/** * OpenAL cross platform audio library * Copyright (C) 2018 by Raul Herraiz. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include "alcmain.h" #include "alcontext.h" #include "core/filters/biquad.h" #include "effectslot.h" #include "vecmat.h" namespace { constexpr float GainScale{31621.0f}; constexpr float MinFreq{20.0f}; constexpr float MaxFreq{2500.0f}; constexpr float QFactor{5.0f}; struct AutowahState final : public EffectState { /* Effect parameters */ float mAttackRate; float mReleaseRate; float mResonanceGain; float mPeakGain; float mFreqMinNorm; float mBandwidthNorm; float mEnvDelay; /* Filter components derived from the envelope. */ struct { float cos_w0; float alpha; } mEnv[BufferLineSize]; struct { /* Effect filters' history. */ struct { float z1, z2; } Filter; /* Effect gains for each output channel */ float CurrentGains[MAX_OUTPUT_CHANNELS]; float TargetGains[MAX_OUTPUT_CHANNELS]; } mChans[MaxAmbiChannels]; /* Effects buffers */ alignas(16) float mBufferOut[BufferLineSize]; void deviceUpdate(const ALCdevice *device, const BufferStorage *buffer) override; void update(const ALCcontext *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; DEF_NEWDEL(AutowahState) }; void AutowahState::deviceUpdate(const ALCdevice*, const BufferStorage* /*buffer*/) { /* (Re-)initializing parameters and clear the buffers. */ mAttackRate = 1.0f; mReleaseRate = 1.0f; mResonanceGain = 10.0f; mPeakGain = 4.5f; mFreqMinNorm = 4.5e-4f; mBandwidthNorm = 0.05f; mEnvDelay = 0.0f; for(auto &e : mEnv) { e.cos_w0 = 0.0f; e.alpha = 0.0f; } for(auto &chan : mChans) { std::fill(std::begin(chan.CurrentGains), std::end(chan.CurrentGains), 0.0f); chan.Filter.z1 = 0.0f; chan.Filter.z2 = 0.0f; } } void AutowahState::update(const ALCcontext *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) { const ALCdevice *device{context->mDevice.get()}; const auto frequency = static_cast(device->Frequency); const float ReleaseTime{clampf(props->Autowah.ReleaseTime, 0.001f, 1.0f)}; mAttackRate = std::exp(-1.0f / (props->Autowah.AttackTime*frequency)); mReleaseRate = std::exp(-1.0f / (ReleaseTime*frequency)); /* 0-20dB Resonance Peak gain */ mResonanceGain = std::sqrt(std::log10(props->Autowah.Resonance)*10.0f / 3.0f); mPeakGain = 1.0f - std::log10(props->Autowah.PeakGain / GainScale); mFreqMinNorm = MinFreq / frequency; mBandwidthNorm = (MaxFreq-MinFreq) / frequency; mOutTarget = target.Main->Buffer; auto set_gains = [slot,target](auto &chan, al::span coeffs) { ComputePanGains(target.Main, coeffs.data(), slot->Gain, chan.TargetGains); }; SetAmbiPanIdentity(std::begin(mChans), slot->Wet.Buffer.size(), set_gains); } void AutowahState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { const float attack_rate{mAttackRate}; const float release_rate{mReleaseRate}; const float res_gain{mResonanceGain}; const float peak_gain{mPeakGain}; const float freq_min{mFreqMinNorm}; const float bandwidth{mBandwidthNorm}; float env_delay{mEnvDelay}; for(size_t i{0u};i < samplesToDo;i++) { float w0, sample, a; /* Envelope follower described on the book: Audio Effects, Theory, * Implementation and Application. */ sample = peak_gain * std::fabs(samplesIn[0][i]); a = (sample > env_delay) ? attack_rate : release_rate; env_delay = lerp(sample, env_delay, a); /* Calculate the cos and alpha components for this sample's filter. */ w0 = minf((bandwidth*env_delay + freq_min), 0.46f) * al::MathDefs::Tau(); mEnv[i].cos_w0 = std::cos(w0); mEnv[i].alpha = std::sin(w0)/(2.0f * QFactor); } mEnvDelay = env_delay; auto chandata = std::addressof(mChans[0]); for(const auto &insamples : samplesIn) { /* This effectively inlines BiquadFilter_setParams for a peaking * filter and BiquadFilter_processC. The alpha and cosine components * for the filter coefficients were previously calculated with the * envelope. Because the filter changes for each sample, the * coefficients are transient and don't need to be held. */ float z1{chandata->Filter.z1}; float z2{chandata->Filter.z2}; for(size_t i{0u};i < samplesToDo;i++) { const float alpha{mEnv[i].alpha}; const float cos_w0{mEnv[i].cos_w0}; float input, output; float a[3], b[3]; b[0] = 1.0f + alpha*res_gain; b[1] = -2.0f * cos_w0; b[2] = 1.0f - alpha*res_gain; a[0] = 1.0f + alpha/res_gain; a[1] = -2.0f * cos_w0; a[2] = 1.0f - alpha/res_gain; input = insamples[i]; output = input*(b[0]/a[0]) + z1; z1 = input*(b[1]/a[0]) - output*(a[1]/a[0]) + z2; z2 = input*(b[2]/a[0]) - output*(a[2]/a[0]); mBufferOut[i] = output; } chandata->Filter.z1 = z1; chandata->Filter.z2 = z2; /* Now, mix the processed sound data to the output. */ MixSamples({mBufferOut, samplesToDo}, samplesOut, chandata->CurrentGains, chandata->TargetGains, samplesToDo, 0); ++chandata; } } struct AutowahStateFactory final : public EffectStateFactory { EffectState *create() override { return new AutowahState{}; } }; } // namespace EffectStateFactory *AutowahStateFactory_getFactory() { static AutowahStateFactory AutowahFactory{}; return &AutowahFactory; }