/****************************************************************************** Copyright (C) 2013 by Hugh Bailey Copyright (C) 2014 by Zachary Lund This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ******************************************************************************/ #include #include "gl-subsystem.h" /* Goofy Windows.h macros need to be removed */ #undef far #undef near #ifdef _DEBUG /* Tables for OpenGL debug */ static const char* debug_source_table[] = { "API", "Window System", "Shader Compiler", "Third Party" "Application", "Other" }; static const char* debug_type_table[] = { "Error", "Deprecated Behavior", "Undefined Behavior", "Portability", "Performance", "Other" }; static const char* debug_severity_table[] = { "High", "Medium", "Low" }; /* ARB and core values are the same. They'll always be linear so no hardcoding. * The values subtracted are the lowest value in the list of valid values. */ #define GL_DEBUG_SOURCE_OFFSET(x) (x - GL_DEBUG_SOURCE_API_ARB) #define GL_DEBUG_TYPE_OFFSET(x) (x - GL_DEBUG_TYPE_ERROR_ARB) #define GL_DEBUG_SEVERITY_OFFSET(x) (x - GL_DEBUG_SEVERITY_HIGH_ARB) static void APIENTRY gl_debug_proc( GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *message, const GLvoid *data ) { UNUSED_PARAMETER(id); UNUSED_PARAMETER(data); blog( LOG_DEBUG, "[%s][%s]{%s}: %.*s", debug_source_table[GL_DEBUG_SOURCE_OFFSET(source)], debug_type_table[GL_DEBUG_TYPE_OFFSET(type)], debug_severity_table[GL_DEBUG_SEVERITY_OFFSET(severity)], length, message ); } static void gl_enable_debug() { if (GLAD_GL_VERSION_4_3) { glDebugMessageCallback(gl_debug_proc, NULL); gl_enable(GL_DEBUG_OUTPUT); } else if (GLAD_GL_ARB_debug_output) { glDebugMessageCallbackARB(gl_debug_proc, NULL); } else { blog(LOG_DEBUG, "Failed to set GL debug callback as it is " "not supported."); } } #else static void gl_enable_debug() {} #endif static bool gl_init_extensions(struct gs_device* device) { if (!GLAD_GL_VERSION_2_1) { blog(LOG_ERROR, "obs-studio requires OpenGL version 2.1 or " "higher."); return false; } gl_enable_debug(); if (!GLAD_GL_VERSION_3_0 && !GLAD_GL_ARB_framebuffer_object) { blog(LOG_ERROR, "OpenGL extension ARB_framebuffer_object " "is required."); return false; } if (GLAD_GL_VERSION_3_2 || GLAD_GL_ARB_seamless_cube_map) { gl_enable(GL_TEXTURE_CUBE_MAP_SEAMLESS); } if (!GLAD_GL_VERSION_4_1 && !GLAD_GL_ARB_separate_shader_objects) { blog(LOG_ERROR, "OpenGL extension ARB_separate_shader_objects " "is required."); return false; } if (GLAD_GL_VERSION_4_3 || GLAD_GL_ARB_copy_image) device->copy_type = COPY_TYPE_ARB; else if (GLAD_GL_NV_copy_image) device->copy_type = COPY_TYPE_NV; else device->copy_type = COPY_TYPE_FBO_BLIT; return true; } static void clear_textures(struct gs_device *device) { GLenum i; for (i = 0; i < GS_MAX_TEXTURES; i++) { if (device->cur_textures[i]) { gl_active_texture(GL_TEXTURE0 + i); gl_bind_texture(device->cur_textures[i]->gl_target, 0); device->cur_textures[i] = NULL; } } } void convert_sampler_info(struct gs_sampler_state *sampler, struct gs_sampler_info *info) { GLint max_anisotropy_max; convert_filter(info->filter, &sampler->min_filter, &sampler->mag_filter); sampler->address_u = convert_address_mode(info->address_u); sampler->address_v = convert_address_mode(info->address_v); sampler->address_w = convert_address_mode(info->address_w); sampler->max_anisotropy = info->max_anisotropy; max_anisotropy_max = 1; glGetIntegerv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &max_anisotropy_max); gl_success("glGetIntegerv(GL_MAX_TEXTURE_ANISOTROPY_MAX)"); if (1 <= sampler->max_anisotropy && sampler->max_anisotropy <= max_anisotropy_max) return; if (sampler->max_anisotropy < 1) sampler->max_anisotropy = 1; else if (sampler->max_anisotropy > max_anisotropy_max) sampler->max_anisotropy = max_anisotropy_max; blog(LOG_INFO, "convert_sampler_info: 1 <= max_anisotropy <= " "%d violated, selected: %d, set: %d", max_anisotropy_max, info->max_anisotropy, sampler->max_anisotropy); } const char *device_preprocessor_name(void) { return "_OPENGL"; } device_t device_create(struct gs_init_data *info) { struct gs_device *device = bzalloc(sizeof(struct gs_device)); device->plat = gl_platform_create(device, info); if (!device->plat) goto fail; if (!gl_init_extensions(device)) goto fail; gl_enable(GL_CULL_FACE); glGenProgramPipelines(1, &device->pipeline); if (!gl_success("glGenProgramPipelines")) goto fail; glBindProgramPipeline(device->pipeline); if (!gl_success("glBindProgramPipeline")) goto fail; device_leavecontext(device); device->cur_swap = gl_platform_getswap(device->plat); return device; fail: blog(LOG_ERROR, "device_create (GL) failed"); bfree(device); return NULL; } void device_destroy(device_t device) { if (device) { size_t i; for (i = 0; i < device->fbos.num; i++) fbo_info_destroy(device->fbos.array[i]); if (device->pipeline) glDeleteProgramPipelines(1, &device->pipeline); da_free(device->proj_stack); da_free(device->fbos); gl_platform_destroy(device->plat); bfree(device); } } swapchain_t device_create_swapchain(device_t device, struct gs_init_data *info) { struct gs_swap_chain *swap = bzalloc(sizeof(struct gs_swap_chain)); swap->device = device; swap->info = *info; swap->wi = gl_windowinfo_create(info); if (!swap->wi) { blog(LOG_ERROR, "device_create_swapchain (GL) failed"); swapchain_destroy(swap); return NULL; } if (!gl_platform_init_swapchain(swap)) { blog(LOG_ERROR, "gl_platform_init_swapchain failed"); swapchain_destroy(swap); return NULL; } return swap; } void device_resize(device_t device, uint32_t cx, uint32_t cy) { /* GL automatically resizes the device, so it doesn't do much */ device->cur_swap->info.cx = cx; device->cur_swap->info.cy = cy; gl_update(device); } void device_getsize(device_t device, uint32_t *cx, uint32_t *cy) { *cx = device->cur_swap->info.cx; *cy = device->cur_swap->info.cy; } uint32_t device_getwidth(device_t device) { return device->cur_swap->info.cx; } uint32_t device_getheight(device_t device) { return device->cur_swap->info.cy; } texture_t device_create_volumetexture(device_t device, uint32_t width, uint32_t height, uint32_t depth, enum gs_color_format color_format, uint32_t levels, const uint8_t **data, uint32_t flags) { /* TODO */ UNUSED_PARAMETER(device); UNUSED_PARAMETER(width); UNUSED_PARAMETER(height); UNUSED_PARAMETER(depth); UNUSED_PARAMETER(color_format); UNUSED_PARAMETER(levels); UNUSED_PARAMETER(data); UNUSED_PARAMETER(flags); return NULL; } samplerstate_t device_create_samplerstate(device_t device, struct gs_sampler_info *info) { struct gs_sampler_state *sampler; sampler = bzalloc(sizeof(struct gs_sampler_state)); sampler->device = device; sampler->ref = 1; convert_sampler_info(sampler, info); return sampler; } enum gs_texture_type device_gettexturetype(texture_t texture) { return texture->type; } static void strip_mipmap_filter(GLint *filter) { switch (*filter) { case GL_NEAREST: case GL_LINEAR: return; case GL_NEAREST_MIPMAP_NEAREST: case GL_NEAREST_MIPMAP_LINEAR: *filter = GL_NEAREST; return; case GL_LINEAR_MIPMAP_NEAREST: case GL_LINEAR_MIPMAP_LINEAR: *filter = GL_LINEAR; return; } *filter = GL_NEAREST; } static inline void apply_swizzle(struct gs_texture *tex) { if (tex->format == GS_A8) { gl_tex_param_i(tex->gl_target, GL_TEXTURE_SWIZZLE_R, GL_ONE); gl_tex_param_i(tex->gl_target, GL_TEXTURE_SWIZZLE_G, GL_ONE); gl_tex_param_i(tex->gl_target, GL_TEXTURE_SWIZZLE_B, GL_ONE); gl_tex_param_i(tex->gl_target, GL_TEXTURE_SWIZZLE_A, GL_RED); } } static bool load_texture_sampler(texture_t tex, samplerstate_t ss) { bool success = true; GLint min_filter; if (tex->cur_sampler == ss) return true; if (tex->cur_sampler) samplerstate_release(tex->cur_sampler); tex->cur_sampler = ss; if (!ss) return true; samplerstate_addref(ss); min_filter = ss->min_filter; if (texture_isrect(tex)) strip_mipmap_filter(&min_filter); if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_MIN_FILTER, min_filter)) success = false; if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_MAG_FILTER, ss->mag_filter)) success = false; if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_WRAP_S, ss->address_u)) success = false; if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_WRAP_T, ss->address_v)) success = false; if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_WRAP_R, ss->address_w)) success = false; if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_MAX_ANISOTROPY_EXT, ss->max_anisotropy)) success = false; apply_swizzle(tex); return success; } static inline struct shader_param *get_texture_param(device_t device, int unit) { struct gs_shader *shader = device->cur_pixel_shader; size_t i; for (i = 0; i < shader->params.num; i++) { struct shader_param *param = shader->params.array+i; if (param->type == SHADER_PARAM_TEXTURE) { if (param->texture_id == unit) return param; } } return NULL; } void device_load_texture(device_t device, texture_t tex, int unit) { struct shader_param *param; struct gs_sampler_state *sampler; struct gs_texture *cur_tex = device->cur_textures[unit]; /* need a pixel shader to properly bind textures */ if (!device->cur_pixel_shader) tex = NULL; if (cur_tex == tex) return; if (!gl_active_texture(GL_TEXTURE0 + unit)) goto fail; /* the target for the previous text may not be the same as the * next texture, so unbind the previous texture first to be safe */ if (cur_tex && (!tex || cur_tex->gl_target != tex->gl_target)) gl_bind_texture(cur_tex->gl_target, 0); device->cur_textures[unit] = tex; param = get_texture_param(device, unit); if (!param) return; param->texture = tex; if (!tex) return; sampler = device->cur_samplers[param->sampler_id]; if (!gl_bind_texture(tex->gl_target, tex->texture)) goto fail; if (sampler && !load_texture_sampler(tex, sampler)) goto fail; return; fail: blog(LOG_ERROR, "device_load_texture (GL) failed"); } static bool load_sampler_on_textures(device_t device, samplerstate_t ss, int sampler_unit) { struct gs_shader *shader = device->cur_pixel_shader; size_t i; for (i = 0; i < shader->params.num; i++) { struct shader_param *param = shader->params.array+i; if (param->type == SHADER_PARAM_TEXTURE && param->sampler_id == (uint32_t)sampler_unit && param->texture) { if (!gl_active_texture(GL_TEXTURE0 + param->texture_id)) return false; if (!load_texture_sampler(param->texture, ss)) return false; } } return true; } void device_load_samplerstate(device_t device, samplerstate_t ss, int unit) { /* need a pixel shader to properly bind samplers */ if (!device->cur_pixel_shader) ss = NULL; if (device->cur_samplers[unit] == ss) return; device->cur_samplers[unit] = ss; if (!ss) return; if (!load_sampler_on_textures(device, ss, unit)) blog(LOG_ERROR, "device_load_samplerstate (GL) failed"); return; } void device_load_vertexshader(device_t device, shader_t vertshader) { GLuint program = 0; vertbuffer_t cur_vb = device->cur_vertex_buffer; if (device->cur_vertex_shader == vertshader) return; if (vertshader && vertshader->type != SHADER_VERTEX) { blog(LOG_ERROR, "Specified shader is not a vertex shader"); goto fail; } /* unload and reload the vertex buffer to sync the buffers up with * the specific shader */ if (cur_vb && !vertexbuffer_load(device, NULL)) goto fail; device->cur_vertex_shader = vertshader; if (vertshader) program = vertshader->program; glUseProgramStages(device->pipeline, GL_VERTEX_SHADER_BIT, program); if (!gl_success("glUseProgramStages")) goto fail; if (cur_vb && !vertexbuffer_load(device, cur_vb)) goto fail; return; fail: blog(LOG_ERROR, "device_load_vertexshader (GL) failed"); } static void load_default_pixelshader_samplers(struct gs_device *device, struct gs_shader *ps) { size_t i; if (!ps) return; for (i = 0; i < ps->samplers.num; i++) { struct gs_sampler_state *ss = ps->samplers.array[i]; device->cur_samplers[i] = ss; } for (; i < GS_MAX_TEXTURES; i++) device->cur_samplers[i] = NULL; } void device_load_pixelshader(device_t device, shader_t pixelshader) { GLuint program = 0; if (device->cur_pixel_shader == pixelshader) return; if (pixelshader && pixelshader->type != SHADER_PIXEL) { blog(LOG_ERROR, "Specified shader is not a pixel shader"); goto fail; } device->cur_pixel_shader = pixelshader; if (pixelshader) program = pixelshader->program; glUseProgramStages(device->pipeline, GL_FRAGMENT_SHADER_BIT, program); if (!gl_success("glUseProgramStages")) goto fail; clear_textures(device); if (pixelshader) load_default_pixelshader_samplers(device, pixelshader); return; fail: blog(LOG_ERROR, "device_load_pixelshader (GL) failed"); } void device_load_defaultsamplerstate(device_t device, bool b_3d, int unit) { /* TODO */ UNUSED_PARAMETER(device); UNUSED_PARAMETER(b_3d); UNUSED_PARAMETER(unit); } shader_t device_getvertexshader(device_t device) { return device->cur_vertex_shader; } shader_t device_getpixelshader(device_t device) { return device->cur_pixel_shader; } texture_t device_getrendertarget(device_t device) { return device->cur_render_target; } zstencil_t device_getzstenciltarget(device_t device) { return device->cur_zstencil_buffer; } static bool get_tex_dimensions(texture_t tex, uint32_t *width, uint32_t *height) { if (tex->type == GS_TEXTURE_2D) { struct gs_texture_2d *tex2d = (struct gs_texture_2d*)tex; *width = tex2d->width; *height = tex2d->height; return true; } else if (tex->type == GS_TEXTURE_CUBE) { struct gs_texture_cube *cube = (struct gs_texture_cube*)tex; *width = cube->size; *height = cube->size; return true; } blog(LOG_ERROR, "Texture must be 2D or cubemap"); return false; } /* * This automatically manages FBOs so that render targets are always given * an FBO that matches their width/height/format to maximize optimization */ struct fbo_info *get_fbo(struct gs_device *device, uint32_t width, uint32_t height, enum gs_color_format format) { size_t i; GLuint fbo; struct fbo_info *ptr; for (i = 0; i < device->fbos.num; i++) { ptr = device->fbos.array[i]; if (ptr->width == width && ptr->height == height && ptr->format == format) return ptr; } glGenFramebuffers(1, &fbo); if (!gl_success("glGenFramebuffers")) return NULL; ptr = bmalloc(sizeof(struct fbo_info)); ptr->fbo = fbo; ptr->width = width; ptr->height = height; ptr->format = format; ptr->cur_render_target = NULL; ptr->cur_render_side = 0; ptr->cur_zstencil_buffer = NULL; da_push_back(device->fbos, &ptr); return ptr; } static inline struct fbo_info *get_fbo_by_tex(struct gs_device *device, texture_t tex) { uint32_t width, height; if (!get_tex_dimensions(tex, &width, &height)) return NULL; return get_fbo(device, width, height, tex->format); } static bool set_current_fbo(device_t device, struct fbo_info *fbo) { if (device->cur_fbo != fbo) { GLuint fbo_obj = fbo ? fbo->fbo : 0; if (!gl_bind_framebuffer(GL_DRAW_FRAMEBUFFER, fbo_obj)) return false; } device->cur_fbo = fbo; return true; } static bool attach_rendertarget(struct fbo_info *fbo, texture_t tex, int side) { if (fbo->cur_render_target == tex) return true; fbo->cur_render_target = tex; if (tex->type == GS_TEXTURE_2D) { glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tex->texture, 0); } else if (tex->type == GS_TEXTURE_CUBE) { glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + side, tex->texture, 0); } else { return false; } return gl_success("glFramebufferTexture2D"); } static bool attach_zstencil(struct fbo_info *fbo, zstencil_t zs) { GLuint zsbuffer = 0; GLenum zs_attachment = GL_DEPTH_STENCIL_ATTACHMENT; if (fbo->cur_zstencil_buffer == zs) return true; fbo->cur_zstencil_buffer = zs; if (zs) { zsbuffer = zs->buffer; zs_attachment = zs->attachment; } glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, zs_attachment, GL_RENDERBUFFER, zsbuffer); if (!gl_success("glFramebufferRenderbuffer")) return false; return true; } static bool set_target(device_t device, texture_t tex, int side, zstencil_t zs) { struct fbo_info *fbo; if (device->cur_render_target == tex && device->cur_zstencil_buffer == zs && device->cur_render_side == side) return true; device->cur_render_target = tex; device->cur_render_side = side; device->cur_zstencil_buffer = zs; if (!tex) return set_current_fbo(device, NULL); fbo = get_fbo_by_tex(device, tex); if (!fbo) return false; set_current_fbo(device, fbo); if (!attach_rendertarget(fbo, tex, side)) return false; if (!attach_zstencil(fbo, zs)) return false; return true; } void device_setrendertarget(device_t device, texture_t tex, zstencil_t zstencil) { if (tex) { if (tex->type != GS_TEXTURE_2D) { blog(LOG_ERROR, "Texture is not a 2D texture"); goto fail; } if (!tex->is_render_target) { blog(LOG_ERROR, "Texture is not a render target"); goto fail; } } if (!set_target(device, tex, 0, zstencil)) goto fail; return; fail: blog(LOG_ERROR, "device_setrendertarget (GL) failed"); } void device_setcuberendertarget(device_t device, texture_t cubetex, int side, zstencil_t zstencil) { if (cubetex) { if (cubetex->type != GS_TEXTURE_CUBE) { blog(LOG_ERROR, "Texture is not a cube texture"); goto fail; } if (!cubetex->is_render_target) { blog(LOG_ERROR, "Texture is not a render target"); goto fail; } } if (!set_target(device, cubetex, side, zstencil)) goto fail; return; fail: blog(LOG_ERROR, "device_setcuberendertarget (GL) failed"); } void device_copy_texture_region(device_t device, texture_t dst, uint32_t dst_x, uint32_t dst_y, texture_t src, uint32_t src_x, uint32_t src_y, uint32_t src_w, uint32_t src_h) { struct gs_texture_2d *src2d = (struct gs_texture_2d*)src; struct gs_texture_2d *dst2d = (struct gs_texture_2d*)dst; if (!src) { blog(LOG_ERROR, "Source texture is NULL"); goto fail; } if (!dst) { blog(LOG_ERROR, "Destination texture is NULL"); goto fail; } if (dst->type != GS_TEXTURE_2D || src->type != GS_TEXTURE_2D) { blog(LOG_ERROR, "Source and destination textures must be 2D " "textures"); goto fail; } if (dst->format != src->format) { blog(LOG_ERROR, "Source and destination formats do not match"); goto fail; } uint32_t nw = (uint32_t)src_w ? (uint32_t)src_w : (src2d->width - src_x); uint32_t nh = (uint32_t)src_h ? (uint32_t)src_h : (src2d->height - src_y); if (dst2d->width - dst_x < nw || dst2d->height - dst_y < nh) { blog(LOG_ERROR, "Destination texture region is not big " "enough to hold the source region"); goto fail; } if (!gl_copy_texture(device, dst->texture, dst->gl_target, dst_x, dst_y, src->texture, src->gl_target, src_x, src_y, nw, nh, src->format)) goto fail; return; fail: blog(LOG_ERROR, "device_copy_texture (GL) failed"); } void device_copy_texture(device_t device, texture_t dst, texture_t src) { device_copy_texture_region(device, dst, 0, 0, src, 0, 0, 0, 0); } void device_beginscene(device_t device) { clear_textures(device); } static inline bool can_render(device_t device) { if (!device->cur_vertex_shader) { blog(LOG_ERROR, "No vertex shader specified"); return false; } if (!device->cur_pixel_shader) { blog(LOG_ERROR, "No pixel shader specified"); return false; } if (!device->cur_vertex_buffer) { blog(LOG_ERROR, "No vertex buffer specified"); return false; } return true; } static void update_viewproj_matrix(struct gs_device *device) { struct gs_shader *vs = device->cur_vertex_shader; gs_matrix_get(&device->cur_view); matrix4_mul(&device->cur_viewproj, &device->cur_view, &device->cur_proj); matrix4_transpose(&device->cur_viewproj, &device->cur_viewproj); if (vs->viewproj) shader_setmatrix4(vs->viewproj, &device->cur_viewproj); } static inline bool check_shader_pipeline_validity(device_t device) { int valid = false; glValidateProgramPipeline(device->pipeline); if (!gl_success("glValidateProgramPipeline")) return false; glGetProgramPipelineiv(device->pipeline, GL_VALIDATE_STATUS, &valid); if (!gl_success("glGetProgramPipelineiv")) return false; if (!valid) blog(LOG_ERROR, "Shader pipeline appears to be invalid"); return valid != 0; } void device_draw(device_t device, enum gs_draw_mode draw_mode, uint32_t start_vert, uint32_t num_verts) { struct gs_index_buffer *ib = device->cur_index_buffer; GLenum topology = convert_gs_topology(draw_mode); effect_t effect = gs_geteffect(); if (!can_render(device)) goto fail; if (effect) effect_updateparams(effect); shader_update_textures(device->cur_pixel_shader); update_viewproj_matrix(device); #ifdef _DEBUG if (!check_shader_pipeline_validity(device)) goto fail; #endif if (ib) { if (num_verts == 0) num_verts = (uint32_t)device->cur_index_buffer->num; glDrawElements(topology, num_verts, ib->gl_type, (const GLvoid*)(start_vert * ib->width)); if (!gl_success("glDrawElements")) goto fail; } else { if (num_verts == 0) num_verts = (uint32_t)device->cur_vertex_buffer->num; glDrawArrays(topology, start_vert, num_verts); if (!gl_success("glDrawArrays")) goto fail; } return; fail: blog(LOG_ERROR, "device_draw (GL) failed"); } void device_endscene(device_t device) { /* does nothing */ UNUSED_PARAMETER(device); } void device_clear(device_t device, uint32_t clear_flags, struct vec4 *color, float depth, uint8_t stencil) { GLbitfield gl_flags = 0; if (clear_flags & GS_CLEAR_COLOR) { glClearColor(color->x, color->y, color->z, color->w); gl_flags |= GL_COLOR_BUFFER_BIT; } if (clear_flags & GS_CLEAR_DEPTH) { glClearDepth(depth); gl_flags |= GL_DEPTH_BUFFER_BIT; } if (clear_flags & GS_CLEAR_STENCIL) { glClearStencil(stencil); gl_flags |= GL_STENCIL_BUFFER_BIT; } glClear(gl_flags); if (!gl_success("glClear")) blog(LOG_ERROR, "device_clear (GL) failed"); UNUSED_PARAMETER(device); } void device_flush(device_t device) { glFlush(); UNUSED_PARAMETER(device); } void device_setcullmode(device_t device, enum gs_cull_mode mode) { if (device->cur_cull_mode == mode) return; if (device->cur_cull_mode == GS_NEITHER) gl_enable(GL_CULL_FACE); device->cur_cull_mode = mode; if (mode == GS_BACK) gl_cull_face(GL_BACK); else if (mode == GS_FRONT) gl_cull_face(GL_FRONT); else gl_disable(GL_CULL_FACE); } enum gs_cull_mode device_getcullmode(device_t device) { return device->cur_cull_mode; } void device_enable_blending(device_t device, bool enable) { if (enable) gl_enable(GL_BLEND); else gl_disable(GL_BLEND); UNUSED_PARAMETER(device); } void device_enable_depthtest(device_t device, bool enable) { if (enable) gl_enable(GL_DEPTH_TEST); else gl_disable(GL_DEPTH_TEST); UNUSED_PARAMETER(device); } void device_enable_stenciltest(device_t device, bool enable) { if (enable) gl_enable(GL_STENCIL_TEST); else gl_disable(GL_STENCIL_TEST); UNUSED_PARAMETER(device); } void device_enable_stencilwrite(device_t device, bool enable) { if (enable) glStencilMask(0xFFFFFFFF); else glStencilMask(0); UNUSED_PARAMETER(device); } void device_enable_color(device_t device, bool red, bool green, bool blue, bool alpha) { glColorMask(red, green, blue, alpha); UNUSED_PARAMETER(device); } void device_blendfunction(device_t device, enum gs_blend_type src, enum gs_blend_type dest) { GLenum gl_src = convert_gs_blend_type(src); GLenum gl_dst = convert_gs_blend_type(dest); glBlendFunc(gl_src, gl_dst); if (!gl_success("glBlendFunc")) blog(LOG_ERROR, "device_blendfunction (GL) failed"); UNUSED_PARAMETER(device); } void device_depthfunction(device_t device, enum gs_depth_test test) { GLenum gl_test = convert_gs_depth_test(test); glDepthFunc(gl_test); if (!gl_success("glDepthFunc")) blog(LOG_ERROR, "device_depthfunction (GL) failed"); UNUSED_PARAMETER(device); } void device_stencilfunction(device_t device, enum gs_stencil_side side, enum gs_depth_test test) { GLenum gl_side = convert_gs_stencil_side(side); GLenum gl_test = convert_gs_depth_test(test); glStencilFuncSeparate(gl_side, gl_test, 0, 0xFFFFFFFF); if (!gl_success("glStencilFuncSeparate")) blog(LOG_ERROR, "device_stencilfunction (GL) failed"); UNUSED_PARAMETER(device); } void device_stencilop(device_t device, enum gs_stencil_side side, enum gs_stencil_op fail, enum gs_stencil_op zfail, enum gs_stencil_op zpass) { GLenum gl_side = convert_gs_stencil_side(side); GLenum gl_fail = convert_gs_stencil_op(fail); GLenum gl_zfail = convert_gs_stencil_op(zfail); GLenum gl_zpass = convert_gs_stencil_op(zpass); glStencilOpSeparate(gl_side, gl_fail, gl_zfail, gl_zpass); if (!gl_success("glStencilOpSeparate")) blog(LOG_ERROR, "device_stencilop (GL) failed"); UNUSED_PARAMETER(device); } static inline uint32_t get_target_height(struct gs_device *device) { if (!device->cur_render_target) return device_getheight(device); if (device->cur_render_target->type == GS_TEXTURE_2D) return texture_getheight(device->cur_render_target); else /* cube map */ return cubetexture_getsize(device->cur_render_target); } void device_setviewport(device_t device, int x, int y, int width, int height) { uint32_t base_height; /* GL uses bottom-up coordinates for viewports. We want top-down */ if (device->cur_render_target) { base_height = get_target_height(device); } else { uint32_t dw; gl_getclientsize(device->cur_swap, &dw, &base_height); } glViewport(x, base_height - y - height, width, height); if (!gl_success("glViewport")) blog(LOG_ERROR, "device_setviewport (GL) failed"); device->cur_viewport.x = x; device->cur_viewport.y = y; device->cur_viewport.cx = width; device->cur_viewport.cy = height; } void device_getviewport(device_t device, struct gs_rect *rect) { *rect = device->cur_viewport; } void device_setscissorrect(device_t device, struct gs_rect *rect) { UNUSED_PARAMETER(device); if (rect != NULL) { glScissor(rect->x, rect->y, rect->cx, rect->cy); if (gl_success("glScissor") && gl_enable(GL_SCISSOR_TEST)) return; } else if (gl_disable(GL_SCISSOR_TEST)) { return; } blog(LOG_ERROR, "device_setscissorrect (GL) failed"); } void device_ortho(device_t device, float left, float right, float top, float bottom, float near, float far) { struct matrix4 *dst = &device->cur_proj; float rml = right-left; float bmt = bottom-top; float fmn = far-near; vec4_zero(&dst->x); vec4_zero(&dst->y); vec4_zero(&dst->z); vec4_zero(&dst->t); dst->x.x = 2.0f / rml; dst->t.x = (left+right) / -rml; dst->y.y = 2.0f / -bmt; dst->t.y = (bottom+top) / bmt; dst->z.z = -2.0f / fmn; dst->t.z = (far+near) / -fmn; dst->t.w = 1.0f; } void device_frustum(device_t device, float left, float right, float top, float bottom, float near, float far) { struct matrix4 *dst = &device->cur_proj; float rml = right-left; float tmb = top-bottom; float nmf = near-far; float nearx2 = 2.0f*near; vec4_zero(&dst->x); vec4_zero(&dst->y); vec4_zero(&dst->z); vec4_zero(&dst->t); dst->x.x = nearx2 / rml; dst->z.x = (left+right) / rml; dst->y.y = nearx2 / tmb; dst->z.y = (bottom+top) / tmb; dst->z.z = (far+near) / nmf; dst->t.z = 2.0f * (near*far) / nmf; dst->z.w = -1.0f; } void device_projection_push(device_t device) { da_push_back(device->proj_stack, &device->cur_proj); } void device_projection_pop(device_t device) { struct matrix4 *end; if (!device->proj_stack.num) return; end = da_end(device->proj_stack); device->cur_proj = *end; da_pop_back(device->proj_stack); } void swapchain_destroy(swapchain_t swapchain) { if (!swapchain) return; if (swapchain->device->cur_swap == swapchain) device_load_swapchain(swapchain->device, NULL); gl_platform_cleanup_swapchain(swapchain); gl_windowinfo_destroy(swapchain->wi); bfree(swapchain); } void volumetexture_destroy(texture_t voltex) { /* TODO */ UNUSED_PARAMETER(voltex); } uint32_t volumetexture_getwidth(texture_t voltex) { /* TODO */ UNUSED_PARAMETER(voltex); return 0; } uint32_t volumetexture_getheight(texture_t voltex) { /* TODO */ UNUSED_PARAMETER(voltex); return 0; } uint32_t volumetexture_getdepth(texture_t voltex) { /* TODO */ UNUSED_PARAMETER(voltex); return 0; } enum gs_color_format volumetexture_getcolorformat(texture_t voltex) { /* TODO */ UNUSED_PARAMETER(voltex); return GS_UNKNOWN; } void samplerstate_destroy(samplerstate_t samplerstate) { if (!samplerstate) return; if (samplerstate->device) for (int i = 0; i < GS_MAX_TEXTURES; i++) if (samplerstate->device->cur_samplers[i] == samplerstate) samplerstate->device->cur_samplers[i] = NULL; samplerstate_release(samplerstate); }