// Copyright (C) 2002-2007 Nikolaus Gebhardt / Thomas Alten // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "IrrCompileConfig.h" #include "IBurningShader.h" #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ // compile flag for this file #undef USE_ZBUFFER #undef IPOL_Z #undef CMP_Z #undef WRITE_Z #undef IPOL_W #undef CMP_W #undef WRITE_W #undef SUBTEXEL #undef INVERSE_W #undef IPOL_C0 #undef IPOL_T0 #undef IPOL_T1 // define render case #define SUBTEXEL #define INVERSE_W #define USE_ZBUFFER #define IPOL_W #define CMP_W #define WRITE_W //#define IPOL_C0 #define IPOL_T0 //#define IPOL_T1 // apply global override #ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT #undef INVERSE_W #endif #ifndef SOFTWARE_DRIVER_2_SUBTEXEL #undef SUBTEXEL #endif #ifndef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR #undef IPOL_C0 #endif #if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER ) #ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT #undef IPOL_W #endif #define IPOL_Z #ifdef CMP_W #undef CMP_W #define CMP_Z #endif #ifdef WRITE_W #undef WRITE_W #define WRITE_Z #endif #endif namespace irr { namespace video { class CTRTextureGouraudAlpha2 : public IBurningShader { public: //! constructor CTRTextureGouraudAlpha2(IDepthBuffer* zbuffer); //! draws an indexed triangle list virtual void drawTriangle ( const s4DVertex *a,const s4DVertex *b,const s4DVertex *c ); virtual void setParam ( u32 index, f32 value); private: void scanline_bilinear (); sScanConvertData scan; sScanLineData line; u32 AlphaRef; }; //! constructor CTRTextureGouraudAlpha2::CTRTextureGouraudAlpha2(IDepthBuffer* zbuffer) : IBurningShader(zbuffer) { #ifdef _DEBUG setDebugName("CTRTextureGouraudAlpha2"); #endif AlphaRef = 0; } /*! */ void CTRTextureGouraudAlpha2::setParam ( u32 index, f32 value) { #ifdef BURNINGVIDEO_RENDERER_FAST AlphaRef = core::floor32 ( value * 256.f ); #else AlphaRef = u32_to_fixPoint ( core::floor32 ( value * 256.f ) ); #endif } /*! */ void CTRTextureGouraudAlpha2::scanline_bilinear () { tVideoSample *dst; #ifdef USE_ZBUFFER fp24 *z; #endif s32 xStart; s32 xEnd; s32 dx; #ifdef SUBTEXEL f32 subPixel; #endif #ifdef IPOL_Z f32 slopeZ; #endif #ifdef IPOL_W fp24 slopeW; #endif #ifdef IPOL_C0 sVec4 slopeC; #endif #ifdef IPOL_T0 sVec2 slopeT[MATERIAL_MAX_TEXTURES]; #endif // apply top-left fill-convention, left xStart = core::ceil32( line.x[0] ); xEnd = core::ceil32( line.x[1] ) - 1; dx = xEnd - xStart; if ( dx < 0 ) return; // slopes const f32 invDeltaX = core::reciprocal_approxim ( line.x[1] - line.x[0] ); #ifdef IPOL_Z slopeZ = (line.z[1] - line.z[0]) * invDeltaX; #endif #ifdef IPOL_W slopeW = (line.w[1] - line.w[0]) * invDeltaX; #endif #ifdef IPOL_C0 slopeC = (line.c[1] - line.c[0]) * invDeltaX; #endif #ifdef IPOL_T0 slopeT[0] = (line.t[0][1] - line.t[0][0]) * invDeltaX; #endif #ifdef IPOL_T1 slopeT[1] = (line.t[1][1] - line.t[1][0]) * invDeltaX; #endif #ifdef SUBTEXEL subPixel = ( (f32) xStart ) - line.x[0]; #ifdef IPOL_Z line.z[0] += slopeZ * subPixel; #endif #ifdef IPOL_W line.w[0] += slopeW * subPixel; #endif #ifdef IPOL_C0 line.c[0] += slopeC * subPixel; #endif #ifdef IPOL_T0 line.t[0][0] += slopeT[0] * subPixel; #endif #ifdef IPOL_T1 line.t[1][0] += slopeT[1] * subPixel; #endif #endif dst = lockedSurface + ( line.y * RenderTarget->getDimension().Width ) + xStart; #ifdef USE_ZBUFFER z = lockedDepthBuffer + ( line.y * RenderTarget->getDimension().Width ) + xStart; #endif #ifdef INVERSE_W f32 inversew; #endif #ifdef BURNINGVIDEO_RENDERER_FAST u32 dIndex = ( line.y & 3 ) << 2; #else tFixPointu a0; tFixPointu r0, g0, b0; #endif for ( s32 i = 0; i <= dx; ++i ) { #ifdef CMP_Z if ( line.z[0] < z[i] ) #endif #ifdef CMP_W if ( line.w[0] >= z[i] ) #endif { #ifdef BURNINGVIDEO_RENDERER_FAST const tFixPointu d = dithermask [ dIndex | ( i ) & 3 ]; #ifdef INVERSE_W inversew = fix_inverse32 ( line.w[0] ); u32 argb = getTexel_plain ( &IT[0], d + f32_to_fixPoint ( line.t[0][0].x,inversew), d + f32_to_fixPoint ( line.t[0][0].y,inversew) ); #else u32 argb = getTexel_plain ( &IT[0], d + f32_to_fixPoint ( line.t[0][0].x), d + f32_to_fixPoint ( line.t[0][0].y) ); #endif const u32 alpha = ( argb >> 24 ); if ( alpha >= AlphaRef ) { #ifdef WRITE_Z z[i] = line.z[0]; #endif #ifdef WRITE_W z[i] = line.w[0]; #endif dst[i] = PixelBlend32 ( dst[i], argb, alpha ); } #else inversew = fix_inverse32 ( line.w[0] ); getSample_texture ( a0, r0, g0, b0, &IT[0], f32_to_fixPoint ( line.t[0][0].x,inversew), f32_to_fixPoint ( line.t[0][0].y,inversew) ); if ( a0 >= AlphaRef ) { #ifdef WRITE_Z z[i] = line.z[0]; #endif #ifdef WRITE_W z[i] = line.w[0]; #endif dst[i] = PixelBlend32 ( dst[i], fix_to_color ( r0,g0, b0 ), fixPointu_to_u32 ( a0 ) ); } #endif } #ifdef IPOL_Z line.z[0] += slopeZ; #endif #ifdef IPOL_W line.w[0] += slopeW; #endif #ifdef IPOL_C0 line.c[0] += slopeC; #endif #ifdef IPOL_T0 line.t[0][0] += slopeT[0]; #endif #ifdef IPOL_T1 line.t[1][0] += slopeT[1]; #endif } } void CTRTextureGouraudAlpha2::drawTriangle ( const s4DVertex *a,const s4DVertex *b,const s4DVertex *c ) { // sort on height, y if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b); if ( F32_A_GREATER_B ( a->Pos.y , c->Pos.y ) ) swapVertexPointer(&a, &c); if ( F32_A_GREATER_B ( b->Pos.y , c->Pos.y ) ) swapVertexPointer(&b, &c); // calculate delta y of the edges scan.invDeltaY[0] = core::reciprocal ( c->Pos.y - a->Pos.y ); scan.invDeltaY[1] = core::reciprocal ( b->Pos.y - a->Pos.y ); scan.invDeltaY[2] = core::reciprocal ( c->Pos.y - b->Pos.y ); if ( F32_LOWER_EQUAL_0 ( scan.invDeltaY[0] ) ) return; // find if the major edge is left or right aligned f32 temp[4]; temp[0] = a->Pos.x - c->Pos.x; temp[1] = a->Pos.y - c->Pos.y; temp[2] = b->Pos.x - a->Pos.x; temp[3] = b->Pos.y - a->Pos.y; scan.left = ( temp[0] * temp[3] - temp[1] * temp[2] ) > (f32) 0.0 ? 0 : 1; scan.right = 1 - scan.left; // calculate slopes for the major edge scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0]; scan.x[0] = a->Pos.x; #ifdef IPOL_Z scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0]; scan.z[0] = a->Pos.z; #endif #ifdef IPOL_W scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0]; scan.w[0] = a->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0]; scan.c[0] = a->Color[0]; #endif #ifdef IPOL_T0 scan.slopeT[0][0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0]; scan.t[0][0] = a->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT[1][0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0]; scan.t[1][0] = a->Tex[1]; #endif // top left fill convention y run s32 yStart; s32 yEnd; #ifdef SUBTEXEL f32 subPixel; #endif lockedSurface = (tVideoSample*)RenderTarget->lock(); #ifdef USE_ZBUFFER lockedDepthBuffer = (fp24*) DepthBuffer->lock(); #endif #ifdef IPOL_T0 IT[0].data = (tVideoSample*)IT[0].Texture->lock(); #endif #ifdef IPOL_T1 IT[1].data = (tVideoSample*)IT[1].Texture->lock(); #endif // rasterize upper sub-triangle if ( (f32) 0.0 != scan.invDeltaY[1] ) { // calculate slopes for top edge scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1]; scan.x[1] = a->Pos.x; #ifdef IPOL_Z scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1]; scan.z[1] = a->Pos.z; #endif #ifdef IPOL_W scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1]; scan.w[1] = a->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1]; scan.c[1] = a->Color[0]; #endif #ifdef IPOL_T0 scan.slopeT[0][1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1]; scan.t[0][1] = a->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT[1][1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1]; scan.t[1][1] = a->Tex[1]; #endif // apply top-left fill convention, top part yStart = core::ceil32( a->Pos.y ); yEnd = core::ceil32( b->Pos.y ) - 1; #ifdef SUBTEXEL subPixel = ( (f32) yStart ) - a->Pos.y; // correct to pixel center scan.x[0] += scan.slopeX[0] * subPixel; scan.x[1] += scan.slopeX[1] * subPixel; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0] * subPixel; scan.z[1] += scan.slopeZ[1] * subPixel; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0] * subPixel; scan.w[1] += scan.slopeW[1] * subPixel; #endif #ifdef IPOL_C0 scan.c[0] += scan.slopeC[0] * subPixel; scan.c[1] += scan.slopeC[1] * subPixel; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0] * subPixel; scan.t[0][1] += scan.slopeT[0][1] * subPixel; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0] * subPixel; scan.t[1][1] += scan.slopeT[1][1] * subPixel; #endif #endif // rasterize the edge scanlines for( line.y = yStart; line.y <= yEnd; ++line.y) { line.x[scan.left] = scan.x[0]; line.x[scan.right] = scan.x[1]; #ifdef IPOL_Z line.z[scan.left] = scan.z[0]; line.z[scan.right] = scan.z[1]; #endif #ifdef IPOL_W line.w[scan.left] = scan.w[0]; line.w[scan.right] = scan.w[1]; #endif #ifdef IPOL_C0 line.c[scan.left] = scan.c[0]; line.c[scan.right] = scan.c[1]; #endif #ifdef IPOL_T0 line.t[0][scan.left] = scan.t[0][0]; line.t[0][scan.right] = scan.t[0][1]; #endif #ifdef IPOL_T1 line.t[1][scan.left] = scan.t[1][0]; line.t[1][scan.right] = scan.t[1][1]; #endif // render a scanline scanline_bilinear ( ); scan.x[0] += scan.slopeX[0]; scan.x[1] += scan.slopeX[1]; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0]; scan.z[1] += scan.slopeZ[1]; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0]; scan.w[1] += scan.slopeW[1]; #endif #ifdef IPOL_C0 scan.c[0] += scan.slopeC[0]; scan.c[1] += scan.slopeC[1]; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0]; scan.t[0][1] += scan.slopeT[0][1]; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0]; scan.t[1][1] += scan.slopeT[1][1]; #endif } } // rasterize lower sub-triangle if ( (f32) 0.0 != scan.invDeltaY[2] ) { // advance to middle point if( (f32) 0.0 != scan.invDeltaY[1] ) { temp[0] = b->Pos.y - a->Pos.y; // dy scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0]; #ifdef IPOL_Z scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0]; #endif #ifdef IPOL_W scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0]; #endif #ifdef IPOL_C0 scan.c[0] = a->Color[0] + scan.slopeC[0] * temp[0]; #endif #ifdef IPOL_T0 scan.t[0][0] = a->Tex[0] + scan.slopeT[0][0] * temp[0]; #endif #ifdef IPOL_T1 scan.t[1][0] = a->Tex[1] + scan.slopeT[1][0] * temp[0]; #endif } // calculate slopes for bottom edge scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2]; scan.x[1] = b->Pos.x; #ifdef IPOL_Z scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2]; scan.z[1] = b->Pos.z; #endif #ifdef IPOL_W scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2]; scan.w[1] = b->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2]; scan.c[1] = b->Color[0]; #endif #ifdef IPOL_T0 scan.slopeT[0][1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2]; scan.t[0][1] = b->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT[1][1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2]; scan.t[1][1] = b->Tex[1]; #endif // apply top-left fill convention, top part yStart = core::ceil32( b->Pos.y ); yEnd = core::ceil32( c->Pos.y ) - 1; #ifdef SUBTEXEL subPixel = ( (f32) yStart ) - b->Pos.y; // correct to pixel center scan.x[0] += scan.slopeX[0] * subPixel; scan.x[1] += scan.slopeX[1] * subPixel; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0] * subPixel; scan.z[1] += scan.slopeZ[1] * subPixel; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0] * subPixel; scan.w[1] += scan.slopeW[1] * subPixel; #endif #ifdef IPOL_C0 scan.c[0] += scan.slopeC[0] * subPixel; scan.c[1] += scan.slopeC[1] * subPixel; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0] * subPixel; scan.t[0][1] += scan.slopeT[0][1] * subPixel; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0] * subPixel; scan.t[1][1] += scan.slopeT[1][1] * subPixel; #endif #endif // rasterize the edge scanlines for( line.y = yStart; line.y <= yEnd; ++line.y) { line.x[scan.left] = scan.x[0]; line.x[scan.right] = scan.x[1]; #ifdef IPOL_Z line.z[scan.left] = scan.z[0]; line.z[scan.right] = scan.z[1]; #endif #ifdef IPOL_W line.w[scan.left] = scan.w[0]; line.w[scan.right] = scan.w[1]; #endif #ifdef IPOL_C0 line.c[scan.left] = scan.c[0]; line.c[scan.right] = scan.c[1]; #endif #ifdef IPOL_T0 line.t[0][scan.left] = scan.t[0][0]; line.t[0][scan.right] = scan.t[0][1]; #endif #ifdef IPOL_T1 line.t[1][scan.left] = scan.t[1][0]; line.t[1][scan.right] = scan.t[1][1]; #endif // render a scanline scanline_bilinear ( ); scan.x[0] += scan.slopeX[0]; scan.x[1] += scan.slopeX[1]; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0]; scan.z[1] += scan.slopeZ[1]; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0]; scan.w[1] += scan.slopeW[1]; #endif #ifdef IPOL_C0 scan.c[0] += scan.slopeC[0]; scan.c[1] += scan.slopeC[1]; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0]; scan.t[0][1] += scan.slopeT[0][1]; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0]; scan.t[1][1] += scan.slopeT[1][1]; #endif } } RenderTarget->unlock(); #ifdef USE_ZBUFFER DepthBuffer->unlock(); #endif #ifdef IPOL_T0 IT[0].Texture->unlock(); #endif #ifdef IPOL_T1 IT[1].Texture->unlock(); #endif } } // end namespace video } // end namespace irr #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ namespace irr { namespace video { //! creates a flat triangle renderer IBurningShader* createTRTextureGouraudAlpha(IDepthBuffer* zbuffer) { #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ return new CTRTextureGouraudAlpha2(zbuffer); #else return 0; #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ } } // end namespace video } // end namespace irr