/** * OpenAL cross platform audio library * Copyright (C) 1999-2010 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include #include #include #include #include "alMain.h" #include "alAuxEffectSlot.h" #include "alu.h" #include "alconfig.h" #include "ambdec.h" #include "bformatdec.h" #include "filters/splitter.h" #include "uhjfilter.h" #include "bs2b.h" constexpr float AmbiScale::N3D2N3D[MAX_AMBI_COEFFS]; constexpr float AmbiScale::SN3D2N3D[MAX_AMBI_COEFFS]; constexpr float AmbiScale::FuMa2N3D[MAX_AMBI_COEFFS]; constexpr int AmbiIndex::FuMa2ACN[MAX_AMBI_COEFFS]; constexpr int AmbiIndex::ACN2ACN[MAX_AMBI_COEFFS]; namespace { inline const char *GetLabelFromChannel(Channel channel) { switch(channel) { case FrontLeft: return "front-left"; case FrontRight: return "front-right"; case FrontCenter: return "front-center"; case LFE: return "lfe"; case BackLeft: return "back-left"; case BackRight: return "back-right"; case BackCenter: return "back-center"; case SideLeft: return "side-left"; case SideRight: return "side-right"; case UpperFrontLeft: return "upper-front-left"; case UpperFrontRight: return "upper-front-right"; case UpperBackLeft: return "upper-back-left"; case UpperBackRight: return "upper-back-right"; case LowerFrontLeft: return "lower-front-left"; case LowerFrontRight: return "lower-front-right"; case LowerBackLeft: return "lower-back-left"; case LowerBackRight: return "lower-back-right"; case Aux0: return "aux-0"; case Aux1: return "aux-1"; case Aux2: return "aux-2"; case Aux3: return "aux-3"; case Aux4: return "aux-4"; case Aux5: return "aux-5"; case Aux6: return "aux-6"; case Aux7: return "aux-7"; case Aux8: return "aux-8"; case Aux9: return "aux-9"; case Aux10: return "aux-10"; case Aux11: return "aux-11"; case Aux12: return "aux-12"; case Aux13: return "aux-13"; case Aux14: return "aux-14"; case Aux15: return "aux-15"; case InvalidChannel: break; } return "(unknown)"; } struct ChannelMap { Channel ChanName; ChannelConfig Config; }; void SetChannelMap(const Channel (&devchans)[MAX_OUTPUT_CHANNELS], ChannelConfig *ambicoeffs, const ChannelMap *chanmap, const size_t count, ALsizei *outcount) { auto copy_coeffs = [&devchans,ambicoeffs](ALsizei maxchans, const ChannelMap &channel) -> ALsizei { const ALint idx{GetChannelIndex(devchans, channel.ChanName)}; if(idx < 0) { ERR("Failed to find %s channel in device\n", GetLabelFromChannel(channel.ChanName)); return maxchans; } std::copy(std::begin(channel.Config), std::end(channel.Config), ambicoeffs[idx]); return maxi(maxchans, idx+1); }; ALsizei maxcount{std::accumulate(chanmap, chanmap+count, ALsizei{0}, copy_coeffs)}; *outcount = mini(maxcount, MAX_OUTPUT_CHANNELS); } bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, ALsizei (&speakermap)[MAX_OUTPUT_CHANNELS]) { auto map_spkr = [device](const AmbDecConf::SpeakerConf &speaker) -> ALsizei { /* NOTE: AmbDec does not define any standard speaker names, however * for this to work we have to by able to find the output channel * the speaker definition corresponds to. Therefore, OpenAL Soft * requires these channel labels to be recognized: * * LF = Front left * RF = Front right * LS = Side left * RS = Side right * LB = Back left * RB = Back right * CE = Front center * CB = Back center * * Additionally, surround51 will acknowledge back speakers for side * channels, and surround51rear will acknowledge side speakers for * back channels, to avoid issues with an ambdec expecting 5.1 to * use the side channels when the device is configured for back, * and vice-versa. */ Channel ch{}; if(speaker.Name == "LF") ch = FrontLeft; else if(speaker.Name == "RF") ch = FrontRight; else if(speaker.Name == "CE") ch = FrontCenter; else if(speaker.Name == "LS") { if(device->FmtChans == DevFmtX51Rear) ch = BackLeft; else ch = SideLeft; } else if(speaker.Name == "RS") { if(device->FmtChans == DevFmtX51Rear) ch = BackRight; else ch = SideRight; } else if(speaker.Name == "LB") { if(device->FmtChans == DevFmtX51) ch = SideLeft; else ch = BackLeft; } else if(speaker.Name == "RB") { if(device->FmtChans == DevFmtX51) ch = SideRight; else ch = BackRight; } else if(speaker.Name == "CB") ch = BackCenter; else { const char *name{speaker.Name.c_str()}; unsigned int n; char c; if(sscanf(name, "AUX%u%c", &n, &c) == 1 && n < 16) ch = static_cast(Aux0+n); else { ERR("AmbDec speaker label \"%s\" not recognized\n", name); return -1; } } const int chidx{GetChannelIdxByName(&device->RealOut, ch)}; if(chidx == -1) ERR("Failed to lookup AmbDec speaker label %s\n", speaker.Name.c_str()); return chidx; }; std::transform(conf->Speakers.begin(), conf->Speakers.end(), std::begin(speakermap), map_spkr); /* Return success if no invalid entries are found. */ auto speakermap_end = std::begin(speakermap) + conf->Speakers.size(); return std::find(std::begin(speakermap), speakermap_end, -1) == speakermap_end; } constexpr ChannelMap MonoCfg[1] = { { FrontCenter, { 1.0f } }, }, StereoCfg[2] = { { FrontLeft, { 5.00000000e-1f, 2.88675135e-1f, 0.0f, 5.52305643e-2f } }, { FrontRight, { 5.00000000e-1f, -2.88675135e-1f, 0.0f, 5.52305643e-2f } }, }, QuadCfg[4] = { { BackLeft, { 3.53553391e-1f, 2.04124145e-1f, 0.0f, -2.04124145e-1f } }, { FrontLeft, { 3.53553391e-1f, 2.04124145e-1f, 0.0f, 2.04124145e-1f } }, { FrontRight, { 3.53553391e-1f, -2.04124145e-1f, 0.0f, 2.04124145e-1f } }, { BackRight, { 3.53553391e-1f, -2.04124145e-1f, 0.0f, -2.04124145e-1f } }, }, X51SideCfg[4] = { { SideLeft, { 3.33000782e-1f, 1.89084803e-1f, 0.0f, -2.00042375e-1f, -2.12307769e-2f, 0.0f, 0.0f, 0.0f, -1.14579885e-2f } }, { FrontLeft, { 1.88542860e-1f, 1.27709292e-1f, 0.0f, 1.66295695e-1f, 7.30571517e-2f, 0.0f, 0.0f, 0.0f, 2.10901184e-2f } }, { FrontRight, { 1.88542860e-1f, -1.27709292e-1f, 0.0f, 1.66295695e-1f, -7.30571517e-2f, 0.0f, 0.0f, 0.0f, 2.10901184e-2f } }, { SideRight, { 3.33000782e-1f, -1.89084803e-1f, 0.0f, -2.00042375e-1f, 2.12307769e-2f, 0.0f, 0.0f, 0.0f, -1.14579885e-2f } }, }, X51RearCfg[4] = { { BackLeft, { 3.33000782e-1f, 1.89084803e-1f, 0.0f, -2.00042375e-1f, -2.12307769e-2f, 0.0f, 0.0f, 0.0f, -1.14579885e-2f } }, { FrontLeft, { 1.88542860e-1f, 1.27709292e-1f, 0.0f, 1.66295695e-1f, 7.30571517e-2f, 0.0f, 0.0f, 0.0f, 2.10901184e-2f } }, { FrontRight, { 1.88542860e-1f, -1.27709292e-1f, 0.0f, 1.66295695e-1f, -7.30571517e-2f, 0.0f, 0.0f, 0.0f, 2.10901184e-2f } }, { BackRight, { 3.33000782e-1f, -1.89084803e-1f, 0.0f, -2.00042375e-1f, 2.12307769e-2f, 0.0f, 0.0f, 0.0f, -1.14579885e-2f } }, }, X61Cfg[6] = { { SideLeft, { 2.04460341e-1f, 2.17177926e-1f, 0.0f, -4.39996780e-2f, -2.60790269e-2f, 0.0f, 0.0f, 0.0f, -6.87239792e-2f } }, { FrontLeft, { 1.58923161e-1f, 9.21772680e-2f, 0.0f, 1.59658796e-1f, 6.66278083e-2f, 0.0f, 0.0f, 0.0f, 3.84686854e-2f } }, { FrontRight, { 1.58923161e-1f, -9.21772680e-2f, 0.0f, 1.59658796e-1f, -6.66278083e-2f, 0.0f, 0.0f, 0.0f, 3.84686854e-2f } }, { SideRight, { 2.04460341e-1f, -2.17177926e-1f, 0.0f, -4.39996780e-2f, 2.60790269e-2f, 0.0f, 0.0f, 0.0f, -6.87239792e-2f } }, { BackCenter, { 2.50001688e-1f, 0.00000000e+0f, 0.0f, -2.50000094e-1f, 0.00000000e+0f, 0.0f, 0.0f, 0.0f, 6.05133395e-2f } }, }, X71Cfg[6] = { { BackLeft, { 2.04124145e-1f, 1.08880247e-1f, 0.0f, -1.88586120e-1f, -1.29099444e-1f, 0.0f, 0.0f, 0.0f, 7.45355993e-2f, 3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } }, { SideLeft, { 2.04124145e-1f, 2.17760495e-1f, 0.0f, 0.00000000e+0f, 0.00000000e+0f, 0.0f, 0.0f, 0.0f, -1.49071198e-1f, -3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } }, { FrontLeft, { 2.04124145e-1f, 1.08880247e-1f, 0.0f, 1.88586120e-1f, 1.29099444e-1f, 0.0f, 0.0f, 0.0f, 7.45355993e-2f, 3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } }, { FrontRight, { 2.04124145e-1f, -1.08880247e-1f, 0.0f, 1.88586120e-1f, -1.29099444e-1f, 0.0f, 0.0f, 0.0f, 7.45355993e-2f, -3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } }, { SideRight, { 2.04124145e-1f, -2.17760495e-1f, 0.0f, 0.00000000e+0f, 0.00000000e+0f, 0.0f, 0.0f, 0.0f, -1.49071198e-1f, 3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } }, { BackRight, { 2.04124145e-1f, -1.08880247e-1f, 0.0f, -1.88586120e-1f, 1.29099444e-1f, 0.0f, 0.0f, 0.0f, 7.45355993e-2f, -3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } }, }; void InitNearFieldCtrl(ALCdevice *device, ALfloat ctrl_dist, ALsizei order, const ALsizei *RESTRICT chans_per_order) { /* NFC is only used when AvgSpeakerDist is greater than 0, and can only be * used when rendering to an ambisonic buffer. */ const char *devname{device->DeviceName.c_str()}; if(!GetConfigValueBool(devname, "decoder", "nfc", 1) || !(ctrl_dist > 0.0f)) return; device->AvgSpeakerDist = minf(ctrl_dist, 10.0f); TRACE("Using near-field reference distance: %.2f meters\n", device->AvgSpeakerDist); auto iter = std::copy(chans_per_order, chans_per_order+order+1, std::begin(device->NumChannelsPerOrder)); std::fill(iter, std::end(device->NumChannelsPerOrder), 0); } void InitDistanceComp(ALCdevice *device, const AmbDecConf *conf, const ALsizei (&speakermap)[MAX_OUTPUT_CHANNELS]) { using namespace std::placeholders; const ALfloat maxdist{ std::accumulate(conf->Speakers.begin(), conf->Speakers.end(), float{0.0f}, std::bind(maxf, _1, std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2)) ) }; const char *devname{device->DeviceName.c_str()}; if(!GetConfigValueBool(devname, "decoder", "distance-comp", 1) || !(maxdist > 0.0f)) return; auto srate = static_cast(device->Frequency); size_t total{0u}; for(size_t i{0u};i < conf->Speakers.size();i++) { const AmbDecConf::SpeakerConf &speaker = conf->Speakers[i]; const ALsizei chan{speakermap[i]}; /* Distance compensation only delays in steps of the sample rate. This * is a bit less accurate since the delay time falls to the nearest * sample time, but it's far simpler as it doesn't have to deal with * phase offsets. This means at 48khz, for instance, the distance delay * will be in steps of about 7 millimeters. */ const ALfloat delay{ std::floor((maxdist - speaker.Distance)/SPEEDOFSOUNDMETRESPERSEC*srate + 0.5f) }; if(delay >= (ALfloat)MAX_DELAY_LENGTH) ERR("Delay for speaker \"%s\" exceeds buffer length (%f >= %d)\n", speaker.Name.c_str(), delay, MAX_DELAY_LENGTH); device->ChannelDelay[chan].Length = static_cast(clampf( delay, 0.0f, (ALfloat)(MAX_DELAY_LENGTH-1) )); device->ChannelDelay[chan].Gain = speaker.Distance / maxdist; TRACE("Channel %u \"%s\" distance compensation: %d samples, %f gain\n", chan, speaker.Name.c_str(), device->ChannelDelay[chan].Length, device->ChannelDelay[chan].Gain ); /* Round up to the next 4th sample, so each channel buffer starts * 16-byte aligned. */ total += RoundUp(device->ChannelDelay[chan].Length, 4); } if(total > 0) { device->ChannelDelay.resize(total); device->ChannelDelay[0].Buffer = device->ChannelDelay.data(); auto set_bufptr = [](const DistanceComp::DistData &last, const DistanceComp::DistData &cur) -> DistanceComp::DistData { DistanceComp::DistData ret{cur}; ret.Buffer = last.Buffer + RoundUp(last.Length, 4); return ret; }; std::partial_sum(device->ChannelDelay.begin(), device->ChannelDelay.end(), device->ChannelDelay.begin(), set_bufptr); } } auto GetAmbiScales(AmbDecScale scaletype) noexcept -> const float(&)[MAX_AMBI_COEFFS] { if(scaletype == AmbDecScale::FuMa) return AmbiScale::FuMa2N3D; if(scaletype == AmbDecScale::SN3D) return AmbiScale::SN3D2N3D; return AmbiScale::N3D2N3D; } auto GetAmbiScales(AmbiNorm scaletype) noexcept -> const float(&)[MAX_AMBI_COEFFS] { if(scaletype == AmbiNorm::FuMa) return AmbiScale::FuMa2N3D; if(scaletype == AmbiNorm::SN3D) return AmbiScale::SN3D2N3D; return AmbiScale::N3D2N3D; } auto GetAmbiLayout(AmbiLayout layouttype) noexcept -> const int(&)[MAX_AMBI_COEFFS] { if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FuMa2ACN; return AmbiIndex::ACN2ACN; } void InitPanning(ALCdevice *device) { const ChannelMap *chanmap{nullptr}; ALsizei coeffcount{0}; ALsizei count{0}; switch(device->FmtChans) { case DevFmtMono: count = static_cast(COUNTOF(MonoCfg)); chanmap = MonoCfg; coeffcount = 1; break; case DevFmtStereo: count = static_cast(COUNTOF(StereoCfg)); chanmap = StereoCfg; coeffcount = 4; break; case DevFmtQuad: count = static_cast(COUNTOF(QuadCfg)); chanmap = QuadCfg; coeffcount = 4; break; case DevFmtX51: count = static_cast(COUNTOF(X51SideCfg)); chanmap = X51SideCfg; coeffcount = 9; break; case DevFmtX51Rear: count = static_cast(COUNTOF(X51RearCfg)); chanmap = X51RearCfg; coeffcount = 9; break; case DevFmtX61: count = static_cast(COUNTOF(X61Cfg)); chanmap = X61Cfg; coeffcount = 9; break; case DevFmtX71: count = static_cast(COUNTOF(X71Cfg)); chanmap = X71Cfg; coeffcount = 16; break; case DevFmtAmbi3D: break; } if(device->FmtChans == DevFmtAmbi3D) { const char *devname{device->DeviceName.c_str()}; const ALsizei (&acnmap)[MAX_AMBI_COEFFS] = GetAmbiLayout(device->mAmbiLayout); const ALfloat (&n3dscale)[MAX_AMBI_COEFFS] = GetAmbiScales(device->mAmbiScale); count = (device->mAmbiOrder == 3) ? 16 : (device->mAmbiOrder == 2) ? 9 : (device->mAmbiOrder == 1) ? 4 : 1; auto acnmap_end = std::begin(acnmap) + count; std::transform(std::begin(acnmap), acnmap_end, std::begin(device->Dry.Ambi.Map), [&n3dscale](const ALsizei &acn) noexcept -> BFChannelConfig { return BFChannelConfig{1.0f/n3dscale[acn], acn}; } ); device->Dry.CoeffCount = 0; device->Dry.NumChannels = count; if(device->mAmbiOrder < 2) { device->FOAOut.Ambi = device->Dry.Ambi; device->FOAOut.CoeffCount = device->Dry.CoeffCount; device->FOAOut.NumChannels = 0; } else { /* FOA output is always ACN+N3D for higher-order ambisonic output. * The upsampler expects this and will convert it for output. */ device->FOAOut.Ambi = AmbiConfig{}; acnmap_end = std::begin(AmbiIndex::ACN2ACN) + 4; std::transform(std::begin(AmbiIndex::ACN2ACN), acnmap_end, std::begin(device->FOAOut.Ambi.Map), [](const ALsizei &acn) noexcept { return BFChannelConfig{1.0f, acn}; } ); device->FOAOut.CoeffCount = 0; device->FOAOut.NumChannels = 4; ALfloat w_scale{1.0f}, xyz_scale{1.0f}; if(device->mAmbiOrder >= 3) { w_scale = W_SCALE_3H3P; xyz_scale = XYZ_SCALE_3H3P; } else { w_scale = W_SCALE_2H2P; xyz_scale = XYZ_SCALE_2H2P; } device->AmbiUp->reset(device, w_scale, xyz_scale); } ALfloat nfc_delay{0.0f}; if(ConfigValueFloat(devname, "decoder", "nfc-ref-delay", &nfc_delay) && nfc_delay > 0.0f) { static constexpr ALsizei chans_per_order[MAX_AMBI_ORDER+1]{ 1, 3, 5, 7 }; nfc_delay = clampf(nfc_delay, 0.001f, 1000.0f); InitNearFieldCtrl(device, nfc_delay * SPEEDOFSOUNDMETRESPERSEC, device->mAmbiOrder, chans_per_order); } } else { SetChannelMap(device->RealOut.ChannelName, device->Dry.Ambi.Coeffs, chanmap, count, &device->Dry.NumChannels); device->Dry.CoeffCount = coeffcount; const ALfloat w_scale{(device->Dry.CoeffCount > 9) ? W_SCALE_3H0P : (device->Dry.CoeffCount > 4) ? W_SCALE_2H0P : 1.0f}; const ALfloat xyz_scale{(device->Dry.CoeffCount > 9) ? XYZ_SCALE_3H0P : (device->Dry.CoeffCount > 4) ? XYZ_SCALE_2H0P : 1.0f}; device->FOAOut.Ambi = AmbiConfig{}; for(ALsizei i{0};i < device->Dry.NumChannels;i++) { device->FOAOut.Ambi.Coeffs[i][0] = device->Dry.Ambi.Coeffs[i][0] * w_scale; for(ALsizei j{1};j < 4;j++) device->FOAOut.Ambi.Coeffs[i][j] = device->Dry.Ambi.Coeffs[i][j] * xyz_scale; } device->FOAOut.CoeffCount = 4; device->FOAOut.NumChannels = 0; } device->RealOut.NumChannels = 0; } void InitCustomPanning(ALCdevice *device, const AmbDecConf *conf, const ALsizei (&speakermap)[MAX_OUTPUT_CHANNELS]) { if(conf->FreqBands != 1) ERR("Basic renderer uses the high-frequency matrix as single-band (xover_freq = %.0fhz)\n", conf->XOverFreq); ALfloat w_scale{1.0f}, xyz_scale{1.0f}; if((conf->ChanMask&AMBI_PERIPHONIC_MASK)) { if(conf->ChanMask > AMBI_2ORDER_MASK) { w_scale = W_SCALE_3H3P; xyz_scale = XYZ_SCALE_3H3P; } else if(conf->ChanMask > AMBI_1ORDER_MASK) { w_scale = W_SCALE_2H2P; xyz_scale = XYZ_SCALE_2H2P; } } else { if(conf->ChanMask > AMBI_2ORDER_MASK) { w_scale = W_SCALE_3H0P; xyz_scale = XYZ_SCALE_3H0P; } else if(conf->ChanMask > AMBI_1ORDER_MASK) { w_scale = W_SCALE_2H0P; xyz_scale = XYZ_SCALE_2H0P; } } const ALfloat (&coeff_scale)[MAX_AMBI_COEFFS] = GetAmbiScales(conf->CoeffScale); ChannelMap chanmap[MAX_OUTPUT_CHANNELS]{}; for(size_t i{0u};i < conf->Speakers.size();i++) { chanmap[i].ChanName = device->RealOut.ChannelName[speakermap[i]]; std::fill(std::begin(chanmap[i].Config), std::end(chanmap[i].Config), 0.0f); for(ALsizei j{0},k{0};j < MAX_AMBI_COEFFS;j++) { if(!(conf->ChanMask&(1<HFMatrix[i][k++] / coeff_scale[j] * ((j >= 9) ? conf->HFOrderGain[3] : (j >= 4) ? conf->HFOrderGain[2] : (j >= 1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]); } } SetChannelMap(device->RealOut.ChannelName, device->Dry.Ambi.Coeffs, chanmap, conf->Speakers.size(), &device->Dry.NumChannels); device->Dry.CoeffCount = (conf->ChanMask > AMBI_2ORDER_MASK) ? 16 : (conf->ChanMask > AMBI_1ORDER_MASK) ? 9 : 4; device->FOAOut.Ambi = AmbiConfig{}; for(ALsizei i{0};i < device->Dry.NumChannels;i++) { device->FOAOut.Ambi.Coeffs[i][0] = device->Dry.Ambi.Coeffs[i][0] * w_scale; for(ALsizei j{1};j < 4;j++) device->FOAOut.Ambi.Coeffs[i][j] = device->Dry.Ambi.Coeffs[i][j] * xyz_scale; } device->FOAOut.CoeffCount = 4; device->FOAOut.NumChannels = 0; device->RealOut.NumChannels = 0; InitDistanceComp(device, conf, speakermap); } void InitHQPanning(ALCdevice *device, const AmbDecConf *conf, const ALsizei (&speakermap)[MAX_OUTPUT_CHANNELS]) { static constexpr ALsizei chans_per_order2d[MAX_AMBI_ORDER+1] = { 1, 2, 2, 2 }; static constexpr ALsizei chans_per_order3d[MAX_AMBI_ORDER+1] = { 1, 3, 5, 7 }; ALsizei count; if((conf->ChanMask&AMBI_PERIPHONIC_MASK)) { static constexpr int map[MAX_AMBI_COEFFS] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; count = (conf->ChanMask > AMBI_2ORDER_MASK) ? 16 : (conf->ChanMask > AMBI_1ORDER_MASK) ? 9 : 4; std::transform(std::begin(map), std::begin(map)+count, std::begin(device->Dry.Ambi.Map), [](const ALsizei &index) noexcept { return BFChannelConfig{1.0f, index}; } ); } else { static constexpr int map[MAX_AMBI2D_COEFFS] = { 0, 1, 3, 4, 8, 9, 15 }; count = (conf->ChanMask > AMBI_2ORDER_MASK) ? 7 : (conf->ChanMask > AMBI_1ORDER_MASK) ? 5 : 3; std::transform(std::begin(map), std::begin(map)+count, std::begin(device->Dry.Ambi.Map), [](const ALsizei &index) noexcept { return BFChannelConfig{1.0f, index}; } ); } device->Dry.CoeffCount = 0; device->Dry.NumChannels = count; TRACE("Enabling %s-band %s-order%s ambisonic decoder\n", (conf->FreqBands == 1) ? "single" : "dual", (conf->ChanMask > AMBI_2ORDER_MASK) ? "third" : (conf->ChanMask > AMBI_1ORDER_MASK) ? "second" : "first", (conf->ChanMask&AMBI_PERIPHONIC_MASK) ? " periphonic" : "" ); device->AmbiDecoder->reset(conf, count, device->Frequency, speakermap); if(conf->ChanMask <= AMBI_1ORDER_MASK) { device->FOAOut.Ambi = device->Dry.Ambi; device->FOAOut.CoeffCount = device->Dry.CoeffCount; device->FOAOut.NumChannels = 0; } else { device->FOAOut.Ambi = AmbiConfig{}; if((conf->ChanMask&AMBI_PERIPHONIC_MASK)) { static constexpr int map[4] = { 0, 1, 2, 3 }; count = 4; std::transform(std::begin(map), std::begin(map)+count, std::begin(device->FOAOut.Ambi.Map), [](const ALsizei &index) noexcept { return BFChannelConfig{1.0f, index}; } ); } else { static constexpr int map[3] = { 0, 1, 3 }; count = 3; std::transform(std::begin(map), std::begin(map)+count, std::begin(device->FOAOut.Ambi.Map), [](const ALsizei &index) noexcept { return BFChannelConfig{1.0f, index}; } ); } device->FOAOut.CoeffCount = 0; device->FOAOut.NumChannels = count; } device->RealOut.NumChannels = ChannelsFromDevFmt(device->FmtChans, device->mAmbiOrder); using namespace std::placeholders; auto accum_spkr_dist = std::bind( std::plus{}, _1, std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2) ); const ALfloat avg_dist{ std::accumulate(conf->Speakers.begin(), conf->Speakers.end(), float{0.0f}, accum_spkr_dist) / static_cast(conf->Speakers.size()) }; InitNearFieldCtrl(device, avg_dist, (conf->ChanMask > AMBI_2ORDER_MASK) ? 3 : (conf->ChanMask > AMBI_1ORDER_MASK) ? 2 : 1, (conf->ChanMask&AMBI_PERIPHONIC_MASK) ? chans_per_order3d : chans_per_order2d ); InitDistanceComp(device, conf, speakermap); } void InitHrtfPanning(ALCdevice *device) { /* NOTE: azimuth goes clockwise. */ static constexpr AngularPoint AmbiPoints[] = { { DEG2RAD( 90.0f), DEG2RAD( 0.0f) }, { DEG2RAD( 35.2643897f), DEG2RAD( 45.0f) }, { DEG2RAD( 35.2643897f), DEG2RAD( 135.0f) }, { DEG2RAD( 35.2643897f), DEG2RAD(-135.0f) }, { DEG2RAD( 35.2643897f), DEG2RAD( -45.0f) }, { DEG2RAD( 0.0f), DEG2RAD( 0.0f) }, { DEG2RAD( 0.0f), DEG2RAD( 45.0f) }, { DEG2RAD( 0.0f), DEG2RAD( 90.0f) }, { DEG2RAD( 0.0f), DEG2RAD( 135.0f) }, { DEG2RAD( 0.0f), DEG2RAD( 180.0f) }, { DEG2RAD( 0.0f), DEG2RAD(-135.0f) }, { DEG2RAD( 0.0f), DEG2RAD( -90.0f) }, { DEG2RAD( 0.0f), DEG2RAD( -45.0f) }, { DEG2RAD(-35.2643897f), DEG2RAD( 45.0f) }, { DEG2RAD(-35.2643897f), DEG2RAD( 135.0f) }, { DEG2RAD(-35.2643897f), DEG2RAD(-135.0f) }, { DEG2RAD(-35.2643897f), DEG2RAD( -45.0f) }, { DEG2RAD(-90.0f), DEG2RAD( 0.0f) }, }; static constexpr ALfloat AmbiMatrixFOA[][MAX_AMBI_COEFFS] = { { 5.55555556e-02f, 0.00000000e+00f, 1.23717915e-01f, 0.00000000e+00f }, { 5.55555556e-02f, -5.00000000e-02f, 7.14285715e-02f, 5.00000000e-02f }, { 5.55555556e-02f, -5.00000000e-02f, 7.14285715e-02f, -5.00000000e-02f }, { 5.55555556e-02f, 5.00000000e-02f, 7.14285715e-02f, -5.00000000e-02f }, { 5.55555556e-02f, 5.00000000e-02f, 7.14285715e-02f, 5.00000000e-02f }, { 5.55555556e-02f, 0.00000000e+00f, 0.00000000e+00f, 8.66025404e-02f }, { 5.55555556e-02f, -6.12372435e-02f, 0.00000000e+00f, 6.12372435e-02f }, { 5.55555556e-02f, -8.66025404e-02f, 0.00000000e+00f, 0.00000000e+00f }, { 5.55555556e-02f, -6.12372435e-02f, 0.00000000e+00f, -6.12372435e-02f }, { 5.55555556e-02f, 0.00000000e+00f, 0.00000000e+00f, -8.66025404e-02f }, { 5.55555556e-02f, 6.12372435e-02f, 0.00000000e+00f, -6.12372435e-02f }, { 5.55555556e-02f, 8.66025404e-02f, 0.00000000e+00f, 0.00000000e+00f }, { 5.55555556e-02f, 6.12372435e-02f, 0.00000000e+00f, 6.12372435e-02f }, { 5.55555556e-02f, -5.00000000e-02f, -7.14285715e-02f, 5.00000000e-02f }, { 5.55555556e-02f, -5.00000000e-02f, -7.14285715e-02f, -5.00000000e-02f }, { 5.55555556e-02f, 5.00000000e-02f, -7.14285715e-02f, -5.00000000e-02f }, { 5.55555556e-02f, 5.00000000e-02f, -7.14285715e-02f, 5.00000000e-02f }, { 5.55555556e-02f, 0.00000000e+00f, -1.23717915e-01f, 0.00000000e+00f }, }, AmbiMatrixHOA[][MAX_AMBI_COEFFS] = { { 5.55555556e-02f, 0.00000000e+00f, 1.23717915e-01f, 0.00000000e+00f, 0.00000000e+00f, 0.00000000e+00f }, { 5.55555556e-02f, -5.00000000e-02f, 7.14285715e-02f, 5.00000000e-02f, -4.55645099e-02f, 0.00000000e+00f }, { 5.55555556e-02f, -5.00000000e-02f, 7.14285715e-02f, -5.00000000e-02f, 4.55645099e-02f, 0.00000000e+00f }, { 5.55555556e-02f, 5.00000000e-02f, 7.14285715e-02f, -5.00000000e-02f, -4.55645099e-02f, 0.00000000e+00f }, { 5.55555556e-02f, 5.00000000e-02f, 7.14285715e-02f, 5.00000000e-02f, 4.55645099e-02f, 0.00000000e+00f }, { 5.55555556e-02f, 0.00000000e+00f, 0.00000000e+00f, 8.66025404e-02f, 0.00000000e+00f, 1.29099445e-01f }, { 5.55555556e-02f, -6.12372435e-02f, 0.00000000e+00f, 6.12372435e-02f, -6.83467648e-02f, 0.00000000e+00f }, { 5.55555556e-02f, -8.66025404e-02f, 0.00000000e+00f, 0.00000000e+00f, 0.00000000e+00f, -1.29099445e-01f }, { 5.55555556e-02f, -6.12372435e-02f, 0.00000000e+00f, -6.12372435e-02f, 6.83467648e-02f, 0.00000000e+00f }, { 5.55555556e-02f, 0.00000000e+00f, 0.00000000e+00f, -8.66025404e-02f, 0.00000000e+00f, 1.29099445e-01f }, { 5.55555556e-02f, 6.12372435e-02f, 0.00000000e+00f, -6.12372435e-02f, -6.83467648e-02f, 0.00000000e+00f }, { 5.55555556e-02f, 8.66025404e-02f, 0.00000000e+00f, 0.00000000e+00f, 0.00000000e+00f, -1.29099445e-01f }, { 5.55555556e-02f, 6.12372435e-02f, 0.00000000e+00f, 6.12372435e-02f, 6.83467648e-02f, 0.00000000e+00f }, { 5.55555556e-02f, -5.00000000e-02f, -7.14285715e-02f, 5.00000000e-02f, -4.55645099e-02f, 0.00000000e+00f }, { 5.55555556e-02f, -5.00000000e-02f, -7.14285715e-02f, -5.00000000e-02f, 4.55645099e-02f, 0.00000000e+00f }, { 5.55555556e-02f, 5.00000000e-02f, -7.14285715e-02f, -5.00000000e-02f, -4.55645099e-02f, 0.00000000e+00f }, { 5.55555556e-02f, 5.00000000e-02f, -7.14285715e-02f, 5.00000000e-02f, 4.55645099e-02f, 0.00000000e+00f }, { 5.55555556e-02f, 0.00000000e+00f, -1.23717915e-01f, 0.00000000e+00f, 0.00000000e+00f, 0.00000000e+00f }, }; static constexpr ALfloat AmbiOrderHFGainFOA[MAX_AMBI_ORDER+1] = { 3.00000000e+00f, 1.73205081e+00f }, AmbiOrderHFGainHOA[MAX_AMBI_ORDER+1] = { 2.40192231e+00f, 1.86052102e+00f, 9.60768923e-01f }; static constexpr ALsizei IndexMap[6] = { 0, 1, 2, 3, 4, 8 }; static constexpr ALsizei ChansPerOrder[MAX_AMBI_ORDER+1] = { 1, 3, 2, 0 }; const ALfloat (*RESTRICT AmbiMatrix)[MAX_AMBI_COEFFS] = AmbiMatrixFOA; const ALfloat *RESTRICT AmbiOrderHFGain = AmbiOrderHFGainFOA; ALsizei count{4}; static_assert(COUNTOF(AmbiPoints) == COUNTOF(AmbiMatrixFOA), "FOA Ambisonic HRTF mismatch"); static_assert(COUNTOF(AmbiPoints) == COUNTOF(AmbiMatrixHOA), "HOA Ambisonic HRTF mismatch"); if(device->AmbiUp) { AmbiMatrix = AmbiMatrixHOA; AmbiOrderHFGain = AmbiOrderHFGainHOA; count = static_cast(COUNTOF(IndexMap)); } device->mHrtfState.reset( new (al_calloc(16, FAM_SIZE(DirectHrtfState, Chan, count))) DirectHrtfState{}); std::transform(std::begin(IndexMap), std::begin(IndexMap)+count, std::begin(device->Dry.Ambi.Map), [](const ALsizei &index) noexcept { return BFChannelConfig{1.0f, index}; } ); device->Dry.CoeffCount = 0; device->Dry.NumChannels = count; if(device->AmbiUp) { device->FOAOut.Ambi = AmbiConfig{}; std::transform(std::begin(IndexMap), std::begin(IndexMap)+4, std::begin(device->FOAOut.Ambi.Map), [](const ALsizei &index) noexcept { return BFChannelConfig{1.0f, index}; } ); device->FOAOut.CoeffCount = 0; device->FOAOut.NumChannels = 4; device->AmbiUp->reset(device, AmbiOrderHFGainFOA[0] / AmbiOrderHFGain[0], AmbiOrderHFGainFOA[1] / AmbiOrderHFGain[1]); } else { device->FOAOut.Ambi = device->Dry.Ambi; device->FOAOut.CoeffCount = device->Dry.CoeffCount; device->FOAOut.NumChannels = 0; } device->RealOut.NumChannels = ChannelsFromDevFmt(device->FmtChans, device->mAmbiOrder); BuildBFormatHrtf(device->HrtfHandle, device->mHrtfState.get(), device->Dry.NumChannels, AmbiPoints, AmbiMatrix, static_cast(COUNTOF(AmbiPoints)), AmbiOrderHFGain ); InitNearFieldCtrl(device, device->HrtfHandle->distance, device->AmbiUp ? 2 : 1, ChansPerOrder); } void InitUhjPanning(ALCdevice *device) { static constexpr ALsizei count{3}; auto acnmap_end = std::begin(AmbiIndex::FuMa2ACN) + count; std::transform(std::begin(AmbiIndex::FuMa2ACN), acnmap_end, std::begin(device->Dry.Ambi.Map), [](const ALsizei &acn) noexcept -> BFChannelConfig { return BFChannelConfig{1.0f/AmbiScale::FuMa2N3D[acn], acn}; } ); device->Dry.CoeffCount = 0; device->Dry.NumChannels = count; device->FOAOut.Ambi = device->Dry.Ambi; device->FOAOut.CoeffCount = device->Dry.CoeffCount; device->FOAOut.NumChannels = 0; device->RealOut.NumChannels = ChannelsFromDevFmt(device->FmtChans, device->mAmbiOrder); } } // namespace void CalcAmbiCoeffs(const ALfloat y, const ALfloat z, const ALfloat x, const ALfloat spread, ALfloat (&coeffs)[MAX_AMBI_COEFFS]) { /* Zeroth-order */ coeffs[0] = 1.0f; /* ACN 0 = 1 */ /* First-order */ coeffs[1] = SQRTF_3 * y; /* ACN 1 = sqrt(3) * Y */ coeffs[2] = SQRTF_3 * z; /* ACN 2 = sqrt(3) * Z */ coeffs[3] = SQRTF_3 * x; /* ACN 3 = sqrt(3) * X */ /* Second-order */ coeffs[4] = 3.872983346f * x * y; /* ACN 4 = sqrt(15) * X * Y */ coeffs[5] = 3.872983346f * y * z; /* ACN 5 = sqrt(15) * Y * Z */ coeffs[6] = 1.118033989f * (z*z*3.0f - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */ coeffs[7] = 3.872983346f * x * z; /* ACN 7 = sqrt(15) * X * Z */ coeffs[8] = 1.936491673f * (x*x - y*y); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */ /* Third-order */ coeffs[9] = 2.091650066f * y * (x*x*3.0f - y*y); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */ coeffs[10] = 10.246950766f * z * x * y; /* ACN 10 = sqrt(105) * Z * X * Y */ coeffs[11] = 1.620185175f * y * (z*z*5.0f - 1.0f); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */ coeffs[12] = 1.322875656f * z * (z*z*5.0f - 3.0f); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */ coeffs[13] = 1.620185175f * x * (z*z*5.0f - 1.0f); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */ coeffs[14] = 5.123475383f * z * (x*x - y*y); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */ coeffs[15] = 2.091650066f * x * (x*x - y*y*3.0f); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */ /* Fourth-order */ /* ACN 16 = sqrt(35)*3/2 * X * Y * (X*X - Y*Y) */ /* ACN 17 = sqrt(35/2)*3/2 * (3*X*X - Y*Y) * Y * Z */ /* ACN 18 = sqrt(5)*3/2 * X * Y * (7*Z*Z - 1) */ /* ACN 19 = sqrt(5/2)*3/2 * Y * Z * (7*Z*Z - 3) */ /* ACN 20 = 3/8 * (35*Z*Z*Z*Z - 30*Z*Z + 3) */ /* ACN 21 = sqrt(5/2)*3/2 * X * Z * (7*Z*Z - 3) */ /* ACN 22 = sqrt(5)*3/4 * (X*X - Y*Y) * (7*Z*Z - 1) */ /* ACN 23 = sqrt(35/2)*3/2 * (X*X - 3*Y*Y) * X * Z */ /* ACN 24 = sqrt(35)*3/8 * (X*X*X*X - 6*X*X*Y*Y + Y*Y*Y*Y) */ if(spread > 0.0f) { /* Implement the spread by using a spherical source that subtends the * angle spread. See: * http://www.ppsloan.org/publications/StupidSH36.pdf - Appendix A3 * * When adjusted for N3D normalization instead of SN3D, these * calculations are: * * ZH0 = -sqrt(pi) * (-1+ca); * ZH1 = 0.5*sqrt(pi) * sa*sa; * ZH2 = -0.5*sqrt(pi) * ca*(-1+ca)*(ca+1); * ZH3 = -0.125*sqrt(pi) * (-1+ca)*(ca+1)*(5*ca*ca - 1); * ZH4 = -0.125*sqrt(pi) * ca*(-1+ca)*(ca+1)*(7*ca*ca - 3); * ZH5 = -0.0625*sqrt(pi) * (-1+ca)*(ca+1)*(21*ca*ca*ca*ca - 14*ca*ca + 1); * * The gain of the source is compensated for size, so that the * loudness doesn't depend on the spread. Thus: * * ZH0 = 1.0f; * ZH1 = 0.5f * (ca+1.0f); * ZH2 = 0.5f * (ca+1.0f)*ca; * ZH3 = 0.125f * (ca+1.0f)*(5.0f*ca*ca - 1.0f); * ZH4 = 0.125f * (ca+1.0f)*(7.0f*ca*ca - 3.0f)*ca; * ZH5 = 0.0625f * (ca+1.0f)*(21.0f*ca*ca*ca*ca - 14.0f*ca*ca + 1.0f); */ ALfloat ca = std::cos(spread * 0.5f); /* Increase the source volume by up to +3dB for a full spread. */ ALfloat scale = std::sqrt(1.0f + spread/F_TAU); ALfloat ZH0_norm = scale; ALfloat ZH1_norm = 0.5f * (ca+1.f) * scale; ALfloat ZH2_norm = 0.5f * (ca+1.f)*ca * scale; ALfloat ZH3_norm = 0.125f * (ca+1.f)*(5.f*ca*ca-1.f) * scale; /* Zeroth-order */ coeffs[0] *= ZH0_norm; /* First-order */ coeffs[1] *= ZH1_norm; coeffs[2] *= ZH1_norm; coeffs[3] *= ZH1_norm; /* Second-order */ coeffs[4] *= ZH2_norm; coeffs[5] *= ZH2_norm; coeffs[6] *= ZH2_norm; coeffs[7] *= ZH2_norm; coeffs[8] *= ZH2_norm; /* Third-order */ coeffs[9] *= ZH3_norm; coeffs[10] *= ZH3_norm; coeffs[11] *= ZH3_norm; coeffs[12] *= ZH3_norm; coeffs[13] *= ZH3_norm; coeffs[14] *= ZH3_norm; coeffs[15] *= ZH3_norm; } } void ComputePanningGainsMC(const ChannelConfig *chancoeffs, ALsizei numchans, ALsizei numcoeffs, const ALfloat*RESTRICT coeffs, ALfloat ingain, ALfloat (&gains)[MAX_OUTPUT_CHANNELS]) { ASSUME(numchans > 0); auto iter = std::transform(chancoeffs, chancoeffs+numchans, std::begin(gains), [numcoeffs,coeffs,ingain](const ChannelConfig &chancoeffs) -> ALfloat { ASSUME(numcoeffs > 0); float gain{std::inner_product(std::begin(chancoeffs), std::begin(chancoeffs)+numcoeffs, coeffs, float{0.0f})}; return clampf(gain, 0.0f, 1.0f) * ingain; } ); std::fill(iter, std::end(gains), 0.0f); } void ComputePanningGainsBF(const BFChannelConfig *chanmap, ALsizei numchans, const ALfloat*RESTRICT coeffs, ALfloat ingain, ALfloat (&gains)[MAX_OUTPUT_CHANNELS]) { ASSUME(numchans > 0); auto iter = std::transform(chanmap, chanmap+numchans, std::begin(gains), [coeffs,ingain](const BFChannelConfig &chanmap) noexcept -> ALfloat { ASSUME(chanmap.Index >= 0); return chanmap.Scale * coeffs[chanmap.Index] * ingain; } ); std::fill(iter, std::end(gains), 0.0f); } void aluInitRenderer(ALCdevice *device, ALint hrtf_id, HrtfRequestMode hrtf_appreq, HrtfRequestMode hrtf_userreq) { /* Hold the HRTF the device last used, in case it's used again. */ Hrtf *old_hrtf{device->HrtfHandle}; device->mHrtfState = nullptr; device->HrtfHandle = nullptr; device->HrtfName.clear(); device->Render_Mode = NormalRender; device->Dry.Ambi = AmbiConfig{}; device->Dry.CoeffCount = 0; device->Dry.NumChannels = 0; std::fill(std::begin(device->NumChannelsPerOrder), std::end(device->NumChannelsPerOrder), 0); device->AvgSpeakerDist = 0.0f; device->ChannelDelay.clear(); device->Stablizer = nullptr; if(device->FmtChans != DevFmtStereo) { if(old_hrtf) Hrtf_DecRef(old_hrtf); old_hrtf = nullptr; if(hrtf_appreq == Hrtf_Enable) device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; const char *layout{nullptr}; switch(device->FmtChans) { case DevFmtQuad: layout = "quad"; break; case DevFmtX51: /* fall-through */ case DevFmtX51Rear: layout = "surround51"; break; case DevFmtX61: layout = "surround61"; break; case DevFmtX71: layout = "surround71"; break; /* Mono, Stereo, and Ambisonics output don't use custom decoders. */ case DevFmtMono: case DevFmtStereo: case DevFmtAmbi3D: break; } const char *devname{device->DeviceName.c_str()}; ALsizei speakermap[MAX_OUTPUT_CHANNELS]; AmbDecConf *pconf{nullptr}; AmbDecConf conf{}; if(layout) { const char *fname; if(ConfigValueStr(devname, "decoder", layout, &fname)) { if(!conf.load(fname)) ERR("Failed to load layout file %s\n", fname); else if(conf.Speakers.size() > MAX_OUTPUT_CHANNELS) ERR("Unsupported speaker count " SZFMT " (max %d)\n", conf.Speakers.size(), MAX_OUTPUT_CHANNELS); else if(conf.ChanMask > AMBI_3ORDER_MASK) ERR("Unsupported channel mask 0x%04x (max 0x%x)\n", conf.ChanMask, AMBI_3ORDER_MASK); else if(MakeSpeakerMap(device, &conf, speakermap)) pconf = &conf; } } if(pconf && GetConfigValueBool(devname, "decoder", "hq-mode", 0)) { device->AmbiUp = nullptr; if(!device->AmbiDecoder) device->AmbiDecoder.reset(new BFormatDec{}); } else { device->AmbiDecoder = nullptr; if(device->FmtChans != DevFmtAmbi3D || device->mAmbiOrder < 2) device->AmbiUp = nullptr; else if(!device->AmbiUp) device->AmbiUp.reset(new AmbiUpsampler{}); } if(!pconf) InitPanning(device); else if(device->AmbiDecoder) InitHQPanning(device, pconf, speakermap); else InitCustomPanning(device, pconf, speakermap); /* Enable the stablizer only for formats that have front-left, front- * right, and front-center outputs. */ switch(device->FmtChans) { case DevFmtX51: case DevFmtX51Rear: case DevFmtX61: case DevFmtX71: if(GetConfigValueBool(devname, nullptr, "front-stablizer", 0)) { /* Initialize band-splitting filters for the front-left and * front-right channels, with a crossover at 5khz (could be * higher). */ ALfloat scale = (ALfloat)(5000.0 / device->Frequency); std::unique_ptr stablizer{new FrontStablizer{}}; stablizer->LFilter.init(scale); stablizer->RFilter = stablizer->LFilter; /* Initialize all-pass filters for all other channels. */ stablizer->APFilter[0].init(scale); std::fill(std::begin(stablizer->APFilter)+1, std::end(stablizer->APFilter), stablizer->APFilter[0]); device->Stablizer = std::move(stablizer); } break; case DevFmtMono: case DevFmtStereo: case DevFmtQuad: case DevFmtAmbi3D: break; } TRACE("Front stablizer %s\n", device->Stablizer ? "enabled" : "disabled"); return; } device->AmbiDecoder = nullptr; bool headphones{device->IsHeadphones != AL_FALSE}; if(device->Type != Loopback) { const char *mode; if(ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-mode", &mode)) { if(strcasecmp(mode, "headphones") == 0) headphones = true; else if(strcasecmp(mode, "speakers") == 0) headphones = false; else if(strcasecmp(mode, "auto") != 0) ERR("Unexpected stereo-mode: %s\n", mode); } } if(hrtf_userreq == Hrtf_Default) { bool usehrtf = (headphones && hrtf_appreq != Hrtf_Disable) || (hrtf_appreq == Hrtf_Enable); if(!usehrtf) goto no_hrtf; device->HrtfStatus = ALC_HRTF_ENABLED_SOFT; if(headphones && hrtf_appreq != Hrtf_Disable) device->HrtfStatus = ALC_HRTF_HEADPHONES_DETECTED_SOFT; } else { if(hrtf_userreq != Hrtf_Enable) { if(hrtf_appreq == Hrtf_Enable) device->HrtfStatus = ALC_HRTF_DENIED_SOFT; goto no_hrtf; } device->HrtfStatus = ALC_HRTF_REQUIRED_SOFT; } if(device->HrtfList.empty()) device->HrtfList = EnumerateHrtf(device->DeviceName.c_str()); if(hrtf_id >= 0 && (size_t)hrtf_id < device->HrtfList.size()) { const EnumeratedHrtf &entry = device->HrtfList[hrtf_id]; Hrtf *hrtf{GetLoadedHrtf(entry.hrtf)}; if(hrtf && hrtf->sampleRate == device->Frequency) { device->HrtfHandle = hrtf; device->HrtfName = entry.name; } else if(hrtf) Hrtf_DecRef(hrtf); } if(!device->HrtfHandle) { auto find_hrtf = [device](const EnumeratedHrtf &entry) -> bool { Hrtf *hrtf{GetLoadedHrtf(entry.hrtf)}; if(!hrtf) return false; if(hrtf->sampleRate != device->Frequency) { Hrtf_DecRef(hrtf); return false; } device->HrtfHandle = hrtf; device->HrtfName = entry.name; return true; }; std::find_if(device->HrtfList.cbegin(), device->HrtfList.cend(), find_hrtf); } if(device->HrtfHandle) { if(old_hrtf) Hrtf_DecRef(old_hrtf); old_hrtf = nullptr; device->Render_Mode = HrtfRender; const char *mode; if(ConfigValueStr(device->DeviceName.c_str(), nullptr, "hrtf-mode", &mode)) { if(strcasecmp(mode, "full") == 0) device->Render_Mode = HrtfRender; else if(strcasecmp(mode, "basic") == 0) device->Render_Mode = NormalRender; else ERR("Unexpected hrtf-mode: %s\n", mode); } if(device->Render_Mode == HrtfRender) { /* Don't bother with HOA when using full HRTF rendering. Nothing * needs it, and it eases the CPU/memory load. */ device->AmbiUp = nullptr; } else { if(!device->AmbiUp) device->AmbiUp.reset(new AmbiUpsampler{}); } TRACE("%s HRTF rendering enabled, using \"%s\"\n", ((device->Render_Mode == HrtfRender) ? "Full" : "Basic"), device->HrtfName.c_str() ); InitHrtfPanning(device); return; } device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; no_hrtf: if(old_hrtf) Hrtf_DecRef(old_hrtf); old_hrtf = nullptr; TRACE("HRTF disabled\n"); device->Render_Mode = StereoPair; device->AmbiUp = nullptr; int bs2blevel{((headphones && hrtf_appreq != Hrtf_Disable) || (hrtf_appreq == Hrtf_Enable)) ? 5 : 0}; if(device->Type != Loopback) ConfigValueInt(device->DeviceName.c_str(), nullptr, "cf_level", &bs2blevel); if(bs2blevel > 0 && bs2blevel <= 6) { device->Bs2b.reset(new bs2b{}); bs2b_set_params(device->Bs2b.get(), bs2blevel, device->Frequency); TRACE("BS2B enabled\n"); InitPanning(device); return; } TRACE("BS2B disabled\n"); const char *mode; if(ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-encoding", &mode)) { if(strcasecmp(mode, "uhj") == 0) device->Render_Mode = NormalRender; else if(strcasecmp(mode, "panpot") != 0) ERR("Unexpected stereo-encoding: %s\n", mode); } if(device->Render_Mode == NormalRender) { device->Uhj_Encoder.reset(new Uhj2Encoder{}); TRACE("UHJ enabled\n"); InitUhjPanning(device); return; } TRACE("UHJ disabled\n"); InitPanning(device); } void aluInitEffectPanning(ALeffectslot *slot) { const size_t count{countof(slot->ChanMap)}; auto acnmap_end = std::begin(AmbiIndex::ACN2ACN) + count; std::transform(std::begin(AmbiIndex::ACN2ACN), acnmap_end, std::begin(slot->ChanMap), [](const ALsizei &acn) noexcept { return BFChannelConfig{1.0f, acn}; } ); slot->NumChannels = static_cast(count); }