--[[ Copyright (c) 2014 Team Sparkle Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ]] EPSILON = 1 / 1024.0 / 1024.0 / 1024.0 / 1024.0 / 1024.0 function vec(x, y, z, w) return { x = x or 0.0, y = y or 0.0, z = z or 0.0, w = w or 0.0, } end function devec2(v) return v.x, v.y end function devec3(v) return v.x, v.y, v.z end function devec4(v) return v.x, v.y, v.z, v.w end function dupv(v) return { x = v.x, y = v.y, z = v.z, w = v.w, } end function stripw(v) return { x = v.x, y = v.y, z = v.z, w = 0.0, } end function mat3(a, b, c) return { stripw(a or vec(1,0,0,0)), stripw(b or vec(0,1,0,0)), stripw(c or vec(0,0,1,0)), vec(0,0,0,1), } end function mat4(a, b, c, d) return { a or vec(1,0,0,0), b or vec(0,1,0,0), c or vec(0,0,1,0), d or vec(0,0,0,1), } end function iden() return mat() end function add_vv(v1, v2) return { x = v1.x + v2.x, y = v1.y + v2.y, z = v1.z + v2.z, w = v1.w + v2.w, } end function sub_vv(v1, v2) return { x = v1.x - v2.x, y = v1.y - v2.y, z = v1.z - v2.z, w = v1.w - v2.w, } end function mul_cv(c, v) return { x = c * v.x, y = c * v.y, z = c * v.z, w = c * v.w, } end function mul_vv(v1, v2) return { x = v1.x * v2.x, y = v1.y * v2.y, z = v1.z * v2.z, w = v1.w * v2.w, } end function div_vv(v1, v2) return { x = v1.x / v2.x, y = v1.y / v2.y, z = v1.z / v2.z, w = v1.w / v2.w, } end function mul_mv(m, v) return add_vv( add_vv( mul_cv(v.x, m[1]), mul_cv(v.y, m[2]) ), add_vv( mul_cv(v.z, m[3]), mul_cv(v.w, m[4]) ) ) end function cross(v1, v2) return { x = v1.y*v2.z - v1.z*v2.y, y = v1.z*v2.x - v1.x*v2.z, z = v1.x*v2.y - v1.y*v2.x, w = (v1.w + v2.w)/2, } end function dot2(v1, v2) return 0.0 + v1.x*v2.x + v1.y*v2.y end function dot3(v1, v2) return 0.0 + v1.x*v2.x + v1.y*v2.y + v1.z*v2.z end function dot4(v1, v2) return 0.0 + v1.x*v2.x + v1.y*v2.y + v1.z*v2.z + v1.w*v2.w end function mapv(f, v) return { x = f(v.x), y = f(v.y), z = f(v.z), w = f(v.w), } end function mapvv(f, v1, v2) return { x = f(v1.x, v2.x), y = f(v1.y, v2.y), z = f(v1.z, v2.z), w = f(v1.w, v2.w), } end function blendv(f, vs, vt, vf) return { x = (f(vs.x) and vt.x) or vf.x, y = (f(vs.y) and vt.y) or vf.y, z = (f(vs.z) and vt.z) or vf.z, w = (f(vs.w) and vt.w) or vf.w, } end function len2(v) return math.sqrt(dot2(v, v)) end function len3(v) return math.sqrt(dot3(v, v)) end function len4(v) return math.sqrt(dot4(v, v)) end function norm2(v) return mul_cv(1.0 / len2(v), v) end function norm3(v) return mul_cv(1.0 / len3(v), v) end function norm4(v) return mul_cv(1.0 / len4(v), v) end function absv(v) return { x = math.abs(v.x), y = math.abs(v.y), z = math.abs(v.z), w = math.abs(v.w), } end function signv(v) -- The nice thing about this is that w stays the same when 1 or 0. return { x = (v.x <= -EPSILON and -1) or (v.x >= EPSILON and 1) or 0, y = (v.y <= -EPSILON and -1) or (v.y >= EPSILON and 1) or 0, z = (v.z <= -EPSILON and -1) or (v.z >= EPSILON and 1) or 0, w = (v.w <= -EPSILON and -1) or (v.w >= EPSILON and 1) or 0, } end function signhardv(v) -- I refuse to put a hard sign on w. w should always be 1 or 0, anyway. return { x = (v.x < 0 and -1) or 1, y = (v.y < 0 and -1) or 1, z = (v.z < 0 and -1) or 1, w = (v.w <= -EPSILON and -1) or (v.w >= EPSILON and 1) or 0, } end function floorv(v) return { x = math.floor(v.x), y = math.floor(v.y), z = math.floor(v.z), w = math.floor(v.w), } end function homog(v) if math.abs(v.w) < EPSILON then return v end return { x = v.x / v.w, y = v.y / v.w, z = v.z / v.w, w = 1, } end function ftzv(v, strength) strength = strength or 1 return mapv(function (c) return ((c > -strength*EPSILON and c < strength*EPSILON) and 0) or c end, v) end