From 8ab5e5dba253d1609423b8e3625655d7b1937584 Mon Sep 17 00:00:00 2001 From: Chris Robinson Date: Sun, 28 Mar 2021 05:43:10 -0700 Subject: [PATCH] Move the UHJ phase shifter to a common header --- CMakeLists.txt | 1 + alc/alc.cpp | 2 +- common/phase_shifter.h | 347 +++++++++++++++++++++++++++++++++++++++++ core/uhjfilter.cpp | 202 +----------------------- core/uhjfilter.h | 15 +- utils/uhjdecoder.cpp | 227 ++++----------------------- 6 files changed, 394 insertions(+), 400 deletions(-) create mode 100644 common/phase_shifter.h diff --git a/CMakeLists.txt b/CMakeLists.txt index 954753f9..7e4f06ef 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -627,6 +627,7 @@ set(COMMON_OBJS common/intrusive_ptr.h common/math_defs.h common/opthelpers.h + common/phase_shifter.h common/polyphase_resampler.cpp common/polyphase_resampler.h common/pragmadefs.h diff --git a/alc/alc.cpp b/alc/alc.cpp index 0cd20f62..2de0b47e 100644 --- a/alc/alc.cpp +++ b/alc/alc.cpp @@ -2001,7 +2001,7 @@ static ALCenum UpdateDeviceParams(ALCdevice *device, const int *attrList) nanoseconds::rep sample_delay{0}; if(device->Uhj_Encoder) - sample_delay += Uhj2Encoder::sFilterSize; + sample_delay += Uhj2Encoder::sFilterDelay; if(device->mHrtfState) sample_delay += HrtfDirectDelay; if(auto *ambidec = device->AmbiDecoder.get()) diff --git a/common/phase_shifter.h b/common/phase_shifter.h new file mode 100644 index 00000000..18ab34c7 --- /dev/null +++ b/common/phase_shifter.h @@ -0,0 +1,347 @@ +#ifndef PHASE_SHIFTER_H +#define PHASE_SHIFTER_H + +#ifdef HAVE_SSE_INTRINSICS +#include +#elif defined(HAVE_NEON) +#include +#endif + +#include +#include + +#include "alcomplex.h" +#include "alspan.h" + + +/* Implements a wide-band +90 degree phase-shift. Note that this should be + * given one sample less of a delay (FilterSize/2 - 1) compared to the direct + * signal delay (FilterSize/2) to properly align. + */ +template +struct PhaseShifterT { + static_assert(FilterSize >= 16, "FilterSize needs to be at least 16"); + static_assert((FilterSize&(FilterSize-1)) == 0, "FilterSize needs to be power-of-two"); + + alignas(16) std::array mCoeffs{}; + + /* Some notes on this filter construction. + * + * A wide-band phase-shift filter needs a delay to maintain linearity. A + * dirac impulse in the center of a time-domain buffer represents a filter + * passing all frequencies through as-is with a pure delay. Converting that + * to the frequency domain, adjusting the phase of each frequency bin by + * +90 degrees, then converting back to the time domain, results in a FIR + * filter that applies a +90 degree wide-band phase-shift. + * + * A particularly notable aspect of the time-domain filter response is that + * every other coefficient is 0. This allows doubling the effective size of + * the filter, by storing only the non-0 coefficients and double-stepping + * over the input to apply it. + * + * Additionally, the resulting filter is independent of the sample rate. + * The same filter can be applied regardless of the device's sample rate + * and achieve the same effect. + */ + PhaseShifterT() + { + using complex_d = std::complex; + constexpr size_t fft_size{FilterSize}; + constexpr size_t half_size{fft_size / 2}; + + auto fftBuffer = std::make_unique(fft_size); + std::fill_n(fftBuffer.get(), fft_size, complex_d{}); + fftBuffer[half_size] = 1.0; + + forward_fft({fftBuffer.get(), fft_size}); + for(size_t i{0};i < half_size+1;++i) + fftBuffer[i] = complex_d{-fftBuffer[i].imag(), fftBuffer[i].real()}; + for(size_t i{half_size+1};i < fft_size;++i) + fftBuffer[i] = std::conj(fftBuffer[fft_size - i]); + inverse_fft({fftBuffer.get(), fft_size}); + + auto fftiter = fftBuffer.get() + half_size + (FilterSize/2 - 1); + for(float &coeff : mCoeffs) + { + coeff = static_cast(fftiter->real() / double{fft_size}); + fftiter -= 2; + } + } + + void process(al::span dst, const float *RESTRICT src) const; + void processAccum(al::span dst, const float *RESTRICT src) const; +}; + +template +inline void PhaseShifterT::process(al::span dst, const float *RESTRICT src) const +{ +#ifdef HAVE_SSE_INTRINSICS + if(size_t todo{dst.size()>>1}) + { + auto *out = reinterpret_cast<__m64*>(dst.data()); + do { + __m128 r04{_mm_setzero_ps()}; + __m128 r14{_mm_setzero_ps()}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const __m128 coeffs{_mm_load_ps(&mCoeffs[j])}; + const __m128 s0{_mm_loadu_ps(&src[j*2])}; + const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])}; + + __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))}; + r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs)); + + s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1)); + r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs)); + } + src += 2; + + __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))}; + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + + _mm_storel_pi(out, r4); + ++out; + } while(--todo); + } + if((dst.size()&1)) + { + __m128 r4{_mm_setzero_ps()}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const __m128 coeffs{_mm_load_ps(&mCoeffs[j])}; + const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; + r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs)); + } + r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + + dst.back() = _mm_cvtss_f32(r4); + } + +#elif defined(HAVE_NEON) + + size_t pos{0}; + if(size_t todo{dst.size()>>1}) + { + /* There doesn't seem to be NEON intrinsics to do this kind of stipple + * shuffling, so there's two custom methods for it. + */ + auto shuffle_2020 = [](float32x4_t a, float32x4_t b) + { + float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 0))}; + ret = vsetq_lane_f32(vgetq_lane_f32(a, 2), ret, 1); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 0), ret, 2); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 2), ret, 3); + return ret; + }; + auto shuffle_3131 = [](float32x4_t a, float32x4_t b) + { + float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 1))}; + ret = vsetq_lane_f32(vgetq_lane_f32(a, 3), ret, 1); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 1), ret, 2); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 3), ret, 3); + return ret; + }; + auto unpacklo = [](float32x4_t a, float32x4_t b) + { + float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))}; + return vcombine_f32(result.val[0], result.val[1]); + }; + auto unpackhi = [](float32x4_t a, float32x4_t b) + { + float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))}; + return vcombine_f32(result.val[0], result.val[1]); + }; + do { + float32x4_t r04{vdupq_n_f32(0.0f)}; + float32x4_t r14{vdupq_n_f32(0.0f)}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])}; + const float32x4_t s0{vld1q_f32(&src[j*2])}; + const float32x4_t s1{vld1q_f32(&src[j*2 + 4])}; + + r04 = vmlaq_f32(r04, shuffle_2020(s0, s1), coeffs); + r14 = vmlaq_f32(r14, shuffle_3131(s0, s1), coeffs); + } + src += 2; + + float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))}; + float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))}; + + vst1_f32(&dst[pos], r2); + pos += 2; + } while(--todo); + } + if((dst.size()&1)) + { + auto load4 = [](float32_t a, float32_t b, float32_t c, float32_t d) + { + float32x4_t ret{vmovq_n_f32(a)}; + ret = vsetq_lane_f32(b, ret, 1); + ret = vsetq_lane_f32(c, ret, 2); + ret = vsetq_lane_f32(d, ret, 3); + return ret; + }; + float32x4_t r4{vdupq_n_f32(0.0f)}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])}; + const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; + r4 = vmlaq_f32(r4, s, coeffs); + } + r4 = vaddq_f32(r4, vrev64q_f32(r4)); + dst[pos] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); + } + +#else + + for(float &output : dst) + { + float ret{0.0f}; + for(size_t j{0};j < mCoeffs.size();++j) + ret += src[j*2] * mCoeffs[j]; + + output = ret; + ++src; + } +#endif +} + +template +inline void PhaseShifterT::processAccum(al::span dst, const float *RESTRICT src) const +{ +#ifdef HAVE_SSE_INTRINSICS + if(size_t todo{dst.size()>>1}) + { + auto *out = reinterpret_cast<__m64*>(dst.data()); + do { + __m128 r04{_mm_setzero_ps()}; + __m128 r14{_mm_setzero_ps()}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const __m128 coeffs{_mm_load_ps(&mCoeffs[j])}; + const __m128 s0{_mm_loadu_ps(&src[j*2])}; + const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])}; + + __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))}; + r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs)); + + s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1)); + r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs)); + } + src += 2; + + __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))}; + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + + _mm_storel_pi(out, _mm_add_ps(_mm_loadl_pi(_mm_undefined_ps(), out), r4)); + ++out; + } while(--todo); + } + if((dst.size()&1)) + { + __m128 r4{_mm_setzero_ps()}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const __m128 coeffs{_mm_load_ps(&mCoeffs[j])}; + /* NOTE: This could alternatively be done with two unaligned loads + * and a shuffle. Which would be better? + */ + const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; + r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs)); + } + r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + + dst.back() += _mm_cvtss_f32(r4); + } + +#elif defined(HAVE_NEON) + + size_t pos{0}; + if(size_t todo{dst.size()>>1}) + { + auto shuffle_2020 = [](float32x4_t a, float32x4_t b) + { + float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 0))}; + ret = vsetq_lane_f32(vgetq_lane_f32(a, 2), ret, 1); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 0), ret, 2); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 2), ret, 3); + return ret; + }; + auto shuffle_3131 = [](float32x4_t a, float32x4_t b) + { + float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 1))}; + ret = vsetq_lane_f32(vgetq_lane_f32(a, 3), ret, 1); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 1), ret, 2); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 3), ret, 3); + return ret; + }; + auto unpacklo = [](float32x4_t a, float32x4_t b) + { + float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))}; + return vcombine_f32(result.val[0], result.val[1]); + }; + auto unpackhi = [](float32x4_t a, float32x4_t b) + { + float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))}; + return vcombine_f32(result.val[0], result.val[1]); + }; + do { + float32x4_t r04{vdupq_n_f32(0.0f)}; + float32x4_t r14{vdupq_n_f32(0.0f)}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])}; + const float32x4_t s0{vld1q_f32(&src[j*2])}; + const float32x4_t s1{vld1q_f32(&src[j*2 + 4])}; + + r04 = vmlaq_f32(r04, shuffle_2020(s0, s1), coeffs); + r14 = vmlaq_f32(r14, shuffle_3131(s0, s1), coeffs); + } + src += 2; + + float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))}; + float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))}; + + vst1_f32(&dst[pos], vadd_f32(vld1_f32(&dst[pos]), r2)); + pos += 2; + } while(--todo); + } + if((dst.size()&1)) + { + auto load4 = [](float32_t a, float32_t b, float32_t c, float32_t d) + { + float32x4_t ret{vmovq_n_f32(a)}; + ret = vsetq_lane_f32(b, ret, 1); + ret = vsetq_lane_f32(c, ret, 2); + ret = vsetq_lane_f32(d, ret, 3); + return ret; + }; + float32x4_t r4{vdupq_n_f32(0.0f)}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])}; + const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; + r4 = vmlaq_f32(r4, s, coeffs); + } + r4 = vaddq_f32(r4, vrev64q_f32(r4)); + dst[pos] += vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); + } + +#else + + for(float &output : dst) + { + float ret{0.0f}; + for(size_t j{0};j < mCoeffs.size();++j) + ret += src[j*2] * mCoeffs[j]; + + output += ret; + ++src; + } +#endif +} + +#endif /* PHASE_SHIFTER_H */ diff --git a/core/uhjfilter.cpp b/core/uhjfilter.cpp index 5cb7d0ab..353cb545 100644 --- a/core/uhjfilter.cpp +++ b/core/uhjfilter.cpp @@ -15,202 +15,14 @@ #include "alcomplex.h" #include "alnumeric.h" #include "opthelpers.h" +#include "phase_shifter.h" namespace { using complex_d = std::complex; -struct PhaseShifterT { - alignas(16) std::array Coeffs; - - /* Some notes on this filter construction. - * - * A wide-band phase-shift filter needs a delay to maintain linearity. A - * dirac impulse in the center of a time-domain buffer represents a filter - * passing all frequencies through as-is with a pure delay. Converting that - * to the frequency domain, adjusting the phase of each frequency bin by - * +90 degrees, then converting back to the time domain, results in a FIR - * filter that applies a +90 degree wide-band phase-shift. - * - * A particularly notable aspect of the time-domain filter response is that - * every other coefficient is 0. This allows doubling the effective size of - * the filter, by storing only the non-0 coefficients and double-stepping - * over the input to apply it. - * - * Additionally, the resulting filter is independent of the sample rate. - * The same filter can be applied regardless of the device's sample rate - * and achieve the same effect. - */ - PhaseShifterT() - { - constexpr size_t fft_size{Uhj2Encoder::sFilterSize * 2}; - constexpr size_t half_size{fft_size / 2}; - - /* Generate a frequency domain impulse with a +90 degree phase offset. - * Reconstruct the mirrored frequencies to convert to the time domain. - */ - auto fftBuffer = std::make_unique(fft_size); - std::fill_n(fftBuffer.get(), fft_size, complex_d{}); - fftBuffer[half_size] = 1.0; - - forward_fft({fftBuffer.get(), fft_size}); - for(size_t i{0};i < half_size+1;++i) - fftBuffer[i] = complex_d{-fftBuffer[i].imag(), fftBuffer[i].real()}; - for(size_t i{half_size+1};i < fft_size;++i) - fftBuffer[i] = std::conj(fftBuffer[fft_size - i]); - inverse_fft({fftBuffer.get(), fft_size}); - - /* Reverse the filter for simpler processing, and store only the non-0 - * coefficients. - */ - auto fftiter = fftBuffer.get() + half_size + (Uhj2Encoder::sFilterSize-1); - for(float &coeff : Coeffs) - { - coeff = static_cast(fftiter->real() / double{fft_size}); - fftiter -= 2; - } - } -}; -const PhaseShifterT PShift{}; - -void allpass_process(al::span dst, const float *RESTRICT src) -{ -#ifdef HAVE_SSE_INTRINSICS - if(size_t todo{dst.size()>>1}) - { - auto *out = reinterpret_cast<__m64*>(dst.data()); - do { - __m128 r04{_mm_setzero_ps()}; - __m128 r14{_mm_setzero_ps()}; - for(size_t j{0};j < PShift.Coeffs.size();j+=4) - { - const __m128 coeffs{_mm_load_ps(&PShift.Coeffs[j])}; - const __m128 s0{_mm_loadu_ps(&src[j*2])}; - const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])}; - - __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))}; - r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs)); - - s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1)); - r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs)); - } - src += 2; - - __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))}; - r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); - - _mm_storel_pi(out, _mm_add_ps(_mm_loadl_pi(_mm_undefined_ps(), out), r4)); - ++out; - } while(--todo); - } - if((dst.size()&1)) - { - __m128 r4{_mm_setzero_ps()}; - for(size_t j{0};j < PShift.Coeffs.size();j+=4) - { - const __m128 coeffs{_mm_load_ps(&PShift.Coeffs[j])}; - /* NOTE: This could alternatively be done with two unaligned loads - * and a shuffle. Which would be better? - */ - const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; - r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs)); - } - r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); - r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); - - dst.back() += _mm_cvtss_f32(r4); - } - -#elif defined(HAVE_NEON) - - size_t pos{0}; - if(size_t todo{dst.size()>>1}) - { - /* There doesn't seem to be NEON intrinsics to do this kind of stipple - * shuffling, so there's two custom methods for it. - */ - auto shuffle_2020 = [](float32x4_t a, float32x4_t b) - { - float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 0))}; - ret = vsetq_lane_f32(vgetq_lane_f32(a, 2), ret, 1); - ret = vsetq_lane_f32(vgetq_lane_f32(b, 0), ret, 2); - ret = vsetq_lane_f32(vgetq_lane_f32(b, 2), ret, 3); - return ret; - }; - auto shuffle_3131 = [](float32x4_t a, float32x4_t b) - { - float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 1))}; - ret = vsetq_lane_f32(vgetq_lane_f32(a, 3), ret, 1); - ret = vsetq_lane_f32(vgetq_lane_f32(b, 1), ret, 2); - ret = vsetq_lane_f32(vgetq_lane_f32(b, 3), ret, 3); - return ret; - }; - auto unpacklo = [](float32x4_t a, float32x4_t b) - { - float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))}; - return vcombine_f32(result.val[0], result.val[1]); - }; - auto unpackhi = [](float32x4_t a, float32x4_t b) - { - float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))}; - return vcombine_f32(result.val[0], result.val[1]); - }; - do { - float32x4_t r04{vdupq_n_f32(0.0f)}; - float32x4_t r14{vdupq_n_f32(0.0f)}; - for(size_t j{0};j < PShift.Coeffs.size();j+=4) - { - const float32x4_t coeffs{vld1q_f32(&PShift.Coeffs[j])}; - const float32x4_t s0{vld1q_f32(&src[j*2])}; - const float32x4_t s1{vld1q_f32(&src[j*2 + 4])}; - - r04 = vmlaq_f32(r04, shuffle_2020(s0, s1), coeffs); - r14 = vmlaq_f32(r14, shuffle_3131(s0, s1), coeffs); - } - src += 2; - - float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))}; - float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))}; - - vst1_f32(&dst[pos], vadd_f32(vld1_f32(&dst[pos]), r2)); - pos += 2; - } while(--todo); - } - if((dst.size()&1)) - { - auto load4 = [](float32_t a, float32_t b, float32_t c, float32_t d) - { - float32x4_t ret{vmovq_n_f32(a)}; - ret = vsetq_lane_f32(b, ret, 1); - ret = vsetq_lane_f32(c, ret, 2); - ret = vsetq_lane_f32(d, ret, 3); - return ret; - }; - float32x4_t r4{vdupq_n_f32(0.0f)}; - for(size_t j{0};j < PShift.Coeffs.size();j+=4) - { - const float32x4_t coeffs{vld1q_f32(&PShift.Coeffs[j])}; - const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; - r4 = vmlaq_f32(r4, s, coeffs); - } - r4 = vaddq_f32(r4, vrev64q_f32(r4)); - dst[pos] += vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); - } - -#else - - for(float &output : dst) - { - float ret{0.0f}; - for(size_t j{0};j < PShift.Coeffs.size();++j) - ret += src[j*2] * PShift.Coeffs[j]; - - output += ret; - ++src; - } -#endif -} +const PhaseShifterT PShift{}; } // namespace @@ -247,13 +59,13 @@ void Uhj2Encoder::encode(const FloatBufferSpan LeftOut, const FloatBufferSpan Ri /* Combine the previously delayed mid/side signal with the input. */ /* S = 0.9396926*W + 0.1855740*X */ - auto miditer = mMid.begin() + sFilterSize; + auto miditer = mMid.begin() + sFilterDelay; std::transform(winput, winput+SamplesToDo, xinput, miditer, [](const float w, const float x) noexcept -> float { return 0.9396926f*w + 0.1855740f*x; }); /* D = 0.6554516*Y */ - auto sideiter = mSide.begin() + sFilterSize; + auto sideiter = mSide.begin() + sFilterDelay; std::transform(yinput, yinput+SamplesToDo, sideiter, [](const float y) noexcept -> float { return 0.6554516f*y; }); @@ -271,7 +83,7 @@ void Uhj2Encoder::encode(const FloatBufferSpan LeftOut, const FloatBufferSpan Ri [](const float w, const float x) noexcept -> float { return -0.3420201f*w + 0.5098604f*x; }); std::copy_n(mTemp.cbegin()+SamplesToDo, mSideHistory.size(), mSideHistory.begin()); - allpass_process({mSide.data(), SamplesToDo}, mTemp.data()); + PShift.processAccum({mSide.data(), SamplesToDo}, mTemp.data()); /* Left = (S + D)/2.0 */ for(size_t i{0};i < SamplesToDo;i++) @@ -281,6 +93,6 @@ void Uhj2Encoder::encode(const FloatBufferSpan LeftOut, const FloatBufferSpan Ri right[i] = (mMid[i] - mSide[i]) * 0.5f; /* Copy the future samples to the front for next time. */ - std::copy(mMid.cbegin()+SamplesToDo, mMid.cbegin()+SamplesToDo+sFilterSize, mMid.begin()); - std::copy(mSide.cbegin()+SamplesToDo, mSide.cbegin()+SamplesToDo+sFilterSize, mSide.begin()); + std::copy(mMid.cbegin()+SamplesToDo, mMid.cbegin()+SamplesToDo+sFilterDelay, mMid.begin()); + std::copy(mSide.cbegin()+SamplesToDo, mSide.cbegin()+SamplesToDo+sFilterDelay, mSide.begin()); } diff --git a/core/uhjfilter.h b/core/uhjfilter.h index ff794355..d432cec5 100644 --- a/core/uhjfilter.h +++ b/core/uhjfilter.h @@ -8,20 +8,19 @@ struct Uhj2Encoder { - /* A particular property of the filter allows it to cover nearly twice its - * length, so the filter size is also the effective delay (despite being - * center-aligned). + /* The filter delay is half it's effective size, so a delay of 128 has a + * FIR length of 256. */ - constexpr static size_t sFilterSize{128}; + constexpr static size_t sFilterDelay{128}; /* Delays and processing storage for the unfiltered signal. */ - alignas(16) std::array mMid{}; - alignas(16) std::array mSide{}; + alignas(16) std::array mMid{}; + alignas(16) std::array mSide{}; /* History for the FIR filter. */ - alignas(16) std::array mSideHistory{}; + alignas(16) std::array mSideHistory{}; - alignas(16) std::array mTemp{}; + alignas(16) std::array mTemp{}; /** * Encodes a 2-channel UHJ (stereo-compatible) signal from a B-Format input diff --git a/utils/uhjdecoder.cpp b/utils/uhjdecoder.cpp index 5572b690..1efed0dd 100644 --- a/utils/uhjdecoder.cpp +++ b/utils/uhjdecoder.cpp @@ -46,6 +46,7 @@ #include "alspan.h" #include "vector.h" #include "opthelpers.h" +#include "phase_shifter.h" #include "sndfile.h" @@ -117,18 +118,18 @@ using FloatBufferSpan = al::span; struct UhjDecoder { - constexpr static size_t sFilterSize{128}; + constexpr static size_t sFilterDelay{128}; - alignas(16) std::array mS{}; - alignas(16) std::array mD{}; - alignas(16) std::array mT{}; - alignas(16) std::array mQ{}; + alignas(16) std::array mS{}; + alignas(16) std::array mD{}; + alignas(16) std::array mT{}; + alignas(16) std::array mQ{}; /* History for the FIR filter. */ - alignas(16) std::array mDTHistory{}; - alignas(16) std::array mSHistory{}; + alignas(16) std::array mDTHistory{}; + alignas(16) std::array mSHistory{}; - alignas(16) std::array mTemp{}; + alignas(16) std::array mTemp{}; void decode(const float *RESTRICT InSamples, const size_t InChannels, const al::span OutSamples, const size_t SamplesToDo); @@ -138,173 +139,7 @@ struct UhjDecoder { DEF_NEWDEL(UhjDecoder) }; -/* Same basic filter design as in core/uhjfilter.cpp. */ -template -struct PhaseShifterT { - static_assert((FilterSize&(FilterSize-1)) == 0, "FilterSize needs to be power-of-two"); - - alignas(16) std::array Coeffs{}; - - PhaseShifterT() - { - constexpr size_t fft_size{FilterSize * 2}; - constexpr size_t half_size{fft_size / 2}; - - auto fftBuffer = std::make_unique(fft_size); - std::fill_n(fftBuffer.get(), fft_size, complex_d{}); - fftBuffer[half_size] = 1.0; - - forward_fft({fftBuffer.get(), fft_size}); - for(size_t i{0};i < half_size+1;++i) - fftBuffer[i] = complex_d{-fftBuffer[i].imag(), fftBuffer[i].real()}; - for(size_t i{half_size+1};i < fft_size;++i) - fftBuffer[i] = std::conj(fftBuffer[fft_size - i]); - inverse_fft({fftBuffer.get(), fft_size}); - - auto fftiter = fftBuffer.get() + half_size + (FilterSize-1); - for(float &coeff : Coeffs) - { - coeff = static_cast(fftiter->real() / double{fft_size}); - fftiter -= 2; - } - } -}; -const PhaseShifterT PShift{}; - -/* Mostly the same as in core/uhjfilter.cpp, except this overwrites the output - * instead of adding to it. - */ -void allpass_process(al::span dst, const float *RESTRICT src) -{ -#ifdef HAVE_SSE_INTRINSICS - if(size_t todo{dst.size()>>1}) - { - auto *out = reinterpret_cast<__m64*>(dst.data()); - do { - __m128 r04{_mm_setzero_ps()}; - __m128 r14{_mm_setzero_ps()}; - for(size_t j{0};j < PShift.Coeffs.size();j+=4) - { - const __m128 coeffs{_mm_load_ps(&PShift.Coeffs[j])}; - const __m128 s0{_mm_loadu_ps(&src[j*2])}; - const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])}; - - __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))}; - r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs)); - - s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1)); - r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs)); - } - src += 2; - - __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))}; - r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); - - _mm_storel_pi(out, r4); - ++out; - } while(--todo); - } - if((dst.size()&1)) - { - __m128 r4{_mm_setzero_ps()}; - for(size_t j{0};j < PShift.Coeffs.size();j+=4) - { - const __m128 coeffs{_mm_load_ps(&PShift.Coeffs[j])}; - const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; - r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs)); - } - r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); - r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); - - dst.back() = _mm_cvtss_f32(r4); - } - -#elif defined(HAVE_NEON) - - size_t pos{0}; - if(size_t todo{dst.size()>>1}) - { - auto shuffle_2020 = [](float32x4_t a, float32x4_t b) - { - float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 0))}; - ret = vsetq_lane_f32(vgetq_lane_f32(a, 2), ret, 1); - ret = vsetq_lane_f32(vgetq_lane_f32(b, 0), ret, 2); - ret = vsetq_lane_f32(vgetq_lane_f32(b, 2), ret, 3); - return ret; - }; - auto shuffle_3131 = [](float32x4_t a, float32x4_t b) - { - float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 1))}; - ret = vsetq_lane_f32(vgetq_lane_f32(a, 3), ret, 1); - ret = vsetq_lane_f32(vgetq_lane_f32(b, 1), ret, 2); - ret = vsetq_lane_f32(vgetq_lane_f32(b, 3), ret, 3); - return ret; - }; - auto unpacklo = [](float32x4_t a, float32x4_t b) - { - float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))}; - return vcombine_f32(result.val[0], result.val[1]); - }; - auto unpackhi = [](float32x4_t a, float32x4_t b) - { - float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))}; - return vcombine_f32(result.val[0], result.val[1]); - }; - do { - float32x4_t r04{vdupq_n_f32(0.0f)}; - float32x4_t r14{vdupq_n_f32(0.0f)}; - for(size_t j{0};j < PShift.Coeffs.size();j+=4) - { - const float32x4_t coeffs{vld1q_f32(&PShift.Coeffs[j])}; - const float32x4_t s0{vld1q_f32(&src[j*2])}; - const float32x4_t s1{vld1q_f32(&src[j*2 + 4])}; - - r04 = vmlaq_f32(r04, shuffle_2020(s0, s1), coeffs); - r14 = vmlaq_f32(r14, shuffle_3131(s0, s1), coeffs); - } - src += 2; - - float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))}; - float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))}; - - vst1_f32(&dst[pos], r2); - pos += 2; - } while(--todo); - } - if((dst.size()&1)) - { - auto load4 = [](float32_t a, float32_t b, float32_t c, float32_t d) - { - float32x4_t ret{vmovq_n_f32(a)}; - ret = vsetq_lane_f32(b, ret, 1); - ret = vsetq_lane_f32(c, ret, 2); - ret = vsetq_lane_f32(d, ret, 3); - return ret; - }; - float32x4_t r4{vdupq_n_f32(0.0f)}; - for(size_t j{0};j < PShift.Coeffs.size();j+=4) - { - const float32x4_t coeffs{vld1q_f32(&PShift.Coeffs[j])}; - const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; - r4 = vmlaq_f32(r4, s, coeffs); - } - r4 = vaddq_f32(r4, vrev64q_f32(r4)); - dst[pos] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); - } - -#else - - for(float &output : dst) - { - float ret{0.0f}; - for(size_t j{0};j < PShift.Coeffs.size();++j) - ret += src[j*2] * PShift.Coeffs[j]; - - output = ret; - ++src; - } -#endif -} +const PhaseShifterT PShift{}; /* Decoding UHJ is done as: @@ -395,31 +230,31 @@ void UhjDecoder::decode(const float *RESTRICT InSamples, const size_t InChannels /* S = Left + Right */ for(size_t i{0};i < SamplesToDo;++i) - mS[sFilterSize+i] = InSamples[i*InChannels + 0] + InSamples[i*InChannels + 1]; + mS[sFilterDelay+i] = InSamples[i*InChannels + 0] + InSamples[i*InChannels + 1]; /* D = Left - Right */ for(size_t i{0};i < SamplesToDo;++i) - mD[sFilterSize+i] = InSamples[i*InChannels + 0] - InSamples[i*InChannels + 1]; + mD[sFilterDelay+i] = InSamples[i*InChannels + 0] - InSamples[i*InChannels + 1]; if(InChannels > 2) { /* T */ for(size_t i{0};i < SamplesToDo;++i) - mT[sFilterSize+i] = InSamples[i*InChannels + 2]; + mT[sFilterDelay+i] = InSamples[i*InChannels + 2]; } if(InChannels > 3) { /* Q */ for(size_t i{0};i < SamplesToDo;++i) - mQ[sFilterSize+i] = InSamples[i*InChannels + 3]; + mQ[sFilterDelay+i] = InSamples[i*InChannels + 3]; } /* Precompute j(0.828347*D + 0.767835*T) and store in xoutput. */ auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin()); - std::transform(mD.cbegin(), mD.cbegin()+SamplesToDo+sFilterSize, mT.cbegin(), tmpiter, + std::transform(mD.cbegin(), mD.cbegin()+SamplesToDo+sFilterDelay, mT.cbegin(), tmpiter, [](const float d, const float t) noexcept { return 0.828347f*d + 0.767835f*t; }); std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin()); - allpass_process({xoutput, SamplesToDo}, mTemp.data()); + PShift.process({xoutput, SamplesToDo}, mTemp.data()); for(size_t i{0};i < SamplesToDo;++i) { @@ -431,9 +266,9 @@ void UhjDecoder::decode(const float *RESTRICT InSamples, const size_t InChannels /* Precompute j*S and store in youtput. */ tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin()); - std::copy_n(mS.cbegin(), SamplesToDo+sFilterSize, tmpiter); + std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter); std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin()); - allpass_process({youtput, SamplesToDo}, mTemp.data()); + PShift.process({youtput, SamplesToDo}, mTemp.data()); for(size_t i{0};i < SamplesToDo;++i) { @@ -449,10 +284,10 @@ void UhjDecoder::decode(const float *RESTRICT InSamples, const size_t InChannels zoutput[i] = 1.023332f*mQ[i]; } - std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterSize, mS.begin()); - std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterSize, mD.begin()); - std::copy(mT.begin()+SamplesToDo, mT.begin()+SamplesToDo+sFilterSize, mT.begin()); - std::copy(mQ.begin()+SamplesToDo, mQ.begin()+SamplesToDo+sFilterSize, mQ.begin()); + std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin()); + std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin()); + std::copy(mT.begin()+SamplesToDo, mT.begin()+SamplesToDo+sFilterDelay, mT.begin()); + std::copy(mQ.begin()+SamplesToDo, mQ.begin()+SamplesToDo+sFilterDelay, mQ.begin()); } /* This is an alternative equation for decoding 2-channel UHJ. Not sure what @@ -485,17 +320,17 @@ void UhjDecoder::decode2(const float *RESTRICT InSamples, /* S = Left + Right */ for(size_t i{0};i < SamplesToDo;++i) - mS[sFilterSize+i] = InSamples[i*2 + 0] + InSamples[i*2 + 1]; + mS[sFilterDelay+i] = InSamples[i*2 + 0] + InSamples[i*2 + 1]; /* D = Left - Right */ for(size_t i{0};i < SamplesToDo;++i) - mD[sFilterSize+i] = InSamples[i*2 + 0] - InSamples[i*2 + 1]; + mD[sFilterDelay+i] = InSamples[i*2 + 0] - InSamples[i*2 + 1]; /* Precompute j*D and store in xoutput. */ auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin()); - std::copy_n(mD.cbegin(), SamplesToDo+sFilterSize, tmpiter); + std::copy_n(mD.cbegin(), SamplesToDo+sFilterDelay, tmpiter); std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin()); - allpass_process({xoutput, SamplesToDo}, mTemp.data()); + PShift.process({xoutput, SamplesToDo}, mTemp.data()); for(size_t i{0};i < SamplesToDo;++i) { @@ -507,9 +342,9 @@ void UhjDecoder::decode2(const float *RESTRICT InSamples, /* Precompute j*S and store in youtput. */ tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin()); - std::copy_n(mS.cbegin(), SamplesToDo+sFilterSize, tmpiter); + std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter); std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin()); - allpass_process({youtput, SamplesToDo}, mTemp.data()); + PShift.process({youtput, SamplesToDo}, mTemp.data()); for(size_t i{0};i < SamplesToDo;++i) { @@ -517,8 +352,8 @@ void UhjDecoder::decode2(const float *RESTRICT InSamples, youtput[i] = 0.762956f*mD[i] + 0.384230f*youtput[i]; } - std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterSize, mS.begin()); - std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterSize, mD.begin()); + std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin()); + std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin()); } @@ -643,7 +478,7 @@ int main(int argc, char **argv) * additional 255 samples of silence need to be fed through the decoder * for it to finish. */ - sf_count_t LeadOut{UhjDecoder::sFilterSize*2 - 1}; + sf_count_t LeadOut{UhjDecoder::sFilterDelay*2 - 1}; while(LeadOut > 0) { sf_count_t sgot{sf_readf_float(infile.get(), inmem.get(), BufferLineSize)};