// Copyright (C) 2002-2007 Nikolaus Gebhardt / Thomas Alten // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "IrrCompileConfig.h" #include "IBurningShader.h" #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ // compile flag for this file #undef USE_ZBUFFER #undef IPOL_Z #undef CMP_Z #undef WRITE_Z #undef IPOL_W #undef CMP_W #undef WRITE_W #undef SUBTEXEL #undef INVERSE_W #undef IPOL_C0 #undef IPOL_T0 #undef IPOL_T1 // define render case #define SUBTEXEL #define INVERSE_W #define USE_ZBUFFER #define IPOL_W #define CMP_W #define WRITE_W #define IPOL_C0 //#define IPOL_T0 //#define IPOL_T1 // apply global override #ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT #undef INVERSE_W #endif #ifndef SOFTWARE_DRIVER_2_SUBTEXEL #undef SUBTEXEL #endif #ifndef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR #undef IPOL_C0 #endif #if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER ) #ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT #undef IPOL_W #endif #define IPOL_Z #ifdef CMP_W #undef CMP_W #define CMP_Z #endif #ifdef WRITE_W #undef WRITE_W #define WRITE_Z #endif #endif namespace irr { namespace video { class CTRGouraud2 : public IBurningShader { public: //! constructor CTRGouraud2(IDepthBuffer* zbuffer); //! draws an indexed triangle list virtual void drawTriangle ( const s4DVertex *a,const s4DVertex *b,const s4DVertex *c ); private: void scanline_bilinear (); sScanConvertData scan; sScanLineData line; }; //! constructor CTRGouraud2::CTRGouraud2(IDepthBuffer* zbuffer) : IBurningShader(zbuffer) { #ifdef _DEBUG setDebugName("CTRGouraud2"); #endif } /*! */ void CTRGouraud2::scanline_bilinear () { tVideoSample *dst; #ifdef USE_ZBUFFER fp24 *z; #endif s32 xStart; s32 xEnd; s32 dx; #ifdef SUBTEXEL f32 subPixel; #endif #ifdef IPOL_Z f32 slopeZ; #endif #ifdef IPOL_W fp24 slopeW; #endif #ifdef IPOL_C0 sVec4 slopeC; #endif #ifdef IPOL_T0 sVec2 slopeT0; #endif #ifdef IPOL_T1 sVec2 slopeT1; #endif // apply top-left fill-convention, left xStart = core::ceil32( line.x[0] ); xEnd = core::ceil32( line.x[1] ) - 1; dx = xEnd - xStart; if ( dx < 0 ) return; // slopes const f32 invDeltaX = core::reciprocal_approxim ( line.x[1] - line.x[0] ); #ifdef IPOL_Z slopeZ = (line.z[1] - line.z[0]) * invDeltaX; #endif #ifdef IPOL_W slopeW = (line.w[1] - line.w[0]) * invDeltaX; #endif #ifdef IPOL_C0 slopeC = (line.c[1] - line.c[0]) * invDeltaX; #endif #ifdef IPOL_T0 slopeT0 = (line.t0[1] - line.t0[0]) * invDeltaX; #endif #ifdef IPOL_T1 slopeT1 = (line.t1[1] - line.t1[0]) * invDeltaX; #endif #ifdef SUBTEXEL subPixel = ( (f32) xStart ) - line.x[0]; #ifdef IPOL_Z line.z[0] += slopeZ * subPixel; #endif #ifdef IPOL_W line.w[0] += slopeW * subPixel; #endif #ifdef IPOL_C0 line.c[0] += slopeC * subPixel; #endif #ifdef IPOL_T0 line.t0[0] += slopeT0 * subPixel; #endif #ifdef IPOL_T1 line.t1[0] += slopeT1 * subPixel; #endif #endif dst = lockedSurface + ( line.y * SurfaceWidth ) + xStart; #ifdef USE_ZBUFFER z = lockedZBuffer + ( line.y * SurfaceWidth ) + xStart; #endif #ifdef IPOL_C0 tFixPoint r0, g0, b0; #ifdef INVERSE_W f32 inversew; #endif #endif for ( s32 i = 0; i <= dx; ++i ) { #ifdef CMP_Z if ( line.z[0] < z[i] ) #endif #ifdef CMP_W if ( line.w[0] >= z[i] ) #endif { #ifdef IPOL_C0 #ifdef INVERSE_W inversew = core::reciprocal ( line.w[0] ); getSample_color ( r0, g0, b0, line.c[0] * inversew ); #else getSample_color ( r0, g0, b0, line.c[0] ); #endif dst[i] = fix_to_color ( r0, g0, b0 ); #else dst[i] = COLOR_BRIGHT_WHITE; #endif #ifdef WRITE_Z z[i] = line.z[0]; #endif #ifdef WRITE_W z[i] = line.w[0]; #endif } #ifdef IPOL_Z line.z[0] += slopeZ; #endif #ifdef IPOL_W line.w[0] += slopeW; #endif #ifdef IPOL_C0 line.c[0] += slopeC; #endif #ifdef IPOL_T0 line.t0[0] += slopeT0; #endif #ifdef IPOL_T1 line.t1[0] += slopeT1; #endif } } void CTRGouraud2::drawTriangle ( const s4DVertex *a,const s4DVertex *b,const s4DVertex *c ) { // sort on height, y if ( a->Pos.y > b->Pos.y ) swapVertexPointer(&a, &b); if ( a->Pos.y > c->Pos.y ) swapVertexPointer(&a, &c); if ( b->Pos.y > c->Pos.y ) swapVertexPointer(&b, &c); // calculate delta y of the edges scan.invDeltaY[0] = core::reciprocal ( c->Pos.y - a->Pos.y ); scan.invDeltaY[1] = core::reciprocal ( b->Pos.y - a->Pos.y ); scan.invDeltaY[2] = core::reciprocal ( c->Pos.y - b->Pos.y ); if ( F32_LOWER_EQUAL_0 ( scan.invDeltaY[0] ) ) return; // find if the major edge is left or right aligned f32 temp[4]; temp[0] = a->Pos.x - c->Pos.x; temp[1] = a->Pos.y - c->Pos.y; temp[2] = b->Pos.x - a->Pos.x; temp[3] = b->Pos.y - a->Pos.y; scan.left = ( temp[0] * temp[3] - temp[1] * temp[2] ) > (f32) 0.0 ? 0 : 1; scan.right = 1 - scan.left; // calculate slopes for the major edge scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0]; scan.x[0] = a->Pos.x; #ifdef IPOL_Z scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0]; scan.z[0] = a->Pos.z; #endif #ifdef IPOL_W scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0]; scan.w[0] = a->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0]; scan.c[0] = a->Color[0]; #endif #ifdef IPOL_T0 scan.slopeT0[0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0]; scan.t0[0] = a->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT1[0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0]; scan.t1[0] = a->Tex[1]; #endif // top left fill convention y run s32 yStart; s32 yEnd; #ifdef SUBTEXEL f32 subPixel; #endif lockedSurface = (tVideoSample*)RenderTarget->lock(); #ifdef USE_ZBUFFER lockedZBuffer = ZBuffer->lock(); #endif #ifdef IPOL_T0 IT[0].data = (tVideoSample*)IT[0].Texture->lock(); #endif #ifdef IPOL_T1 IT[1].data = (tVideoSample*)IT[1].Texture->lock(); #endif // rasterize upper sub-triangle if ( (f32) 0.0 != scan.invDeltaY[1] ) { // calculate slopes for top edge scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1]; scan.x[1] = a->Pos.x; #ifdef IPOL_Z scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1]; scan.z[1] = a->Pos.z; #endif #ifdef IPOL_W scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1]; scan.w[1] = a->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1]; scan.c[1] = a->Color[0]; #endif #ifdef IPOL_T0 scan.slopeT0[1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1]; scan.t0[1] = a->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT1[1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1]; scan.t1[1] = a->Tex[1]; #endif // apply top-left fill convention, top part yStart = core::ceil32( a->Pos.y ); yEnd = core::ceil32( b->Pos.y ) - 1; #ifdef SUBTEXEL subPixel = ( (f32) yStart ) - a->Pos.y; // correct to pixel center scan.x[0] += scan.slopeX[0] * subPixel; scan.x[1] += scan.slopeX[1] * subPixel; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0] * subPixel; scan.z[1] += scan.slopeZ[1] * subPixel; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0] * subPixel; scan.w[1] += scan.slopeW[1] * subPixel; #endif #ifdef IPOL_C0 scan.c[0] += scan.slopeC[0] * subPixel; scan.c[1] += scan.slopeC[1] * subPixel; #endif #ifdef IPOL_T0 scan.t0[0] += scan.slopeT0[0] * subPixel; scan.t0[1] += scan.slopeT0[1] * subPixel; #endif #ifdef IPOL_T1 scan.t1[0] += scan.slopeT1[0] * subPixel; scan.t1[1] += scan.slopeT1[1] * subPixel; #endif #endif // rasterize the edge scanlines for( line.y = yStart; line.y <= yEnd; ++line.y) { line.x[scan.left] = scan.x[0]; line.x[scan.right] = scan.x[1]; #ifdef IPOL_Z line.z[scan.left] = scan.z[0]; line.z[scan.right] = scan.z[1]; #endif #ifdef IPOL_W line.w[scan.left] = scan.w[0]; line.w[scan.right] = scan.w[1]; #endif #ifdef IPOL_C0 line.c[scan.left] = scan.c[0]; line.c[scan.right] = scan.c[1]; #endif #ifdef IPOL_T0 line.t0[scan.left] = scan.t0[0]; line.t0[scan.right] = scan.t0[1]; #endif #ifdef IPOL_T1 line.t1[scan.left] = scan.t1[0]; line.t1[scan.right] = scan.t1[1]; #endif // render a scanline scanline_bilinear (); scan.x[0] += scan.slopeX[0]; scan.x[1] += scan.slopeX[1]; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0]; scan.z[1] += scan.slopeZ[1]; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0]; scan.w[1] += scan.slopeW[1]; #endif #ifdef IPOL_C0 scan.c[0] += scan.slopeC[0]; scan.c[1] += scan.slopeC[1]; #endif #ifdef IPOL_T0 scan.t0[0] += scan.slopeT0[0]; scan.t0[1] += scan.slopeT0[1]; #endif #ifdef IPOL_T1 scan.t1[0] += scan.slopeT1[0]; scan.t1[1] += scan.slopeT1[1]; #endif } } // rasterize lower sub-triangle if ( (f32) 0.0 != scan.invDeltaY[2] ) { // advance to middle point if( (f32) 0.0 != scan.invDeltaY[1] ) { temp[0] = b->Pos.y - a->Pos.y; // dy scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0]; #ifdef IPOL_Z scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0]; #endif #ifdef IPOL_W scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0]; #endif #ifdef IPOL_C0 scan.c[0] = a->Color[0] + scan.slopeC[0] * temp[0]; #endif #ifdef IPOL_T0 scan.t0[0] = a->Tex[0] + scan.slopeT0[0] * temp[0]; #endif #ifdef IPOL_T1 scan.t1[0] = a->Tex[1] + scan.slopeT1[0] * temp[0]; #endif } // calculate slopes for bottom edge scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2]; scan.x[1] = b->Pos.x; #ifdef IPOL_Z scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2]; scan.z[1] = b->Pos.z; #endif #ifdef IPOL_W scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2]; scan.w[1] = b->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2]; scan.c[1] = b->Color[0]; #endif #ifdef IPOL_T0 scan.slopeT0[1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2]; scan.t0[1] = b->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT1[1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2]; scan.t1[1] = b->Tex[1]; #endif // apply top-left fill convention, top part yStart = core::ceil32( b->Pos.y ); yEnd = core::ceil32( c->Pos.y ) - 1; #ifdef SUBTEXEL subPixel = ( (f32) yStart ) - b->Pos.y; // correct to pixel center scan.x[0] += scan.slopeX[0] * subPixel; scan.x[1] += scan.slopeX[1] * subPixel; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0] * subPixel; scan.z[1] += scan.slopeZ[1] * subPixel; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0] * subPixel; scan.w[1] += scan.slopeW[1] * subPixel; #endif #ifdef IPOL_C0 scan.c[0] += scan.slopeC[0] * subPixel; scan.c[1] += scan.slopeC[1] * subPixel; #endif #ifdef IPOL_T0 scan.t0[0] += scan.slopeT0[0] * subPixel; scan.t0[1] += scan.slopeT0[1] * subPixel; #endif #ifdef IPOL_T1 scan.t1[0] += scan.slopeT1[0] * subPixel; scan.t1[1] += scan.slopeT1[1] * subPixel; #endif #endif // rasterize the edge scanlines for( line.y = yStart; line.y <= yEnd; ++line.y) { line.x[scan.left] = scan.x[0]; line.x[scan.right] = scan.x[1]; #ifdef IPOL_Z line.z[scan.left] = scan.z[0]; line.z[scan.right] = scan.z[1]; #endif #ifdef IPOL_W line.w[scan.left] = scan.w[0]; line.w[scan.right] = scan.w[1]; #endif #ifdef IPOL_C0 line.c[scan.left] = scan.c[0]; line.c[scan.right] = scan.c[1]; #endif #ifdef IPOL_T0 line.t0[scan.left] = scan.t0[0]; line.t0[scan.right] = scan.t0[1]; #endif #ifdef IPOL_T1 line.t1[scan.left] = scan.t1[0]; line.t1[scan.right] = scan.t1[1]; #endif // render a scanline scanline_bilinear (); scan.x[0] += scan.slopeX[0]; scan.x[1] += scan.slopeX[1]; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0]; scan.z[1] += scan.slopeZ[1]; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0]; scan.w[1] += scan.slopeW[1]; #endif #ifdef IPOL_C0 scan.c[0] += scan.slopeC[0]; scan.c[1] += scan.slopeC[1]; #endif #ifdef IPOL_T0 scan.t0[0] += scan.slopeT0[0]; scan.t0[1] += scan.slopeT0[1]; #endif #ifdef IPOL_T1 scan.t1[0] += scan.slopeT1[0]; scan.t1[1] += scan.slopeT1[1]; #endif } } RenderTarget->unlock(); #ifdef USE_ZBUFFER ZBuffer->unlock(); #endif #ifdef IPOL_T0 IT[0].Texture->unlock(); #endif #ifdef IPOL_T1 IT[1].Texture->unlock(); #endif } } // end namespace video } // end namespace irr #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ namespace irr { namespace video { //! creates a flat triangle renderer IBurningShader* createTriangleRendererGouraud2(IDepthBuffer* zbuffer) { #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ return new CTRGouraud2(zbuffer); #else return 0; #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ } } // end namespace video } // end namespace irr