// Copyright (C) 2002-2012 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #ifndef __IRR_TRIANGLE_3D_H_INCLUDED__ #define __IRR_TRIANGLE_3D_H_INCLUDED__ #include "vector3d.h" #include "line3d.h" #include "plane3d.h" #include "aabbox3d.h" namespace irr { namespace core { //! 3d triangle template class for doing collision detection and other things. template class triangle3d { public: //! Constructor for an all 0 triangle triangle3d() {} //! Constructor for triangle with given three vertices triangle3d(vector3d v1, vector3d v2, vector3d v3) : pointA(v1), pointB(v2), pointC(v3) {} //! Equality operator bool operator==(const triangle3d& other) const { return other.pointA==pointA && other.pointB==pointB && other.pointC==pointC; } //! Inequality operator bool operator!=(const triangle3d& other) const { return !(*this==other); } //! Determines if the triangle is totally inside a bounding box. /** \param box Box to check. \return True if triangle is within the box, otherwise false. */ bool isTotalInsideBox(const aabbox3d& box) const { return (box.isPointInside(pointA) && box.isPointInside(pointB) && box.isPointInside(pointC)); } //! Determines if the triangle is totally outside a bounding box. /** \param box Box to check. \return True if triangle is outside the box, otherwise false. */ bool isTotalOutsideBox(const aabbox3d& box) const { return ((pointA.X > box.MaxEdge.X && pointB.X > box.MaxEdge.X && pointC.X > box.MaxEdge.X) || (pointA.Y > box.MaxEdge.Y && pointB.Y > box.MaxEdge.Y && pointC.Y > box.MaxEdge.Y) || (pointA.Z > box.MaxEdge.Z && pointB.Z > box.MaxEdge.Z && pointC.Z > box.MaxEdge.Z) || (pointA.X < box.MinEdge.X && pointB.X < box.MinEdge.X && pointC.X < box.MinEdge.X) || (pointA.Y < box.MinEdge.Y && pointB.Y < box.MinEdge.Y && pointC.Y < box.MinEdge.Y) || (pointA.Z < box.MinEdge.Z && pointB.Z < box.MinEdge.Z && pointC.Z < box.MinEdge.Z)); } //! Get the closest point on a triangle to a point on the same plane. /** \param p Point which must be on the same plane as the triangle. \return The closest point of the triangle */ core::vector3d closestPointOnTriangle(const core::vector3d& p) const { const core::vector3d rab = line3d(pointA, pointB).getClosestPoint(p); const core::vector3d rbc = line3d(pointB, pointC).getClosestPoint(p); const core::vector3d rca = line3d(pointC, pointA).getClosestPoint(p); const T d1 = rab.getDistanceFrom(p); const T d2 = rbc.getDistanceFrom(p); const T d3 = rca.getDistanceFrom(p); if (d1 < d2) return d1 < d3 ? rab : rca; return d2 < d3 ? rbc : rca; } //! Check if a point is inside the triangle (border-points count also as inside) /* \param p Point to test. Assumes that this point is already on the plane of the triangle. \return True if the point is inside the triangle, otherwise false. */ bool isPointInside(const vector3d& p) const { vector3d af64((f64)pointA.X, (f64)pointA.Y, (f64)pointA.Z); vector3d bf64((f64)pointB.X, (f64)pointB.Y, (f64)pointB.Z); vector3d cf64((f64)pointC.X, (f64)pointC.Y, (f64)pointC.Z); vector3d pf64((f64)p.X, (f64)p.Y, (f64)p.Z); return (isOnSameSide(pf64, af64, bf64, cf64) && isOnSameSide(pf64, bf64, af64, cf64) && isOnSameSide(pf64, cf64, af64, bf64)); } //! Check if a point is inside the triangle (border-points count also as inside) /** This method uses a barycentric coordinate system. It is faster than isPointInside but is more susceptible to floating point rounding errors. This will especially be noticable when the FPU is in single precision mode (which is for example set on default by Direct3D). \param p Point to test. Assumes that this point is already on the plane of the triangle. \return True if point is inside the triangle, otherwise false. */ bool isPointInsideFast(const vector3d& p) const { const vector3d a = pointC - pointA; const vector3d b = pointB - pointA; const vector3d c = p - pointA; const f64 dotAA = a.dotProduct( a); const f64 dotAB = a.dotProduct( b); const f64 dotAC = a.dotProduct( c); const f64 dotBB = b.dotProduct( b); const f64 dotBC = b.dotProduct( c); // get coordinates in barycentric coordinate system const f64 invDenom = 1/(dotAA * dotBB - dotAB * dotAB); const f64 u = (dotBB * dotAC - dotAB * dotBC) * invDenom; const f64 v = (dotAA * dotBC - dotAB * dotAC ) * invDenom; // We count border-points as inside to keep downward compatibility. // Rounding-error also needed for some test-cases. return (u > -ROUNDING_ERROR_f32) && (v >= 0) && (u + v < 1+ROUNDING_ERROR_f32); } //! Get an intersection with a 3d line. /** \param line Line to intersect with. \param outIntersection Place to store the intersection point, if there is one. \return True if there was an intersection, false if not. */ bool getIntersectionWithLimitedLine(const line3d& line, vector3d& outIntersection) const { return getIntersectionWithLine(line.start, line.getVector(), outIntersection) && outIntersection.isBetweenPoints(line.start, line.end); } //! Get an intersection with a 3d line. /** Please note that also points are returned as intersection which are on the line, but not between the start and end point of the line. If you want the returned point be between start and end use getIntersectionWithLimitedLine(). \param linePoint Point of the line to intersect with. \param lineVect Vector of the line to intersect with. \param outIntersection Place to store the intersection point, if there is one. \return True if there was an intersection, false if there was not. */ bool getIntersectionWithLine(const vector3d& linePoint, const vector3d& lineVect, vector3d& outIntersection) const { if (getIntersectionOfPlaneWithLine(linePoint, lineVect, outIntersection)) return isPointInside(outIntersection); return false; } //! Calculates the intersection between a 3d line and the plane the triangle is on. /** \param lineVect Vector of the line to intersect with. \param linePoint Point of the line to intersect with. \param outIntersection Place to store the intersection point, if there is one. \return True if there was an intersection, else false. */ bool getIntersectionOfPlaneWithLine(const vector3d& linePoint, const vector3d& lineVect, vector3d& outIntersection) const { // Work with f64 to get more precise results (makes enough difference to be worth the casts). const vector3d linePointf64(linePoint.X, linePoint.Y, linePoint.Z); const vector3d lineVectf64(lineVect.X, lineVect.Y, lineVect.Z); vector3d outIntersectionf64; core::triangle3d trianglef64(vector3d((f64)pointA.X, (f64)pointA.Y, (f64)pointA.Z) ,vector3d((f64)pointB.X, (f64)pointB.Y, (f64)pointB.Z) , vector3d((f64)pointC.X, (f64)pointC.Y, (f64)pointC.Z)); const vector3d normalf64 = trianglef64.getNormal().normalize(); f64 t2; if ( core::iszero ( t2 = normalf64.dotProduct(lineVectf64) ) ) return false; f64 d = trianglef64.pointA.dotProduct(normalf64); f64 t = -(normalf64.dotProduct(linePointf64) - d) / t2; outIntersectionf64 = linePointf64 + (lineVectf64 * t); outIntersection.X = (T)outIntersectionf64.X; outIntersection.Y = (T)outIntersectionf64.Y; outIntersection.Z = (T)outIntersectionf64.Z; return true; } //! Get the normal of the triangle. /** Please note: The normal is not always normalized. */ vector3d getNormal() const { return (pointB - pointA).crossProduct(pointC - pointA); } //! Test if the triangle would be front or backfacing from any point. /** Thus, this method assumes a camera position from which the triangle is definitely visible when looking at the given direction. Do not use this method with points as it will give wrong results! \param lookDirection Look direction. \return True if the plane is front facing and false if it is backfacing. */ bool isFrontFacing(const vector3d& lookDirection) const { const vector3d n = getNormal().normalize(); const f32 d = (f32)n.dotProduct(lookDirection); return F32_LOWER_EQUAL_0(d); } //! Get the plane of this triangle. plane3d getPlane() const { return plane3d(pointA, pointB, pointC); } //! Get the area of the triangle T getArea() const { return (pointB - pointA).crossProduct(pointC - pointA).getLength() * 0.5f; } //! sets the triangle's points void set(const core::vector3d& a, const core::vector3d& b, const core::vector3d& c) { pointA = a; pointB = b; pointC = c; } //! the three points of the triangle vector3d pointA; vector3d pointB; vector3d pointC; private: // Using f64 instead of to avoid integer overflows when T=int (maybe also less floating point troubles). bool isOnSameSide(const vector3d& p1, const vector3d& p2, const vector3d& a, const vector3d& b) const { vector3d bminusa = b - a; vector3d cp1 = bminusa.crossProduct(p1 - a); vector3d cp2 = bminusa.crossProduct(p2 - a); f64 res = cp1.dotProduct(cp2); if ( res < 0 ) { // This catches some floating point troubles. // Unfortunately slightly expensive and we don't really know the best epsilon for iszero. vector3d cp1 = bminusa.normalize().crossProduct((p1 - a).normalize()); if (core::iszero(cp1.X, (f64)ROUNDING_ERROR_f32) && core::iszero(cp1.Y, (f64)ROUNDING_ERROR_f32) && core::iszero(cp1.Z, (f64)ROUNDING_ERROR_f32) ) { res = 0.f; } } return (res >= 0.0f); } }; //! Typedef for a f32 3d triangle. typedef triangle3d triangle3df; //! Typedef for an integer 3d triangle. typedef triangle3d triangle3di; } // end namespace core } // end namespace irr #endif