[FrontRight]}; /* Encode to stereo-compatible 2-channel UHJ output. */ Uhj_Encoder->encode(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer.data(), SamplesToDo); } void ALCdevice::ProcessBs2b(const size_t SamplesToDo) { /* First, decode the ambisonic mix to the "real" output. */ AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo); /* BS2B is stereo output only. */ const uint lidx{RealOut.ChannelIndex[FrontLeft]}; const uint ridx{RealOut.ChannelIndex[FrontRight]}; /* Now apply the BS2B binaural/crossfeed filter. */ bs2b_cross_feed(Bs2b.get(), RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(), SamplesToDo); } namespace { /* This RNG method was created based on the math found in opusdec. It's quick, * and starting with a seed value of 22222, is suitable for generating * whitenoise. */ inline uint dither_rng(uint *seed) noexcept { *seed = (*seed * 96314165) + 907633515; return *seed; } inline auto& GetAmbiScales(AmbiScaling scaletype) noexcept { if(scaletype == AmbiScaling::FuMa) return AmbiScale::FromFuMa(); if(scaletype == AmbiScaling::SN3D) return AmbiScale::FromSN3D(); return AmbiScale::FromN3D(); } inline auto& GetAmbiLayout(AmbiLayout layouttype) noexcept { if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa(); return AmbiIndex::FromACN(); } inline auto& GetAmbi2DLayout(AmbiLayout layouttype) noexcept { if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D(); return AmbiIndex::FromACN2D(); } bool CalcContextParams(ALCcontext *ctx) { ContextProps *props{ctx->mParams.ContextUpdate.exchange(nullptr, std::memory_order_acq_rel)}; if(!props) return false; ctx->mParams.DopplerFactor = props->DopplerFactor; ctx->mParams.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity; ctx->mParams.SourceDistanceModel = props->SourceDistanceModel; ctx->mParams.mDistanceModel = props->mDistanceModel; AtomicReplaceHead(ctx->mFreeContextProps, props); return true; } bool CalcListenerParams(ALCcontext *ctx) { ListenerProps *props{ctx->mParams.ListenerUpdate.exchange(nullptr, std::memory_order_acq_rel)}; if(!props) return false; /* AT then UP */ alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f}; N.normalize(); alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f}; V.normalize(); /* Build and normalize right-vector */ alu::Vector U{N.cross_product(V)}; U.normalize(); const alu::MatrixR rot{ U[0], V[0], -N[0], 0.0, U[1], V[1], -N[1], 0.0, U[2], V[2], -N[2], 0.0, 0.0, 0.0, 0.0, 1.0}; const alu::VectorR pos{props->Position[0],props->Position[1],props->Position[2],1.0}; const alu::VectorR vel{props->Velocity[0],props->Velocity[1],props->Velocity[2],0.0}; const alu::Vector P{alu::cast_to(rot * pos)}; ctx->mParams.Matrix = alu::Matrix{ U[0], V[0], -N[0], 0.0f, U[1], V[1], -N[1], 0.0f, U[2], V[2], -N[2], 0.0f, -P[0], -P[1], -P[2], 1.0f}; ctx->mParams.Velocity = alu::cast_to(rot * vel); ctx->mParams.Gain = props->Gain * ctx->mGainBoost; ctx->mParams.MetersPerUnit = props->MetersPerUnit; AtomicReplaceHead(ctx->mFreeListenerProps, props); return true; } bool CalcEffectSlotParams(EffectSlot *slot, EffectSlot **sorted_slots, ALCcontext *context) { EffectSlotProps *props{slot->Update.exchange(nullptr, std::memory_order_acq_rel)}; if(!props) return false; /* If the effect slot target changed, clear the first sorted entry to force * a re-sort. */ if(slot->Target != props->Target) *sorted_slots = nullptr; slot->Gain = props->Gain; slot->AuxSendAuto = props->AuxSendAuto; slot->Target = props->Target; slot->EffectType = props->Type; slot->mEffectProps = props->Props; if(props->Type == EffectSlotType::Reverb || props->Type == EffectSlotType::EAXReverb) { slot->RoomRolloff = props->Props.Reverb.RoomRolloffFactor; slot->DecayTime = props->Props.Reverb.DecayTime; slot->DecayLFRatio = props->Props.Reverb.DecayLFRatio; slot->DecayHFRatio = props->Props.Reverb.DecayHFRatio; slot->DecayHFLimit = props->Props.Reverb.DecayHFLimit; slot->AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF; } else { slot->RoomRolloff = 0.0f; slot->DecayTime = 0.0f; slot->DecayLFRatio = 0.0f; slot->DecayHFRatio = 0.0f; slot->DecayHFLimit = false; slot->AirAbsorptionGainHF = 1.0f; } EffectState *state{props->State.release()}; EffectState *oldstate{slot->mEffectState}; slot->mEffectState = state; /* Only release the old state if it won't get deleted, since we can't be * deleting/freeing anything in the mixer. */ if(!oldstate->releaseIfNoDelete()) { /* Otherwise, if it would be deleted send it off with a release event. */ RingBuffer *ring{context->mAsyncEvents.get()}; auto evt_vec = ring->getWriteVector(); if LIKELY(evt_vec.first.len > 0) { AsyncEvent *evt{::new(evt_vec.first.buf) AsyncEvent{EventType_ReleaseEffectState}}; evt->u.mEffectState = oldstate; ring->writeAdvance(1); } else { /* If writing the event failed, the queue was probably full. Store * the old state in the property object where it can eventually be * cleaned up sometime later (not ideal, but better than blocking * or leaking). */ props->State.reset(oldstate); } } AtomicReplaceHead(context->mFreeEffectslotProps, props); EffectTarget output; if(EffectSlot *target{slot->Target}) output = EffectTarget{&target->Wet, nullptr}; else { ALCdevice *device{context->mDevice.get()}; output = EffectTarget{&device->Dry, &device->RealOut}; } state->update(context, slot, &slot->mEffectProps, output); return true; } /* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in * front. */ inline float ScaleAzimuthFront(float azimuth, float scale) { const float abs_azi{std::fabs(azimuth)}; if(!(abs_azi >= al::MathDefs::Pi()*0.5f)) return std::copysign(minf(abs_azi*scale, al::MathDefs::Pi()*0.5f), azimuth); return azimuth; } /* Wraps the given value in radians to stay between [-pi,+pi] */ inline float WrapRadians(float r) { constexpr float Pi{al::MathDefs::Pi()}; constexpr float Pi2{al::MathDefs::Tau()}; if(r > Pi) return std::fmod(Pi+r, Pi2) - Pi; if(r < -Pi) return Pi - std::fmod(Pi-r, Pi2); return r; } /* Begin ambisonic rotation helpers. * * Rotating first-order B-Format just needs a straight-forward X/Y/Z rotation * matrix. Higher orders, however, are more complicated. The method implemented * here is a recursive algorithm (the rotation for first-order is used to help * generate the second-order rotation, which helps generate the third-order * rotation, etc). * * Adapted from * , * provided under the BSD 3-Clause license. * * Copyright (c) 2015, Archontis Politis * Copyright (c) 2019, Christopher Robinson * * The u, v, and w coefficients used for generating higher-order rotations are * precomputed since they're constant. The second-order coefficients are * followed by the third-order coefficients, etc. */ struct RotatorCoeffs { float u, v, w; template static std::array ConcatArrays(const std::array &lhs, const std::array &rhs) { std::array ret; auto iter = std::copy(lhs.cbegin(), lhs.cend(), ret.begin()); std::copy(rhs.cbegin(), rhs.cend(), iter); return ret; } template static std::array GenCoeffs() { std::array ret{}; auto coeffs = ret.begin(); for(int m{-l};m <= l;++m) { for(int n{-l};n <= l;++n) { // compute u,v,w terms of Eq.8.1 (Table I) const bool d{m == 0}; // the delta function d_m0 const float denom{static_cast((std::abs(n) == l) ? (2*l) * (2*l - 1) : (l*l - n*n))}; const int abs_m{std::abs(m)}; coeffs->u = std::sqrt(static_cast(l*l - m*m)/denom); coeffs->v = std::sqrt(static_cast(l+abs_m-1) * static_cast(l+abs_m) / denom) * (1.0f+d) * (1.0f - 2.0f*d) * 0.5f; coeffs->w = std::sqrt(static_cast(l-abs_m-1) * static_cast(l-abs_m) / denom) * (1.0f-d) * -0.5f; ++coeffs; } } return ret; } }; const auto RotatorCoeffArray = RotatorCoeffs::ConcatArrays(RotatorCoeffs::GenCoeffs<2>(), RotatorCoeffs::GenCoeffs<3>()); /** * Given the matrix, pre-filled with the (zeroth- and) first-order rotation * coefficients, this fills in the coefficients for the higher orders up to and * including the given order. The matrix is in ACN layout. */ void AmbiRotator(std::array,MaxAmbiChannels> &matrix, const int order) { /* Don't do anything for < 2nd order. */ if(order < 2) return; auto P = [](const int i, const int l, const int a, const int n, const size_t last_band, const std::array,MaxAmbiChannels> &R) { const float ri1{ R[static_cast(i+2)][ 1+2]}; const float rim1{R[static_cast(i+2)][-1+2]}; const float ri0{ R[static_cast(i+2)][ 0+2]}; auto vec = R[static_cast(a+l-1) + last_band].cbegin() + last_band; if(n == -l) return ri1*vec[0] + rim1*vec[static_cast(l-1)*size_t{2}]; if(n == l) return ri1*vec[static_cast(l-1)*size_t{2}] - rim1*vec[0]; return ri0*vec[static_cast(n+l-1)]; }; auto U = [P](const int l, const int m, const int n, const size_t last_band, const std::array,MaxAmbiChannels> &R) { return P(0, l, m, n, last_band, R); }; auto V = [P](const int l, const int m, const int n, const size_t last_band, const std::array,MaxAmbiChannels> &R) { if(m > 0) { const bool d{m == 1}; const float p0{P( 1, l, m-1, n, last_band, R)}; const float p1{P(-1, l, -m+1, n, last_band, R)}; return d ? p0*std::sqrt(2.0f) : (p0 - p1); } const bool d{m == -1}; const float p0{P( 1, l, m+1, n, last_band, R)}; const float p1{P(-1, l, -m-1, n, last_band, R)}; return d ? p1*std::sqrt(2.0f) : (p0 + p1); }; auto W = [P](const int l, const int m, const int n, const size_t last_band, const std::array,MaxAmbiChannels> &R) { assert(m != 0); if(m > 0) { const float p0{P( 1, l, m+1, n, last_band, R)}; const float p1{P(-1, l, -m-1, n, last_band, R)}; return p0 + p1; } const float p0{P( 1, l, m-1, n, last_band, R)}; const float p1{P(-1, l, -m+1, n, last_band, R)}; return p0 - p1; }; // compute rotation matrix of each subsequent band recursively auto coeffs = RotatorCoeffArray.cbegin(); size_t band_idx{4}, last_band{1}; for(int l{2};l <= order;++l) { size_t y{band_idx}; for(int m{-l};m <= l;++m,++y) { size_t x{band_idx}; for(int n{-l};n <= l;++n,++x) { float r{0.0f}; // computes Eq.8.1 const float u{coeffs->u}; if(u != 0.0f) r += u * U(l, m, n, last_band, matrix); const float v{coeffs->v}; if(v != 0.0f) r += v * V(l, m, n, last_band, matrix); const float w{coeffs->w}; if(w != 0.0f) r += w * W(l, m, n, last_band, matrix); matrix[y][x] = r; ++coeffs; } } last_band = band_idx; band_idx += static_cast(l)*size_t{2} + 1; } } /* End ambisonic rotation helpers. */ struct GainTriplet { float Base, HF, LF; }; void CalcPanningAndFilters(Voice *voice, const float xpos, const float ypos, const float zpos, const float Distance, const float Spread, const GainTriplet &DryGain, const al::span WetGain, EffectSlot *(&SendSlots)[MAX_SENDS], const VoiceProps *props, const ContextParams &Context, const ALCdevice *Device) { static const ChanMap MonoMap[1]{ { FrontCenter, 0.0f, 0.0f } }, RearMap[2]{ { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) }, { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) } }, QuadMap[4]{ { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) }, { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) }, { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) }, { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) } }, X51Map[6]{ { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) }, { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, { LFE, 0.0f, 0.0f }, { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) }, { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) } }, X61Map[7]{ { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) }, { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, { LFE, 0.0f, 0.0f }, { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) }, { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) }, { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) } }, X71Map[8]{ { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) }, { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, { LFE, 0.0f, 0.0f }, { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) }, { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }, { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) }, { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) } }; ChanMap StereoMap[2]{ { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) }, { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) } }; const auto Frequency = static_cast(Device->Frequency); const uint NumSends{Device->NumAuxSends}; const size_t num_channels{voice->mChans.size()}; ASSUME(num_channels > 0); for(auto &chandata : voice->mChans) { chandata.mDryParams.Hrtf.Target = HrtfFilter{}; chandata.mDryParams.Gains.Target.fill(0.0f); std::for_each(chandata.mWetParams.begin(), chandata.mWetParams.begin()+NumSends, [](SendParams ¶ms) -> void { params.Gains.Target.fill(0.0f); }); } DirectMode DirectChannels{props->DirectChannels}; const ChanMap *chans{nullptr}; float downmix_gain{1.0f}; switch(voice->mFmtChannels) { case FmtMono: chans = MonoMap; /* Mono buffers are never played direct. */ DirectChannels = DirectMode::Off; break; case FmtStereo: if(DirectChannels == DirectMode::Off) { /* Convert counter-clockwise to clock-wise, and wrap between * [-pi,+pi]. */ StereoMap[0].angle = WrapRadians(-props->StereoPan[0]); StereoMap[1].angle = WrapRadians(-props->StereoPan[1]); } chans = StereoMap; downmix_gain = 1.0f / 2.0f; break; case FmtRear: chans = RearMap; downmix_gain = 1.0f / 2.0f; break; case FmtQuad: chans = QuadMap; downmix_gain = 1.0f / 4.0f; break; case FmtX51: chans = X51Map; /* NOTE: Excludes LFE. */ downmix_gain = 1.0f / 5.0f; break; case FmtX61: chans = X61Map; /* NOTE: Excludes LFE. */ downmix_gain = 1.0f / 6.0f; break; case FmtX71: chans = X71Map; /* NOTE: Excludes LFE. */ downmix_gain = 1.0f / 7.0f; break; case FmtBFormat2D: case FmtBFormat3D: DirectChannels = DirectMode::Off; break; } voice->mFlags &= ~(VoiceHasHrtf | VoiceHasNfc); if(voice->mFmtChannels == FmtBFormat2D || voice->mFmtChannels == FmtBFormat3D) { /* Special handling for B-Format sources. */ if(Device->AvgSpeakerDist > 0.0f) { if(!(Distance > std::numeric_limits::epsilon())) { /* NOTE: The NFCtrlFilters were created with a w0 of 0, which * is what we want for FOA input. The first channel may have * been previously re-adjusted if panned, so reset it. */ voice->mChans[0].mDryParams.NFCtrlFilter.adjust(0.0f); } else { /* Clamp the distance for really close sources, to prevent * excessive bass. */ const float mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)}; const float w0{SpeedOfSoundMetersPerSec / (mdist * Frequency)}; /* Only need to adjust the first channel of a B-Format source. */ voice->mChans[0].mDryParams.NFCtrlFilter.adjust(w0); } voice->mFlags |= VoiceHasNfc; } /* Panning a B-Format sound toward some direction is easy. Just pan the * first (W) channel as a normal mono sound. The angular spread is used * as a directional scalar to blend between full coverage and full * panning. */ const float coverage{!(Distance > std::numeric_limits::epsilon()) ? 1.0f : (Spread * (1.0f/al::MathDefs::Tau()))}; auto calc_coeffs = [xpos,ypos,zpos](RenderMode mode) { if(mode != RenderMode::Pairwise) return CalcDirectionCoeffs({xpos, ypos, zpos}, 0.0f); /* Clamp Y, in case rounding errors caused it to end up outside * of -1...+1. */ const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))}; /* Negate Z for right-handed coords with -Z in front. */ const float az{std::atan2(xpos, -zpos)}; /* A scalar of 1.5 for plain stereo results in +/-60 degrees * being moved to +/-90 degrees for direct right and left * speaker responses. */ return CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, 0.0f); }; auto coeffs = calc_coeffs(Device->mRenderMode); std::transform(coeffs.begin()+1, coeffs.end(), coeffs.begin()+1, std::bind(std::multiplies{}, _1, 1.0f-coverage)); /* NOTE: W needs to be scaled according to channel scaling. */ auto&& scales = GetAmbiScales(voice->mAmbiScaling); ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base*scales[0], voice->mChans[0].mDryParams.Gains.Target); for(uint i{0};i < NumSends;i++) { if(const EffectSlot *Slot{SendSlots[i]}) ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base*scales[0], voice->mChans[0].mWetParams[i].Gains.Target); } if(coverage > 0.0f) { /* Local B-Format sources have their XYZ channels rotated according * to the orientation. */ /* AT then UP */ alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f}; N.normalize(); alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f}; V.normalize(); if(!props->HeadRelative) { N = Context.Matrix * N; V = Context.Matrix * V; } /* Build and normalize right-vector */ alu::Vector U{N.cross_product(V)}; U.normalize(); /* Build a rotation matrix. Manually fill the zeroth- and first- * order elements, then construct the rotation for the higher * orders. */ std::array,MaxAmbiChannels> shrot{}; shrot[0][0] = 1.0f; shrot[1][1] = U[0]; shrot[1][2] = -V[0]; shrot[1][3] = -N[0]; shrot[2][1] = -U[1]; shrot[2][2] = V[1]; shrot[2][3] = N[1]; shrot[3][1] = U[2]; shrot[3][2] = -V[2]; shrot[3][3] = -N[2]; AmbiRotator(shrot, static_cast(minu(voice->mAmbiOrder, Device->mAmbiOrder))); /* Convert the rotation matrix for input ordering and scaling, and * whether input is 2D or 3D. */ const uint8_t *index_map{(voice->mFmtChannels == FmtBFormat2D) ? GetAmbi2DLayout(voice->mAmbiLayout).data() : GetAmbiLayout(voice->mAmbiLayout).data()}; static const uint8_t ChansPerOrder[MaxAmbiOrder+1]{1, 3, 5, 7,}; static const uint8_t OrderOffset[MaxAmbiOrder+1]{0, 1, 4, 9,}; for(size_t c{1};c < num_channels;c++) { const size_t acn{index_map[c]}; const size_t order{AmbiIndex::OrderFromChannel()[acn]}; const size_t tocopy{ChansPerOrder[order]}; const size_t offset{OrderOffset[order]}; const float scale{scales[acn] * coverage}; auto in = shrot.cbegin() + offset; coeffs = std::array{}; for(size_t x{0};x < tocopy;++x) coeffs[offset+x] = in[x][acn] * scale; ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base, voice->mChans[c].mDryParams.Gains.Target); for(uint i{0};i < NumSends;i++) { if(const EffectSlot *Slot{SendSlots[i]}) ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base, voice->mChans[c].mWetParams[i].Gains.Target); } } } } else if(DirectChannels != DirectMode::Off && Device->FmtChans != DevFmtAmbi3D) { /* Direct source channels always play local. Skip the virtual channels * and write inputs to the matching real outputs. */ voice->mDirect.Buffer = Device->RealOut.Buffer; for(size_t c{0};c < num_channels;c++) { uint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)}; if(idx != INVALID_CHANNEL_INDEX) voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base; else if(DirectChannels == DirectMode::RemixMismatch) { auto match_channel = [chans,c](const InputRemixMap &map) noexcept -> bool { return chans[c].channel == map.channel; }; auto remap = std::find_if(Device->RealOut.RemixMap.cbegin(), Device->RealOut.RemixMap.cend(), match_channel); if(remap != Device->RealOut.RemixMap.cend()) for(const auto &target : remap->targets) { idx = GetChannelIdxByName(Device->RealOut, target.channel); if(idx != INVALID_CHANNEL_INDEX) voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base * target.mix; } } } /* Auxiliary sends still use normal channel panning since they mix to * B-Format, which can't channel-match. */ for(size_t c{0};c < num_channels;c++) { const auto coeffs = CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f); for(uint i{0};i < NumSends;i++) { if(const EffectSlot *Slot{SendSlots[i]}) ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base, voice->mChans[c].mWetParams[i].Gains.Target); } } } else if(Device->mRenderMode == RenderMode::Hrtf) { /* Full HRTF rendering. Skip the virtual channels and render to the * real outputs. */ voice->mDirect.Buffer = Device->RealOut.Buffer; if(Distance > std::numeric_limits::epsilon()) { const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))}; const float az{std::atan2(xpos, -zpos)}; /* Get the HRIR coefficients and delays just once, for the given * source direction. */ GetHrtfCoeffs(Device->mHrtf.get(), ev, az, Distance, Spread, voice->mChans[0].mDryParams.Hrtf.Target.Coeffs, voice->mChans[0].mDryParams.Hrtf.Target.Delay); voice->mChans[0].mDryParams.Hrtf.Target.Gain = DryGain.Base * downmix_gain; /* Remaining channels use the same results as the first. */ for(size_t c{1};c < num_channels;c++) { /* Skip LFE */ if(chans[c].channel == LFE) continue; voice->mChans[c].mDryParams.Hrtf.Target = voice->mChans[0].mDryParams.Hrtf.Target; } /* Calculate the directional coefficients once, which apply to all * input channels of the source sends. */ const auto coeffs = CalcDirectionCoeffs({xpos, ypos, zpos}, Spread); for(size_t c{0};c < num_channels;c++) { /* Skip LFE */ if(chans[c].channel == LFE) continue; for(uint i{0};i < NumSends;i++) { if(const EffectSlot *Slot{SendSlots[i]}) ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base * downmix_gain, voice->mChans[c].mWetParams[i].Gains.Target); } } } else { /* Local sources on HRTF play with each channel panned to its * relative location around the listener, providing "virtual * speaker" responses. */ for(size_t c{0};c < num_channels;c++) { /* Skip LFE */ if(chans[c].channel == LFE) continue; /* Get the HRIR coefficients and delays for this channel * position. */ GetHrtfCoeffs(Device->mHrtf.get(), chans[c].elevation, chans[c].angle, std::numeric_limits::infinity(), Spread, voice->mChans[c].mDryParams.Hrtf.Target.Coeffs, voice->mChans[c].mDryParams.Hrtf.Target.Delay); voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain.Base; /* Normal panning for auxiliary sends. */ const auto coeffs = CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread); for(uint i{0};i < NumSends;i++) { if(const EffectSlot *Slot{SendSlots[i]}) ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base, voice->mChans[c].mWetParams[i].Gains.Target); } } } voice->mFlags |= VoiceHasHrtf; } else { /* Non-HRTF rendering. Use normal panning to the output. */ if(Distance > std::numeric_limits::epsilon()) { /* Calculate NFC filter coefficient if needed. */ if(Device->AvgSpeakerDist > 0.0f) { /* Clamp the distance for really close sources, to prevent * excessive bass. */ const float mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)}; const float w0{SpeedOfSoundMetersPerSec / (mdist * Frequency)}; /* Adjust NFC filters. */ for(size_t c{0};c < num_channels;c++) voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0); voice->mFlags |= VoiceHasNfc; } /* Calculate the directional coefficients once, which apply to all * input channels. */ auto calc_coeffs = [xpos,ypos,zpos,Spread](RenderMode mode) { if(mode != RenderMode::Pairwise) return CalcDirectionCoeffs({xpos, ypos, zpos}, Spread); const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))}; const float az{std::atan2(xpos, -zpos)}; return CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread); }; const auto coeffs = calc_coeffs(Device->mRenderMode); for(size_t c{0};c < num_channels;c++) { /* Special-case LFE */ if(chans[c].channel == LFE) { if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data()) { const uint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)}; if(idx != INVALID_CHANNEL_INDEX) voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base; } continue; } ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base * downmix_gain, voice->mChans[c].mDryParams.Gains.Target); for(uint i{0};i < NumSends;i++) { if(const EffectSlot *Slot{SendSlots[i]}) ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base * downmix_gain, voice->mChans[c].mWetParams[i].Gains.Target); } } } else { if(Device->AvgSpeakerDist > 0.0f) { /* If the source distance is 0, simulate a plane-wave by using * infinite distance, which results in a w0 of 0. */ constexpr float w0{0.0f}; for(size_t c{0};c < num_channels;c++) voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0); voice->mFlags |= VoiceHasNfc; } for(size_t c{0};c < num_channels;c++) { /* Special-case LFE */ if(chans[c].channel == LFE) { if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data()) { const uint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)}; if(idx != INVALID_CHANNEL_INDEX) voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base; } continue; } const auto coeffs = CalcAngleCoeffs((Device->mRenderMode == RenderMode::Pairwise) ? ScaleAzimuthFront(chans[c].angle, 3.0f) : chans[c].angle, chans[c].elevation, Spread); ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base, voice->mChans[c].mDryParams.Gains.Target); for(uint i{0};i < NumSends;i++) { if(const EffectSlot *Slot{SendSlots[i]}) ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base, voice->mChans[c].mWetParams[i].Gains.Target); } } } } { const float hfNorm{props->Direct.HFReference / Frequency}; const float lfNorm{props->Direct.LFReference / Frequency}; voice->mDirect.FilterType = AF_None; if(DryGain.HF != 1.0f) voice->mDirect.FilterType |= AF_LowPass; if(DryGain.LF != 1.0f) voice->mDirect.FilterType |= AF_HighPass; auto &lowpass = voice->mChans[0].mDryParams.LowPass; auto &highpass = voice->mChans[0].mDryParams.HighPass; lowpass.setParamsFromSlope(BiquadType::HighShelf, hfNorm, DryGain.HF, 1.0f); highpass.setParamsFromSlope(BiquadType::LowShelf, lfNorm, DryGain.LF, 1.0f); for(size_t c{1};c < num_channels;c++) { voice->mChans[c].mDryParams.LowPass.copyParamsFrom(lowpass); voice->mChans[c].mDryParams.HighPass.copyParamsFrom(highpass); } } for(uint i{0};i < NumSends;i++) { const float hfNorm{props->Send[i].HFReference / Frequency}; const float lfNorm{props->Send[i].LFReference / Frequency}; voice->mSend[i].FilterType = AF_None; if(WetGain[i].HF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass; if(WetGain[i].LF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass; auto &lowpass = voice->mChans[0].mWetParams[i].LowPass; auto &highpass = voice->mChans[0].mWetParams[i].HighPass; lowpass.setParamsFromSlope(BiquadType::HighShelf, hfNorm, WetGain[i].HF, 1.0f); highpass.setParamsFromSlope(BiquadType::LowShelf, lfNorm, WetGain[i].LF, 1.0f); for(size_t c{1};c < num_channels;c++) { voice->mChans[c].mWetParams[i].LowPass.copyParamsFrom(lowpass); voice->mChans[c].mWetParams[i].HighPass.copyParamsFrom(highpass); } } } void CalcNonAttnSourceParams(Voice *voice, const VoiceProps *props, const ALCcontext *context) { const ALCdevice *Device{context->mDevice.get()}; EffectSlot *SendSlots[MAX_SENDS]; voice->mDirect.Buffer = Device->Dry.Buffer; for(uint i{0};i < Device->NumAuxSends;i++) { SendSlots[i] = props->Send[i].Slot; if(!SendSlots[i] || SendSlots[i]->EffectType == EffectSlotType::None) { SendSlots[i] = nullptr; voice->mSend[i].Buffer = {}; } else voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer; } /* Calculate the stepping value */ const auto Pitch = static_cast(voice->mFrequency) / static_cast(Device->Frequency) * props->Pitch; if(Pitch > float{MaxPitch}) voice->mStep = MaxPitch<mStep = maxu(fastf2u(Pitch * MixerFracOne), 1); voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState); /* Calculate gains */ GainTriplet DryGain; DryGain.Base = minf(clampf(props->Gain, props->MinGain, props->MaxGain) * props->Direct.Gain * context->mParams.Gain, GainMixMax); DryGain.HF = props->Direct.GainHF; DryGain.LF = props->Direct.GainLF; GainTriplet WetGain[MAX_SENDS]; for(uint i{0};i < Device->NumAuxSends;i++) { WetGain[i].Base = minf(clampf(props->Gain, props->MinGain, props->MaxGain) * props->Send[i].Gain * context->mParams.Gain, GainMixMax); WetGain[i].HF = props->Send[i].GainHF; WetGain[i].LF = props->Send[i].GainLF; } CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, WetGain, SendSlots, props, context->mParams, Device); } void CalcAttnSourceParams(Voice *voice, const VoiceProps *props, const ALCcontext *context) { const ALCdevice *Device{context->mDevice.get()}; const uint NumSends{Device->NumAuxSends}; /* Set mixing buffers and get send parameters. */ voice->mDirect.Buffer = Device->Dry.Buffer; EffectSlot *SendSlots[MAX_SENDS]; float RoomRolloff[MAX_SENDS]; GainTriplet DecayDistance[MAX_SENDS]; for(uint i{0};i < NumSends;i++) { SendSlots[i] = props->Send[i].Slot; if(!SendSlots[i] || SendSlots[i]->EffectType == EffectSlotType::None) { SendSlots[i] = nullptr; RoomRolloff[i] = 0.0f; DecayDistance[i].Base = 0.0f; DecayDistance[i].LF = 0.0f; DecayDistance[i].HF = 0.0f; } else if(SendSlots[i]->AuxSendAuto) { RoomRolloff[i] = SendSlots[i]->RoomRolloff + props->RoomRolloffFactor; /* Calculate the distances to where this effect's decay reaches * -60dB. */ DecayDistance[i].Base = SendSlots[i]->DecayTime * SpeedOfSoundMetersPerSec; DecayDistance[i].LF = DecayDistance[i].Base * SendSlots[i]->DecayLFRatio; DecayDistance[i].HF = DecayDistance[i].Base * SendSlots[i]->DecayHFRatio; if(SendSlots[i]->DecayHFLimit) { const float airAbsorption{SendSlots[i]->AirAbsorptionGainHF}; if(airAbsorption < 1.0f) { /* Calculate the distance to where this effect's air * absorption reaches -60dB, and limit the effect's HF * decay distance (so it doesn't take any longer to decay * than the air would allow). */ constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/}; const float absorb_dist{log10_decaygain / std::log10(airAbsorption)}; DecayDistance[i].HF = minf(absorb_dist, DecayDistance[i].HF); } } } else { /* If the slot's auxiliary send auto is off, the data sent to the * effect slot is the same as the dry path, sans filter effects */ RoomRolloff[i] = props->RolloffFactor; DecayDistance[i].Base = 0.0f; DecayDistance[i].LF = 0.0f; DecayDistance[i].HF = 0.0f; } if(!SendSlots[i]) voice->mSend[i].Buffer = {}; else voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer; } /* Transform source to listener space (convert to head relative) */ alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f}; alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f}; alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f}; if(!props->HeadRelative) { /* Transform source vectors */ Position = context->mParams.Matrix * Position; Velocity = context->mParams.Matrix * Velocity; Direction = context->mParams.Matrix * Direction; } else { /* Offset the source velocity to be relative of the listener velocity */ Velocity += context->mParams.Velocity; } const bool directional{Direction.normalize() > 0.0f}; alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f}; const float Distance{ToSource.normalize(props->RefDistance / 1024.0f)}; /* Initial source gain */ GainTriplet DryGain{props->Gain, 1.0f, 1.0f}; GainTriplet WetGain[MAX_SENDS]; for(uint i{0};i < NumSends;i++) WetGain[i] = DryGain; /* Calculate distance attenuation */ float ClampedDist{Distance}; switch(context->mParams.SourceDistanceModel ? props->mDistanceModel : context->mParams.mDistanceModel) { case DistanceModel::InverseClamped: ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance); if(props->MaxDistance < props->RefDistance) break; /*fall-through*/ case DistanceModel::Inverse: if(!(props->RefDistance > 0.0f)) ClampedDist = props->RefDistance; else { float dist{lerp(props->RefDistance, ClampedDist, props->RolloffFactor)}; if(dist > 0.0f) DryGain.Base *= props->RefDistance / dist; for(uint i{0};i < NumSends;i++) { dist = lerp(props->RefDistance, ClampedDist, RoomRolloff[i]); if(dist > 0.0f) WetGain[i].Base *= props->RefDistance / dist; } } break; case DistanceModel::LinearClamped: ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance); if(props->MaxDistance < props->RefDistance) break; /*fall-through*/ case DistanceModel::Linear: if(!(props->MaxDistance != props->RefDistance)) ClampedDist = props->RefDistance; else { float attn{props->RolloffFactor * (ClampedDist-props->RefDistance) / (props->MaxDistance-props->RefDistance)}; DryGain.Base *= maxf(1.0f - attn, 0.0f); for(uint i{0};i < NumSends;i++) { attn = RoomRolloff[i] * (ClampedDist-props->RefDistance) / (props->MaxDistance-props->RefDistance); WetGain[i].Base *= maxf(1.0f - attn, 0.0f); } } break; case DistanceModel::ExponentClamped: ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance); if(props->MaxDistance < props->RefDistance) break; /*fall-through*/ case DistanceModel::Exponent: if(!(ClampedDist > 0.0f && props->RefDistance > 0.0f)) ClampedDist = props->RefDistance; else { const float dist_ratio{ClampedDist/props->RefDistance}; DryGain.Base *= std::pow(dist_ratio, -props->RolloffFactor); for(uint i{0};i < NumSends;i++) WetGain[i].Base *= std::pow(dist_ratio, -RoomRolloff[i]); } break; case DistanceModel::Disable: ClampedDist = props->RefDistance; break; } /* Calculate directional soundcones */ if(directional && props->InnerAngle < 360.0f) { const float Angle{Rad2Deg(std::acos(Direction.dot_product(ToSource)) * ConeScale * -2.0f)}; float ConeGain, ConeHF; if(!(Angle > props->InnerAngle)) { ConeGain = 1.0f; ConeHF = 1.0f; } else if(Angle < props->OuterAngle) { const float scale{(Angle-props->InnerAngle) / (props->OuterAngle-props->InnerAngle)}; ConeGain = lerp(1.0f, props->OuterGain, scale); ConeHF = lerp(1.0f, props->OuterGainHF, scale); } else { ConeGain = props->OuterGain; ConeHF = props->OuterGainHF; } DryGain.Base *= ConeGain; if(props->DryGainHFAuto) DryGain.HF *= ConeHF; if(props->WetGainAuto) std::for_each(std::begin(WetGain), std::begin(WetGain)+NumSends, [ConeGain](GainTriplet &gain) noexcept -> void { gain.Base *= ConeGain; }); if(props->WetGainHFAuto) std::for_each(std::begin(WetGain), std::begin(WetGain)+NumSends, [ConeHF](GainTriplet &gain) noexcept -> void { gain.HF *= ConeHF; }); } /* Apply gain and frequency filters */ DryGain.Base = minf(clampf(DryGain.Base, props->MinGain, props->MaxGain) * props->Direct.Gain * context->mParams.Gain, GainMixMax); DryGain.HF *= props->Direct.GainHF; DryGain.LF *= props->Direct.GainLF; for(uint i{0};i < NumSends;i++) { WetGain[i].Base = minf(clampf(WetGain[i].Base, props->MinGain, props->MaxGain) * props->Send[i].Gain * context->mParams.Gain, GainMixMax); WetGain[i].HF *= props->Send[i].GainHF; WetGain[i].LF *= props->Send[i].GainLF; } /* Distance-based air absorption and initial send decay. */ if(ClampedDist > props->RefDistance && props->RolloffFactor > 0.0f) { const float meters_base{(ClampedDist-props->RefDistance) * props->RolloffFactor * context->mParams.MetersPerUnit}; if(props->AirAbsorptionFactor > 0.0f) { const float hfattn{std::pow(AirAbsorbGainHF, meters_base*props->AirAbsorptionFactor)}; DryGain.HF *= hfattn; std::for_each(std::begin(WetGain), std::begin(WetGain)+NumSends, [hfattn](GainTriplet &gain) noexcept -> void { gain.HF *= hfattn; }); } if(props->WetGainAuto) { /* Apply a decay-time transformation to the wet path, based on the * source distance in meters. The initial decay of the reverb * effect is calculated and applied to the wet path. */ for(uint i{0};i < NumSends;i++) { if(!(DecayDistance[i].Base > 0.0f)) continue; const float gain{std::pow(ReverbDecayGain, meters_base/DecayDistance[i].Base)}; WetGain[i].Base *= gain; /* Yes, the wet path's air absorption is applied with * WetGainAuto on, rather than WetGainHFAuto. */ if(gain > 0.0f) { float gainhf{std::pow(ReverbDecayGain, meters_base/DecayDistance[i].HF)}; WetGain[i].HF *= minf(gainhf / gain, 1.0f); float gainlf{std::pow(ReverbDecayGain, meters_base/DecayDistance[i].LF)}; WetGain[i].LF *= minf(gainlf / gain, 1.0f); } } } } /* Initial source pitch */ float Pitch{props->Pitch}; /* Calculate velocity-based doppler effect */ float DopplerFactor{props->DopplerFactor * context->mParams.DopplerFactor}; if(DopplerFactor > 0.0f) { const alu::Vector &lvelocity = context->mParams.Velocity; float vss{Velocity.dot_product(ToSource) * -DopplerFactor}; float vls{lvelocity.dot_product(ToSource) * -DopplerFactor}; const float SpeedOfSound{context->mParams.SpeedOfSound}; if(!(vls < SpeedOfSound)) { /* Listener moving away from the source at the speed of sound. * Sound waves can't catch it. */ Pitch = 0.0f; } else if(!(vss < SpeedOfSound)) { /* Source moving toward the listener at the speed of sound. Sound * waves bunch up to extreme frequencies. */ Pitch = std::numeric_limits::infinity(); } else { /* Source and listener movement is nominal. Calculate the proper * doppler shift. */ Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss); } } /* Adjust pitch based on the buffer and output frequencies, and calculate * fixed-point stepping value. */ Pitch *= static_cast(voice->mFrequency) / static_cast(Device->Frequency); if(Pitch > float{MaxPitch}) voice->mStep = MaxPitch<mStep = maxu(fastf2u(Pitch * MixerFracOne), 1); voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState); float spread{0.0f}; if(props->Radius > Distance) spread = al::MathDefs::Tau() - Distance/props->Radius*al::MathDefs::Pi(); else if(Distance > 0.0f) spread = std::asin(props->Radius/Distance) * 2.0f; CalcPanningAndFilters(voice, ToSource[0], ToSource[1], ToSource[2]*ZScale, Distance*context->mParams.MetersPerUnit, spread, DryGain, WetGain, SendSlots, props, context->mParams, Device); } void CalcSourceParams(Voice *voice, ALCcontext *context, bool force) { VoicePropsItem *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)}; if(!props && !force) return; if(props) { voice->mProps = *props; AtomicReplaceHead(context->mFreeVoiceProps, props); } if((voice->mProps.DirectChannels != DirectMode::Off && voice->mFmtChannels != FmtMono && voice->mFmtChannels != FmtBFormat2D && voice->mFmtChannels != FmtBFormat3D) || voice->mProps.mSpatializeMode==SpatializeMode::Off || (voice->mProps.mSpatializeMode==SpatializeMode::Auto && voice->mFmtChannels != FmtMono)) CalcNonAttnSourceParams(voice, &voice->mProps, context); else CalcAttnSourceParams(voice, &voice->mProps, context); } void SendSourceStateEvent(ALCcontext *context, uint id, VChangeState state) { RingBuffer *ring{context->mAsyncEvents.get()}; auto evt_vec = ring->getWriteVector(); if(evt_vec.first.len < 1) return; AsyncEvent *evt{::new(evt_vec.first.buf) AsyncEvent{EventType_SourceStateChange}}; evt->u.srcstate.id = id; evt->u.srcstate.state = state; ring->writeAdvance(1); } void ProcessVoiceChanges(ALCcontext *ctx) { VoiceChange *cur{ctx->mCurrentVoiceChange.load(std::memory_order_acquire)}; VoiceChange *next{cur->mNext.load(std::memory_order_acquire)}; if(!next) return; const uint enabledevt{ctx->mEnabledEvts.load(std::memory_order_acquire)}; do { cur = next; bool sendevt{false}; if(cur->mState == VChangeState::Reset || cur->mState == VChangeState::Stop) { if(Voice *voice{cur->mVoice}) { voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed); voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed); /* A source ID indicates the voice was playing or paused, which * gets a reset/stop event. */ sendevt = voice->mSourceID.exchange(0u, std::memory_order_relaxed) != 0u; Voice::State oldvstate{Voice::Playing}; voice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping, std::memory_order_relaxed, std::memory_order_acquire); voice->mPendingChange.store(false, std::memory_order_release); } /* Reset state change events are always sent, even if the voice is * already stopped or even if there is no voice. */ sendevt |= (cur->mState == VChangeState::Reset); } else if(cur->mState == VChangeState::Pause) { Voice *voice{cur->mVoice}; Voice::State oldvstate{Voice::Playing}; sendevt = voice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping, std::memory_order_release, std::memory_order_acquire); } else if(cur->mState == VChangeState::Play) { /* NOTE: When playing a voice, sending a source state change event * depends if there's an old voice to stop and if that stop is * successful. If there is no old voice, a playing event is always * sent. If there is an old voice, an event is sent only if the * voice is already stopped. */ if(Voice *oldvoice{cur->mOldVoice}) { oldvoice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed); oldvoice->mLoopBuffer.store(nullptr, std::memory_order_relaxed); oldvoice->mSourceID.store(0u, std::memory_order_relaxed); Voice::State oldvstate{Voice::Playing}; sendevt = !oldvoice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping, std::memory_order_relaxed, std::memory_order_acquire); oldvoice->mPendingChange.store(false, std::memory_order_release); } else sendevt = true; Voice *voice{cur->mVoice}; voice->mPlayState.store(Voice::Playing, std::memory_order_release); } else if(cur->mState == VChangeState::Restart) { /* Restarting a voice never sends a source change event. */ Voice *oldvoice{cur->mOldVoice}; oldvoice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed); oldvoice->mLoopBuffer.store(nullptr, std::memory_order_relaxed); /* If there's no sourceID, the old voice finished so don't start * the new one at its new offset. */ if(oldvoice->mSourceID.exchange(0u, std::memory_order_relaxed) != 0u) { /* Otherwise, set the voice to stopping if it's not already (it * might already be, if paused), and play the new voice as * appropriate. */ Voice::State oldvstate{Voice::Playing}; oldvoice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping, std::memory_order_relaxed, std::memory_order_acquire); Voice *voice{cur->mVoice}; voice->mPlayState.store((oldvstate == Voice::Playing) ? Voice::Playing : Voice::Stopped, std::memory_order_release); } oldvoice->mPendingChange.store(false, std::memory_order_release); } if(sendevt && (enabledevt&EventType_SourceStateChange)) SendSourceStateEvent(ctx, cur->mSourceID, cur->mState); next = cur->mNext.load(std::memory_order_acquire); } while(next); ctx->mCurrentVoiceChange.store(cur, std::memory_order_release); } void ProcessParamUpdates(ALCcontext *ctx, const EffectSlotArray &slots, const al::span voices) { ProcessVoiceChanges(ctx); IncrementRef(ctx->mUpdateCount); if LIKELY(!ctx->mHoldUpdates.load(std::memory_order_acquire)) { bool force{CalcContextParams(ctx)}; force |= CalcListenerParams(ctx); auto sorted_slots = const_cast(slots.data() + slots.size()); for(EffectSlot *slot : slots) force |= CalcEffectSlotParams(slot, sorted_slots, ctx); for(Voice *voice : voices) { /* Only update voices that have a source. */ if(voice->mSourceID.load(std::memory_order_relaxed) != 0) CalcSourceParams(voice, ctx, force); } } IncrementRef(ctx->mUpdateCount); } void ProcessContexts(ALCdevice *device, const uint SamplesToDo) { ASSUME(SamplesToDo > 0); for(ALCcontext *ctx : *device->mContexts.load(std::memory_order_acquire)) { const EffectSlotArray &auxslots = *ctx->mActiveAuxSlots.load(std::memory_order_acquire); const al::span voices{ctx->getVoicesSpanAcquired()}; /* Process pending propery updates for objects on the context. */ ProcessParamUpdates(ctx, auxslots, voices); /* Clear auxiliary effect slot mixing buffers. */ for(EffectSlot *slot : auxslots) { for(auto &buffer : slot->Wet.Buffer) buffer.fill(0.0f); } /* Process voices that have a playing source. */ for(Voice *voice : voices) { const Voice::State vstate{voice->mPlayState.load(std::memory_order_acquire)}; if(vstate != Voice::Stopped && vstate != Voice::Pending) voice->mix(vstate, ctx, SamplesToDo); } /* Process effects. */ if(const size_t num_slots{auxslots.size()}) { auto slots = auxslots.data(); auto slots_end = slots + num_slots; /* Sort the slots into extra storage, so that effect slots come * before their effect slot target (or their targets' target). */ const al::span sorted_slots{const_cast(slots_end), num_slots}; /* Skip sorting if it has already been done. */ if(!sorted_slots[0]) { /* First, copy the slots to the sorted list, then partition the * sorted list so that all slots without a target slot go to * the end. */ std::copy(slots, slots_end, sorted_slots.begin()); auto split_point = std::partition(sorted_slots.begin(), sorted_slots.end(), [](const EffectSlot *slot) noexcept -> bool { return slot->Target != nullptr; }); /* There must be at least one slot without a slot target. */ assert(split_point != sorted_slots.end()); /* Simple case: no more than 1 slot has a target slot. Either * all slots go right to the output, or the remaining one must * target an already-partitioned slot. */ if(split_point - sorted_slots.begin() > 1) { /* At least two slots target other slots. Starting from the * back of the sorted list, continue partitioning the front * of the list given each target until all targets are * accounted for. This ensures all slots without a target * go last, all slots directly targeting those last slots * go second-to-last, all slots directly targeting those * second-last slots go third-to-last, etc. */ auto next_target = sorted_slots.end(); do { /* This shouldn't happen, but if there's unsorted slots * left that don't target any sorted slots, they can't * contribute to the output, so leave them. */ if UNLIKELY(next_target == split_point) break; --next_target; split_point = std::partition(sorted_slots.begin(), split_point, [next_target](const EffectSlot *slot) noexcept -> bool { return slot->Target != *next_target; }); } while(split_point - sorted_slots.begin() > 1); } } for(const EffectSlot *slot : sorted_slots) { EffectState *state{slot->mEffectState}; state->process(SamplesToDo, slot->Wet.Buffer, state->mOutTarget); } } /* Signal the event handler if there are any events to read. */ RingBuffer *ring{ctx->mAsyncEvents.get()}; if(ring->readSpace() > 0) ctx->mEventSem.post(); } } void ApplyDistanceComp(const al::span Samples, const size_t SamplesToDo, const DistanceComp::ChanData *distcomp) { ASSUME(SamplesToDo > 0); for(auto &chanbuffer : Samples) { const float gain{distcomp->Gain}; const size_t base{distcomp->Length}; float *distbuf{al::assume_aligned<16>(distcomp->Buffer)}; ++distcomp; if(base < 1) continue; float *inout{al::assume_aligned<16>(chanbuffer.data())}; auto inout_end = inout + SamplesToDo; if LIKELY(SamplesToDo >= base) { auto delay_end = std::rotate(inout, inout_end - base, inout_end); std::swap_ranges(inout, delay_end, distbuf); } else { auto delay_start = std::swap_ranges(inout, inout_end, distbuf); std::rotate(distbuf, delay_start, distbuf + base); } std::transform(inout, inout_end, inout, std::bind(std::multiplies{}, _1, gain)); } } void ApplyDither(const al::span Samples, uint *dither_seed, const float quant_scale, const size_t SamplesToDo) { ASSUME(SamplesToDo > 0); /* Dithering. Generate whitenoise (uniform distribution of random values * between -1 and +1) and add it to the sample values, after scaling up to * the desired quantization depth amd before rounding. */ const float invscale{1.0f / quant_scale}; uint seed{*dither_seed}; auto dither_sample = [&seed,invscale,quant_scale](const float sample) noexcept -> float { float val{sample * quant_scale}; uint rng0{dither_rng(&seed)}; uint rng1{dither_rng(&seed)}; val += static_cast(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX)); return fast_roundf(val) * invscale; }; for(FloatBufferLine &inout : Samples) std::transform(inout.begin(), inout.begin()+SamplesToDo, inout.begin(), dither_sample); *dither_seed = seed; } /* Base template left undefined. Should be marked =delete, but Clang 3.8.1 * chokes on that given the inline specializations. */ template inline T SampleConv(float) noexcept; template<> inline float SampleConv(float val) noexcept { return val; } template<> inline int32_t SampleConv(float val) noexcept { /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit. * This means a normalized float has at most 25 bits of signed precision. * When scaling and clamping for a signed 32-bit integer, these following * values are the best a float can give. */ return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f)); } template<> inline int16_t SampleConv(float val) noexcept { return static_cast(fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f))); } template<> inline int8_t SampleConv(float val) noexcept { return static_cast(fastf2i(clampf(val*128.0f, -128.0f, 127.0f))); } /* Define unsigned output variations. */ template<> inline uint32_t SampleConv(float val) noexcept { return static_cast(SampleConv(val)) + 2147483648u; } template<> inline uint16_t SampleConv(float val) noexcept { return static_cast(SampleConv(val) + 32768); } template<> inline uint8_t SampleConv(float val) noexcept { return static_cast(SampleConv(val) + 128); } template void Write(const al::span InBuffer, void *OutBuffer, const size_t Offset, const size_t SamplesToDo, const size_t FrameStep) { ASSUME(FrameStep > 0); ASSUME(SamplesToDo > 0); DevFmtType_t *outbase = static_cast*>(OutBuffer) + Offset*FrameStep; for(const FloatBufferLine &inbuf : InBuffer) { DevFmtType_t *out{outbase++}; auto conv_sample = [FrameStep,&out](const float s) noexcept -> void { *out = SampleConv>(s); out += FrameStep; }; std::for_each(inbuf.begin(), inbuf.begin()+SamplesToDo, conv_sample); } } } // namespace void ALCdevice::renderSamples(void *outBuffer, const uint numSamples, const size_t frameStep) { FPUCtl mixer_mode{}; for(uint written{0u};written < numSamples;) { const uint samplesToDo{minu(numSamples-written, BufferLineSize)}; /* Clear main mixing buffers. */ for(FloatBufferLine &buffer : MixBuffer) buffer.fill(0.0f); /* Increment the mix count at the start (lsb should now be 1). */ IncrementRef(MixCount); /* Process and mix each context's sources and effects. */ ProcessContexts(this, samplesToDo); /* Increment the clock time. Every second's worth of samples is * converted and added to clock base so that large sample counts don't * overflow during conversion. This also guarantees a stable * conversion. */ SamplesDone += samplesToDo; ClockBase += std::chrono::seconds{SamplesDone / Frequency}; SamplesDone %= Frequency; /* Increment the mix count at the end (lsb should now be 0). */ IncrementRef(MixCount); /* Apply any needed post-process for finalizing the Dry mix to the * RealOut (Ambisonic decode, UHJ encode, etc). */ postProcess(samplesToDo); /* Apply compression, limiting sample amplitude if needed or desired. */ if(Limiter) Limiter->process(samplesToDo, RealOut.Buffer.data()); /* Apply delays and attenuation for mismatched speaker distances. */ if(ChannelDelays) ApplyDistanceComp(RealOut.Buffer, samplesToDo, ChannelDelays->mChannels.data()); /* Apply dithering. The compressor should have left enough headroom for * the dither noise to not saturate. */ if(DitherDepth > 0.0f) ApplyDither(RealOut.Buffer, &DitherSeed, DitherDepth, samplesToDo); if LIKELY(outBuffer) { /* Finally, interleave and convert samples, writing to the device's * output buffer. */ switch(FmtType) { #define HANDLE_WRITE(T) case T: \ Write(RealOut.Buffer, outBuffer, written, samplesToDo, frameStep); break; HANDLE_WRITE(DevFmtByte) HANDLE_WRITE(DevFmtUByte) HANDLE_WRITE(DevFmtShort) HANDLE_WRITE(DevFmtUShort) HANDLE_WRITE(DevFmtInt) HANDLE_WRITE(DevFmtUInt) HANDLE_WRITE(DevFmtFloat) #undef HANDLE_WRITE } } written += samplesToDo; } } void ALCdevice::handleDisconnect(const char *msg, ...) { if(!Connected.exchange(false, std::memory_order_acq_rel)) return; AsyncEvent evt{EventType_Disconnected}; va_list args; va_start(args, msg); int msglen{vsnprintf(evt.u.disconnect.msg, sizeof(evt.u.disconnect.msg), msg, args)}; va_end(args); if(msglen < 0 || static_cast(msglen) >= sizeof(evt.u.disconnect.msg)) evt.u.disconnect.msg[sizeof(evt.u.disconnect.msg)-1] = 0; IncrementRef(MixCount); for(ALCcontext *ctx : *mContexts.load()) { const uint enabledevt{ctx->mEnabledEvts.load(std::memory_order_acquire)}; if((enabledevt&EventType_Disconnected)) { RingBuffer *ring{ctx->mAsyncEvents.get()}; auto evt_data = ring->getWriteVector().first; if(evt_data.len > 0) { ::new(evt_data.buf) AsyncEvent{evt}; ring->writeAdvance(1); ctx->mEventSem.post(); } } auto voicelist = ctx->getVoicesSpanAcquired(); auto stop_voice = [](Voice *voice) -> void { voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed); voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed); voice->mSourceID.store(0u, std::memory_order_relaxed); voice->mPlayState.store(Voice::Stopped, std::memory_order_release); }; std::for_each(voicelist.begin(), voicelist.end(), stop_voice); } IncrementRef(MixCount); }