/* Copyright (C) 2014 by Leonhard Oelke This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "util/sse-intrin.h" #include "util/threading.h" #include "util/bmem.h" #include "media-io/audio-math.h" #include "obs.h" #include "obs-internal.h" #include "obs-audio-controls.h" /* These are pointless warnings generated not by our code, but by a standard * library macro, INFINITY */ #ifdef _MSC_VER #pragma warning(disable : 4056) #pragma warning(disable : 4756) #endif #define CLAMP(x, min, max) ((x) < min ? min : ((x) > max ? max : (x))) typedef float (*obs_fader_conversion_t)(const float val); struct fader_cb { obs_fader_changed_t callback; void *param; }; struct obs_fader { pthread_mutex_t mutex; obs_fader_conversion_t def_to_db; obs_fader_conversion_t db_to_def; obs_source_t *source; enum obs_fader_type type; float max_db; float min_db; float cur_db; bool ignore_next_signal; pthread_mutex_t callback_mutex; DARRAY(struct fader_cb) callbacks; }; struct meter_cb { obs_volmeter_updated_t callback; void *param; }; struct obs_volmeter { pthread_mutex_t mutex; obs_source_t *source; enum obs_fader_type type; float cur_db; pthread_mutex_t callback_mutex; DARRAY(struct meter_cb) callbacks; enum obs_peak_meter_type peak_meter_type; unsigned int update_ms; float prev_samples[MAX_AUDIO_CHANNELS][4]; float magnitude[MAX_AUDIO_CHANNELS]; float peak[MAX_AUDIO_CHANNELS]; }; static float cubic_def_to_db(const float def) { if (def == 1.0f) return 0.0f; else if (def <= 0.0f) return -INFINITY; return mul_to_db(def * def * def); } static float cubic_db_to_def(const float db) { if (db == 0.0f) return 1.0f; else if (db == -INFINITY) return 0.0f; return cbrtf(db_to_mul(db)); } static float iec_def_to_db(const float def) { if (def == 1.0f) return 0.0f; else if (def <= 0.0f) return -INFINITY; float db; if (def >= 0.75f) db = (def - 1.0f) / 0.25f * 9.0f; else if (def >= 0.5f) db = (def - 0.75f) / 0.25f * 11.0f - 9.0f; else if (def >= 0.3f) db = (def - 0.5f) / 0.2f * 10.0f - 20.0f; else if (def >= 0.15f) db = (def - 0.3f) / 0.15f * 10.0f - 30.0f; else if (def >= 0.075f) db = (def - 0.15f) / 0.075f * 10.0f - 40.0f; else if (def >= 0.025f) db = (def - 0.075f) / 0.05f * 10.0f - 50.0f; else if (def >= 0.001f) db = (def - 0.025f) / 0.025f * 90.0f - 60.0f; else db = -INFINITY; return db; } static float iec_db_to_def(const float db) { if (db == 0.0f) return 1.0f; else if (db == -INFINITY) return 0.0f; float def; if (db >= -9.0f) def = (db + 9.0f) / 9.0f * 0.25f + 0.75f; else if (db >= -20.0f) def = (db + 20.0f) / 11.0f * 0.25f + 0.5f; else if (db >= -30.0f) def = (db + 30.0f) / 10.0f * 0.2f + 0.3f; else if (db >= -40.0f) def = (db + 40.0f) / 10.0f * 0.15f + 0.15f; else if (db >= -50.0f) def = (db + 50.0f) / 10.0f * 0.075f + 0.075f; else if (db >= -60.0f) def = (db + 60.0f) / 10.0f * 0.05f + 0.025f; else if (db >= -114.0f) def = (db + 150.0f) / 90.0f * 0.025f; else def = 0.0f; return def; } #define LOG_OFFSET_DB 6.0f #define LOG_RANGE_DB 96.0f /* equals -log10f(LOG_OFFSET_DB) */ #define LOG_OFFSET_VAL -0.77815125038364363f /* equals -log10f(-LOG_RANGE_DB + LOG_OFFSET_DB) */ #define LOG_RANGE_VAL -2.00860017176191756f static float log_def_to_db(const float def) { if (def >= 1.0f) return 0.0f; else if (def <= 0.0f) return -INFINITY; return -(LOG_RANGE_DB + LOG_OFFSET_DB) * powf((LOG_RANGE_DB + LOG_OFFSET_DB) / LOG_OFFSET_DB, -def) + LOG_OFFSET_DB; } static float log_db_to_def(const float db) { if (db >= 0.0f) return 1.0f; else if (db <= -96.0f) return 0.0f; return (-log10f(-db + LOG_OFFSET_DB) - LOG_RANGE_VAL) / (LOG_OFFSET_VAL - LOG_RANGE_VAL); } static void signal_volume_changed(struct obs_fader *fader, const float db) { pthread_mutex_lock(&fader->callback_mutex); for (size_t i = fader->callbacks.num; i > 0; i--) { struct fader_cb cb = fader->callbacks.array[i - 1]; cb.callback(cb.param, db); } pthread_mutex_unlock(&fader->callback_mutex); } static void signal_levels_updated(struct obs_volmeter *volmeter, const float magnitude[MAX_AUDIO_CHANNELS], const float peak[MAX_AUDIO_CHANNELS], const float input_peak[MAX_AUDIO_CHANNELS]) { pthread_mutex_lock(&volmeter->callback_mutex); for (size_t i = volmeter->callbacks.num; i > 0; i--) { struct meter_cb cb = volmeter->callbacks.array[i - 1]; cb.callback(cb.param, magnitude, peak, input_peak); } pthread_mutex_unlock(&volmeter->callback_mutex); } static void fader_source_volume_changed(void *vptr, calldata_t *calldata) { struct obs_fader *fader = (struct obs_fader *)vptr; pthread_mutex_lock(&fader->mutex); if (fader->ignore_next_signal) { fader->ignore_next_signal = false; pthread_mutex_unlock(&fader->mutex); return; } const float mul = (float)calldata_float(calldata, "volume"); const float db = mul_to_db(mul); fader->cur_db = db; pthread_mutex_unlock(&fader->mutex); signal_volume_changed(fader, db); } static void volmeter_source_volume_changed(void *vptr, calldata_t *calldata) { struct obs_volmeter *volmeter = (struct obs_volmeter *)vptr; pthread_mutex_lock(&volmeter->mutex); float mul = (float)calldata_float(calldata, "volume"); volmeter->cur_db = mul_to_db(mul); pthread_mutex_unlock(&volmeter->mutex); } static void fader_source_destroyed(void *vptr, calldata_t *calldata) { UNUSED_PARAMETER(calldata); struct obs_fader *fader = (struct obs_fader *)vptr; obs_fader_detach_source(fader); } static void volmeter_source_destroyed(void *vptr, calldata_t *calldata) { UNUSED_PARAMETER(calldata); struct obs_volmeter *volmeter = (struct obs_volmeter *)vptr; obs_volmeter_detach_source(volmeter); } static int get_nr_channels_from_audio_data(const struct audio_data *data) { int nr_channels = 0; for (int i = 0; i < MAX_AV_PLANES; i++) { if (data->data[i]) nr_channels++; } return CLAMP(nr_channels, 0, MAX_AUDIO_CHANNELS); } /* msb(h, g, f, e) lsb(d, c, b, a) --> msb(h, h, g, f) lsb(e, d, c, b) */ #define SHIFT_RIGHT_2PS(msb, lsb) \ { \ __m128 tmp = \ _mm_shuffle_ps(lsb, msb, _MM_SHUFFLE(0, 0, 3, 3)); \ lsb = _mm_shuffle_ps(lsb, tmp, _MM_SHUFFLE(2, 1, 2, 1)); \ msb = _mm_shuffle_ps(msb, msb, _MM_SHUFFLE(3, 3, 2, 1)); \ } /* x(d, c, b, a) --> (|d|, |c|, |b|, |a|) */ #define abs_ps(v) _mm_andnot_ps(_mm_set1_ps(-0.f), v) /* Take cross product of a vector with a matrix resulting in vector. */ #define VECTOR_MATRIX_CROSS_PS(out, v, m0, m1, m2, m3) \ { \ out = _mm_mul_ps(v, m0); \ __m128 mul1 = _mm_mul_ps(v, m1); \ __m128 mul2 = _mm_mul_ps(v, m2); \ __m128 mul3 = _mm_mul_ps(v, m3); \ \ _MM_TRANSPOSE4_PS(out, mul1, mul2, mul3); \ \ out = _mm_add_ps(out, mul1); \ out = _mm_add_ps(out, mul2); \ out = _mm_add_ps(out, mul3); \ } /* x4(d, c, b, a) --> max(a, b, c, d) */ #define hmax_ps(r, x4) \ do { \ float x4_mem[4]; \ _mm_storeu_ps(x4_mem, x4); \ r = x4_mem[0]; \ r = fmaxf(r, x4_mem[1]); \ r = fmaxf(r, x4_mem[2]); \ r = fmaxf(r, x4_mem[3]); \ } while (false) /* Calculate the true peak over a set of samples. * The algorithm implements 5x oversampling by using Whittaker–Shannon * interpolation over four samples. * * The four samples have location t=-1.5, -0.5, +0.5, +1.5 * The oversamples are taken at locations t=-0.3, -0.1, +0.1, +0.3 * * @param previous_samples Last 4 samples from the previous iteration. * @param samples The samples to find the peak in. * @param nr_samples Number of sets of 4 samples. * @returns 5 times oversampled true-peak from the set of samples. */ static float get_true_peak(__m128 previous_samples, const float *samples, size_t nr_samples) { /* These are normalized-sinc parameters for interpolating over sample * points which are located at x-coords: -1.5, -0.5, +0.5, +1.5. * And oversample points at x-coords: -0.3, -0.1, 0.1, 0.3. */ const __m128 m3 = _mm_set_ps(-0.155915f, 0.935489f, 0.233872f, -0.103943f); const __m128 m1 = _mm_set_ps(-0.216236f, 0.756827f, 0.504551f, -0.189207f); const __m128 p1 = _mm_set_ps(-0.189207f, 0.504551f, 0.756827f, -0.216236f); const __m128 p3 = _mm_set_ps(-0.103943f, 0.233872f, 0.935489f, -0.155915f); __m128 work = previous_samples; __m128 peak = previous_samples; for (size_t i = 0; (i + 3) < nr_samples; i += 4) { __m128 new_work = _mm_load_ps(&samples[i]); __m128 intrp_samples; /* Include the actual sample values in the peak. */ __m128 abs_new_work = abs_ps(new_work); peak = _mm_max_ps(peak, abs_new_work); /* Shift in the next point. */ SHIFT_RIGHT_2PS(new_work, work); VECTOR_MATRIX_CROSS_PS(intrp_samples, work, m3, m1, p1, p3); peak = _mm_max_ps(peak, abs_ps(intrp_samples)); SHIFT_RIGHT_2PS(new_work, work); VECTOR_MATRIX_CROSS_PS(intrp_samples, work, m3, m1, p1, p3); peak = _mm_max_ps(peak, abs_ps(intrp_samples)); SHIFT_RIGHT_2PS(new_work, work); VECTOR_MATRIX_CROSS_PS(intrp_samples, work, m3, m1, p1, p3); peak = _mm_max_ps(peak, abs_ps(intrp_samples)); SHIFT_RIGHT_2PS(new_work, work); VECTOR_MATRIX_CROSS_PS(intrp_samples, work, m3, m1, p1, p3); peak = _mm_max_ps(peak, abs_ps(intrp_samples)); } float r; hmax_ps(r, peak); return r; } /* points contain the first four samples to calculate the sinc interpolation * over. They will have come from a previous iteration. */ static float get_sample_peak(__m128 previous_samples, const float *samples, size_t nr_samples) { __m128 peak = previous_samples; for (size_t i = 0; (i + 3) < nr_samples; i += 4) { __m128 new_work = _mm_load_ps(&samples[i]); peak = _mm_max_ps(peak, abs_ps(new_work)); } float r; hmax_ps(r, peak); return r; } static void volmeter_process_peak_last_samples(obs_volmeter_t *volmeter, int channel_nr, float *samples, size_t nr_samples) { /* Take the last 4 samples that need to be used for the next peak * calculation. If there are less than 4 samples in total the new * samples shift out the old samples. */ switch (nr_samples) { case 0: break; case 1: volmeter->prev_samples[channel_nr][0] = volmeter->prev_samples[channel_nr][1]; volmeter->prev_samples[channel_nr][1] = volmeter->prev_samples[channel_nr][2]; volmeter->prev_samples[channel_nr][2] = volmeter->prev_samples[channel_nr][3]; volmeter->prev_samples[channel_nr][3] = samples[nr_samples - 1]; break; case 2: volmeter->prev_samples[channel_nr][0] = volmeter->prev_samples[channel_nr][2]; volmeter->prev_samples[channel_nr][1] = volmeter->prev_samples[channel_nr][3]; volmeter->prev_samples[channel_nr][2] = samples[nr_samples - 2]; volmeter->prev_samples[channel_nr][3] = samples[nr_samples - 1]; break; case 3: volmeter->prev_samples[channel_nr][0] = volmeter->prev_samples[channel_nr][3]; volmeter->prev_samples[channel_nr][1] = samples[nr_samples - 3]; volmeter->prev_samples[channel_nr][2] = samples[nr_samples - 2]; volmeter->prev_samples[channel_nr][3] = samples[nr_samples - 1]; break; default: volmeter->prev_samples[channel_nr][0] = samples[nr_samples - 4]; volmeter->prev_samples[channel_nr][1] = samples[nr_samples - 3]; volmeter->prev_samples[channel_nr][2] = samples[nr_samples - 2]; volmeter->prev_samples[channel_nr][3] = samples[nr_samples - 1]; } } static void volmeter_process_peak(obs_volmeter_t *volmeter, const struct audio_data *data, int nr_channels) { int nr_samples = data->frames; int channel_nr = 0; for (int plane_nr = 0; channel_nr < nr_channels; plane_nr++) { float *samples = (float *)data->data[plane_nr]; if (!samples) { continue; } if (((uintptr_t)samples & 0xf) > 0) { printf("Audio plane %i is not aligned %p skipping " "peak volume measurement.\n", plane_nr, samples); volmeter->peak[channel_nr] = 1.0; channel_nr++; continue; } /* volmeter->prev_samples may not be aligned to 16 bytes; * use unaligned load. */ __m128 previous_samples = _mm_loadu_ps(volmeter->prev_samples[channel_nr]); float peak; switch (volmeter->peak_meter_type) { case TRUE_PEAK_METER: peak = get_true_peak(previous_samples, samples, nr_samples); break; case SAMPLE_PEAK_METER: default: peak = get_sample_peak(previous_samples, samples, nr_samples); break; } volmeter_process_peak_last_samples(volmeter, channel_nr, samples, nr_samples); volmeter->peak[channel_nr] = peak; channel_nr++; } /* Clear the peak of the channels that have not been handled. */ for (; channel_nr < MAX_AUDIO_CHANNELS; channel_nr++) { volmeter->peak[channel_nr] = 0.0; } } static void volmeter_process_magnitude(obs_volmeter_t *volmeter, const struct audio_data *data, int nr_channels) { size_t nr_samples = data->frames; int channel_nr = 0; for (int plane_nr = 0; channel_nr < nr_channels; plane_nr++) { float *samples = (float *)data->data[plane_nr]; if (!samples) { continue; } float sum = 0.0; for (size_t i = 0; i < nr_samples; i++) { float sample = samples[i]; sum += sample * sample; } volmeter->magnitude[channel_nr] = sqrtf(sum / nr_samples); channel_nr++; } } static void volmeter_process_audio_data(obs_volmeter_t *volmeter, const struct audio_data *data) { int nr_channels = get_nr_channels_from_audio_data(data); volmeter_process_peak(volmeter, data, nr_channels); volmeter_process_magnitude(volmeter, data, nr_channels); } static void volmeter_source_data_received(void *vptr, obs_source_t *source, const struct audio_data *data, bool muted) { struct obs_volmeter *volmeter = (struct obs_volmeter *)vptr; float mul; float magnitude[MAX_AUDIO_CHANNELS]; float peak[MAX_AUDIO_CHANNELS]; float input_peak[MAX_AUDIO_CHANNELS]; pthread_mutex_lock(&volmeter->mutex); volmeter_process_audio_data(volmeter, data); // Adjust magnitude/peak based on the volume level set by the user. // And convert to dB. mul = muted ? 0.0f : db_to_mul(volmeter->cur_db); for (int channel_nr = 0; channel_nr < MAX_AUDIO_CHANNELS; channel_nr++) { magnitude[channel_nr] = mul_to_db(volmeter->magnitude[channel_nr] * mul); peak[channel_nr] = mul_to_db(volmeter->peak[channel_nr] * mul); /* The input-peak is NOT adjusted with volume, so that the user * can check the input-gain. */ input_peak[channel_nr] = mul_to_db(volmeter->peak[channel_nr]); } pthread_mutex_unlock(&volmeter->mutex); signal_levels_updated(volmeter, magnitude, peak, input_peak); UNUSED_PARAMETER(source); } obs_fader_t *obs_fader_create(enum obs_fader_type type) { struct obs_fader *fader = bzalloc(sizeof(struct obs_fader)); if (!fader) return NULL; pthread_mutex_init_value(&fader->mutex); pthread_mutex_init_value(&fader->callback_mutex); if (pthread_mutex_init(&fader->mutex, NULL) != 0) goto fail; if (pthread_mutex_init(&fader->callback_mutex, NULL) != 0) goto fail; switch (type) { case OBS_FADER_CUBIC: fader->def_to_db = cubic_def_to_db; fader->db_to_def = cubic_db_to_def; fader->max_db = 0.0f; fader->min_db = -INFINITY; break; case OBS_FADER_IEC: fader->def_to_db = iec_def_to_db; fader->db_to_def = iec_db_to_def; fader->max_db = 0.0f; fader->min_db = -INFINITY; break; case OBS_FADER_LOG: fader->def_to_db = log_def_to_db; fader->db_to_def = log_db_to_def; fader->max_db = 0.0f; fader->min_db = -96.0f; break; default: goto fail; break; } fader->type = type; return fader; fail: obs_fader_destroy(fader); return NULL; } void obs_fader_destroy(obs_fader_t *fader) { if (!fader) return; obs_fader_detach_source(fader); da_free(fader->callbacks); pthread_mutex_destroy(&fader->callback_mutex); pthread_mutex_destroy(&fader->mutex); bfree(fader); } bool obs_fader_set_db(obs_fader_t *fader, const float db) { if (!fader) return false; pthread_mutex_lock(&fader->mutex); bool clamped = false; fader->cur_db = db; if (fader->cur_db > fader->max_db) { fader->cur_db = fader->max_db; clamped = true; } if (fader->cur_db < fader->min_db) { fader->cur_db = -INFINITY; clamped = true; } fader->ignore_next_signal = true; obs_source_t *src = fader->source; const float mul = db_to_mul(fader->cur_db); pthread_mutex_unlock(&fader->mutex); if (src) obs_source_set_volume(src, mul); return !clamped; } float obs_fader_get_db(obs_fader_t *fader) { if (!fader) return 0.0f; pthread_mutex_lock(&fader->mutex); const float db = fader->cur_db; pthread_mutex_unlock(&fader->mutex); return db; } bool obs_fader_set_deflection(obs_fader_t *fader, const float def) { if (!fader) return false; return obs_fader_set_db(fader, fader->def_to_db(def)); } float obs_fader_get_deflection(obs_fader_t *fader) { if (!fader) return 0.0f; pthread_mutex_lock(&fader->mutex); const float def = fader->db_to_def(fader->cur_db); pthread_mutex_unlock(&fader->mutex); return def; } bool obs_fader_set_mul(obs_fader_t *fader, const float mul) { if (!fader) return false; return obs_fader_set_db(fader, mul_to_db(mul)); } float obs_fader_get_mul(obs_fader_t *fader) { if (!fader) return 0.0f; pthread_mutex_lock(&fader->mutex); const float mul = db_to_mul(fader->cur_db); pthread_mutex_unlock(&fader->mutex); return mul; } bool obs_fader_attach_source(obs_fader_t *fader, obs_source_t *source) { signal_handler_t *sh; float vol; if (!fader || !source) return false; obs_fader_detach_source(fader); sh = obs_source_get_signal_handler(source); signal_handler_connect(sh, "volume", fader_source_volume_changed, fader); signal_handler_connect(sh, "destroy", fader_source_destroyed, fader); vol = obs_source_get_volume(source); pthread_mutex_lock(&fader->mutex); fader->source = source; fader->cur_db = mul_to_db(vol); pthread_mutex_unlock(&fader->mutex); return true; } void obs_fader_detach_source(obs_fader_t *fader) { signal_handler_t *sh; obs_source_t *source; if (!fader) return; pthread_mutex_lock(&fader->mutex); source = fader->source; fader->source = NULL; pthread_mutex_unlock(&fader->mutex); if (!source) return; sh = obs_source_get_signal_handler(source); signal_handler_disconnect(sh, "volume", fader_source_volume_changed, fader); signal_handler_disconnect(sh, "destroy", fader_source_destroyed, fader); } void obs_fader_add_callback(obs_fader_t *fader, obs_fader_changed_t callback, void *param) { struct fader_cb cb = {callback, param}; if (!obs_ptr_valid(fader, "obs_fader_add_callback")) return; pthread_mutex_lock(&fader->callback_mutex); da_push_back(fader->callbacks, &cb); pthread_mutex_unlock(&fader->callback_mutex); } void obs_fader_remove_callback(obs_fader_t *fader, obs_fader_changed_t callback, void *param) { struct fader_cb cb = {callback, param}; if (!obs_ptr_valid(fader, "obs_fader_remove_callback")) return; pthread_mutex_lock(&fader->callback_mutex); da_erase_item(fader->callbacks, &cb); pthread_mutex_unlock(&fader->callback_mutex); } obs_volmeter_t *obs_volmeter_create(enum obs_fader_type type) { struct obs_volmeter *volmeter = bzalloc(sizeof(struct obs_volmeter)); if (!volmeter) return NULL; pthread_mutex_init_value(&volmeter->mutex); pthread_mutex_init_value(&volmeter->callback_mutex); if (pthread_mutex_init(&volmeter->mutex, NULL) != 0) goto fail; if (pthread_mutex_init(&volmeter->callback_mutex, NULL) != 0) goto fail; volmeter->type = type; return volmeter; fail: obs_volmeter_destroy(volmeter); return NULL; } void obs_volmeter_destroy(obs_volmeter_t *volmeter) { if (!volmeter) return; obs_volmeter_detach_source(volmeter); da_free(volmeter->callbacks); pthread_mutex_destroy(&volmeter->callback_mutex); pthread_mutex_destroy(&volmeter->mutex); bfree(volmeter); } bool obs_volmeter_attach_source(obs_volmeter_t *volmeter, obs_source_t *source) { signal_handler_t *sh; float vol; if (!volmeter || !source) return false; obs_volmeter_detach_source(volmeter); sh = obs_source_get_signal_handler(source); signal_handler_connect(sh, "volume", volmeter_source_volume_changed, volmeter); signal_handler_connect(sh, "destroy", volmeter_source_destroyed, volmeter); obs_source_add_audio_capture_callback( source, volmeter_source_data_received, volmeter); vol = obs_source_get_volume(source); pthread_mutex_lock(&volmeter->mutex); volmeter->source = source; volmeter->cur_db = mul_to_db(vol); pthread_mutex_unlock(&volmeter->mutex); return true; } void obs_volmeter_detach_source(obs_volmeter_t *volmeter) { signal_handler_t *sh; obs_source_t *source; if (!volmeter) return; pthread_mutex_lock(&volmeter->mutex); source = volmeter->source; volmeter->source = NULL; pthread_mutex_unlock(&volmeter->mutex); if (!source) return; sh = obs_source_get_signal_handler(source); signal_handler_disconnect(sh, "volume", volmeter_source_volume_changed, volmeter); signal_handler_disconnect(sh, "destroy", volmeter_source_destroyed, volmeter); obs_source_remove_audio_capture_callback( source, volmeter_source_data_received, volmeter); } void obs_volmeter_set_peak_meter_type(obs_volmeter_t *volmeter, enum obs_peak_meter_type peak_meter_type) { pthread_mutex_lock(&volmeter->mutex); volmeter->peak_meter_type = peak_meter_type; pthread_mutex_unlock(&volmeter->mutex); } void obs_volmeter_set_update_interval(obs_volmeter_t *volmeter, const unsigned int ms) { if (!volmeter || !ms) return; pthread_mutex_lock(&volmeter->mutex); volmeter->update_ms = ms; pthread_mutex_unlock(&volmeter->mutex); } unsigned int obs_volmeter_get_update_interval(obs_volmeter_t *volmeter) { if (!volmeter) return 0; pthread_mutex_lock(&volmeter->mutex); const unsigned int interval = volmeter->update_ms; pthread_mutex_unlock(&volmeter->mutex); return interval; } int obs_volmeter_get_nr_channels(obs_volmeter_t *volmeter) { int source_nr_audio_channels; int obs_nr_audio_channels; if (volmeter->source) { source_nr_audio_channels = get_audio_channels( volmeter->source->sample_info.speakers); } else { source_nr_audio_channels = 1; } struct obs_audio_info audio_info; if (obs_get_audio_info(&audio_info)) { obs_nr_audio_channels = get_audio_channels(audio_info.speakers); } else { obs_nr_audio_channels = 2; } return CLAMP(source_nr_audio_channels, 1, obs_nr_audio_channels); } void obs_volmeter_add_callback(obs_volmeter_t *volmeter, obs_volmeter_updated_t callback, void *param) { struct meter_cb cb = {callback, param}; if (!obs_ptr_valid(volmeter, "obs_volmeter_add_callback")) return; pthread_mutex_lock(&volmeter->callback_mutex); da_push_back(volmeter->callbacks, &cb); pthread_mutex_unlock(&volmeter->callback_mutex); } void obs_volmeter_remove_callback(obs_volmeter_t *volmeter, obs_volmeter_updated_t callback, void *param) { struct meter_cb cb = {callback, param}; if (!obs_ptr_valid(volmeter, "obs_volmeter_remove_callback")) return; pthread_mutex_lock(&volmeter->callback_mutex); da_erase_item(volmeter->callbacks, &cb); pthread_mutex_unlock(&volmeter->callback_mutex); } float obs_mul_to_db(float mul) { return mul_to_db(mul); } float obs_db_to_mul(float db) { return db_to_mul(db); }