// Copyright (C) 2002-2007 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #ifndef __IRR_MATRIX_H_INCLUDED__ #define __IRR_MATRIX_H_INCLUDED__ #include "irrTypes.h" #include "vector3d.h" #include "vector2d.h" #include "plane3d.h" #include "aabbox3d.h" #include "rect.h" #include "irrString.h" namespace irr { namespace core { //! 4x4 matrix. Mostly used as transformation matrix for 3d calculations. /* Matrix4 is mainly used by the Irrlicht engine for doing transformations. The matrix is a D3D style matrix, row major with translations in the 4th row. */ template class CMatrix4 { public: //! Constructor Flags enum eConstructor { EM4CONST_NOTHING = 0, EM4CONST_COPY, EM4CONST_IDENTITY, EM4CONST_TRANSPOSED, EM4CONST_INVERSE, EM4CONST_INVERSE_TRANSPOSED }; CMatrix4( eConstructor constructor = EM4CONST_IDENTITY ); CMatrix4( const CMatrix4& other,eConstructor constructor = EM4CONST_COPY); //! Simple operator for directly accessing every element of the matrix. T& operator()(const s32 row, const s32 col) { definitelyIdentityMatrix=false; return M[ row * 4 + col ]; } //! Simple operator for directly accessing every element of the matrix. const T& operator()(const s32 row, const s32 col) const { return M[row * 4 + col]; } //! Simple operator for linearly accessing every element of the matrix. T& operator[](u32 index) { definitelyIdentityMatrix=false; return M[index]; } //! Simple operator for linearly accessing every element of the matrix. const T& operator[](u32 index) const { return M[index]; } //! Sets this matrix equal to the other matrix. inline CMatrix4& operator=(const CMatrix4 &other); //! Sets all elements of this matrix to the value. inline CMatrix4& operator=(const T& scalar); //! Returns pointer to internal array const T* pointer() const { return M; } T* pointer() { definitelyIdentityMatrix=false; return M; } //! Returns true if other matrix is equal to this matrix. bool operator==(const CMatrix4 &other) const; //! Returns true if other matrix is not equal to this matrix. bool operator!=(const CMatrix4 &other) const; //! Add another matrix. CMatrix4 operator+(const CMatrix4& other) const; //! Add another matrix. CMatrix4& operator+=(const CMatrix4& other); //! Subtract another matrix. CMatrix4 operator-(const CMatrix4& other) const; //! Subtract another matrix. CMatrix4& operator-=(const CMatrix4& other); //! set this matrix to the product of two matrices inline void setbyproduct(const CMatrix4& other_a,const CMatrix4& other_b ); //! set this matrix to the product of two matrices, no logical optimation //! use it if you know you never have a identity matrix void setbyproduct_nocheck(const CMatrix4& other_a,const CMatrix4& other_b ); //! Multiply by another matrix. CMatrix4 operator*(const CMatrix4& other) const; //! Multiply by another matrix. CMatrix4& operator*=(const CMatrix4& other); //! Multiply by scalar. CMatrix4 operator*(const T& scalar) const; //! Multiply by scalar. CMatrix4& operator*=(const T& scalar); //! Set matrix to identity. inline void makeIdentity(); //! Returns true if the matrix is the identity matrix inline bool isIdentity() const; //! Returns true if the matrix is the identity matrix bool isIdentity_integer_base () const; //! Set the translation of the current matrix. Will erase any previous values. void setTranslation( const vector3df& translation ); //! Gets the current translation vector3df getTranslation() const; //! Set the inverse translation of the current matrix. Will erase any previous values. void setInverseTranslation( const vector3df& translation ); //! Make a rotation matrix from Euler angles. The 4th row and column are unmodified. inline void setRotationRadians( const vector3df& rotation ); //! Make a rotation matrix from Euler angles. The 4th row and column are unmodified. void setRotationDegrees( const vector3df& rotation ); //! Returns the rotation, as set by setRotation(). This code was orginally written by by Chev. core::vector3df getRotationDegrees() const; //! Make an inverted rotation matrix from Euler angles. The 4th row and column are unmodified. inline void setInverseRotationRadians( const vector3df& rotation ); //! Make an inverted rotation matrix from Euler angles. The 4th row and column are unmodified. void setInverseRotationDegrees( const vector3df& rotation ); //! Set Scale void setScale( const vector3df& scale ); //! Get Scale core::vector3df getScale() const; //! Translate a vector by the inverse of the translation part of this matrix. void inverseTranslateVect( vector3df& vect ) const; //! Rotate a vector by the inverse of the rotation part of this matrix. void inverseRotateVect( vector3df& vect ) const; //! Rotate a vector by the rotation part of this matrix. void rotateVect( vector3df& vect ) const; //! Transforms the vector by this matrix void transformVect( vector3df& vect) const; //! Transforms input vector by this matrix and stores result in output vector void transformVect( vector3df& out, const vector3df& in ) const; //! An alternate transform vector method, writing into an array of 4 floats void transformVect(T *out,const core::vector3df &in) const; //! An alternate transform vector method, writing into an array of 3 floats void rotateVect(T *out,const core::vector3df &in) const; //! Translate a vector by the translation part of this matrix. void translateVect( vector3df& vect ) const; //! Transforms a plane by this matrix void transformPlane( core::plane3d &plane) const; //! Transforms a plane by this matrix ( some problems to solve..) void transformPlane_new( core::plane3d &plane) const; //! Transforms a plane by this matrix void transformPlane( const core::plane3d &in, core::plane3d &out) const; //! Transforms a axis aligned bounding box /** The result box of this operation may not be very accurate. For accurate results, use transformBoxEx() */ void transformBox(core::aabbox3d& box) const; //! Transforms a axis aligned bounding box more accurately than transformBox() /** The result box of this operation should by quite accurate, but this operation is slower than transformBox(). */ void transformBoxEx(core::aabbox3d& box) const; //! Multiplies this matrix by a 1x4 matrix void multiplyWith1x4Matrix(T* matrix) const; //! Calculates inverse of matrix. Slow. //! \return Returns false if there is no inverse matrix. bool makeInverse(); //! Inverts a primitive matrix which only contains a translation and a rotation //! \param out: where result matrix is written to. bool getInversePrimitive ( CMatrix4& out ) const; //! returns the inversed matrix of this one //! \param out: where result matrix is written to. //! \return Returns false if there is no inverse matrix. bool getInverse(CMatrix4& out) const; //! Builds a right-handed perspective projection matrix based on a field of view void buildProjectionMatrixPerspectiveFovRH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar); //! Builds a left-handed perspective projection matrix based on a field of view void buildProjectionMatrixPerspectiveFovLH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar); //! Builds a right-handed perspective projection matrix. void buildProjectionMatrixPerspectiveRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar); //! Builds a left-handed perspective projection matrix. void buildProjectionMatrixPerspectiveLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar); //! Builds a left-handed orthogonal projection matrix. void buildProjectionMatrixOrthoLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar); //! Builds a right-handed orthogonal projection matrix. void buildProjectionMatrixOrthoRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar); //! Builds a left-handed look-at matrix. void buildCameraLookAtMatrixLH(const vector3df& position, const vector3df& target, const vector3df& upVector); //! Builds a right-handed look-at matrix. void buildCameraLookAtMatrixRH(const vector3df& position, const vector3df& target, const vector3df& upVector); //! Builds a matrix that flattens geometry into a plane. //! \param light: light source //! \param plane: plane into which the geometry if flattened into //! \param point: value between 0 and 1, describing the light source. //! If this is 1, it is a point light, if it is 0, it is a directional light. void buildShadowMatrix(const core::vector3df& light, core::plane3df plane, f32 point=1.0f); //! Builds a matrix which transforms a normalized Device Coordinate to Device Coordinates. /** Used to scale <-1,-1><1,1> to viewport, for example from von <-1,-1> <1,1> to the viewport <0,0><0,640> */ void buildNDCToDCMatrix( const core::rect& area, f32 zScale); //! creates a new matrix as interpolated matrix from two other ones. //! \param b: other matrix to interpolate with //! \param time: Must be a value between 0 and 1. CMatrix4 interpolate(const core::CMatrix4& b, f32 time) const; //! returns transposed matrix CMatrix4 getTransposed() const; //! returns transposed matrix to a plain 4x4 float matrix inline void getTransposed( CMatrix4& dest ) const; /*! construct 2D Texture transformations rotate about center, scale, and transform. */ void setTextureScale ( f32 sx, f32 sy ); void setTextureRotationCenter( f32 radAngle ); void setTextureScaleCenter( f32 sx, f32 sy ); void setTextureTranslate ( f32 x, f32 y ); void buildTextureTransform( f32 rotateRad, const core::vector2df &rotatecenter, const core::vector2df &translate, const core::vector2df &scale); //! sets all matrix data members at once void setM(const T* data); //! sets if the matrix is definitely identity matrix void setDefinitelyIdentityMatrix( bool isDefinitelyIdentityMatrix); //! gets if the matrix is definitely identity matrix bool getDefinitelyIdentityMatrix() const; private: //! Matrix data, stored in row-major order T M[16]; bool definitelyIdentityMatrix; }; template inline CMatrix4::CMatrix4( eConstructor constructor ) : definitelyIdentityMatrix(false) { switch ( constructor ) { case EM4CONST_NOTHING: case EM4CONST_COPY: break; case EM4CONST_IDENTITY: case EM4CONST_INVERSE: default: makeIdentity(); break; } } template inline CMatrix4::CMatrix4( const CMatrix4& other, eConstructor constructor) : definitelyIdentityMatrix(false) { switch ( constructor ) { case EM4CONST_IDENTITY: makeIdentity(); break; case EM4CONST_NOTHING: break; case EM4CONST_COPY: *this = other; break; case EM4CONST_TRANSPOSED: other.getTransposed(*this); break; case EM4CONST_INVERSE: if (!other.getInverse(*this)) memset(M, 0, 16*sizeof(T)); break; case EM4CONST_INVERSE_TRANSPOSED: if (!other.getInverse(*this)) memset(M, 0, 16*sizeof(T)); else *this=getTransposed(); break; } } //! Add another matrix. template inline CMatrix4 CMatrix4::operator+(const CMatrix4& other) const { CMatrix4 temp ( EM4CONST_NOTHING ); temp[0] = M[0]+other[0]; temp[1] = M[1]+other[1]; temp[2] = M[2]+other[2]; temp[3] = M[3]+other[3]; temp[4] = M[4]+other[4]; temp[5] = M[5]+other[5]; temp[6] = M[6]+other[6]; temp[7] = M[7]+other[7]; temp[8] = M[8]+other[8]; temp[9] = M[9]+other[9]; temp[10] = M[10]+other[10]; temp[11] = M[11]+other[11]; temp[12] = M[12]+other[12]; temp[13] = M[13]+other[13]; temp[14] = M[14]+other[14]; temp[15] = M[15]+other[15]; return temp; } //! Add another matrix. template inline CMatrix4& CMatrix4::operator+=(const CMatrix4& other) { M[0]+=other[0]; M[1]+=other[1]; M[2]+=other[2]; M[3]+=other[3]; M[4]+=other[4]; M[5]+=other[5]; M[6]+=other[6]; M[7]+=other[7]; M[8]+=other[8]; M[9]+=other[9]; M[10]+=other[10]; M[11]+=other[11]; M[12]+=other[12]; M[13]+=other[13]; M[14]+=other[14]; M[15]+=other[15]; return *this; } //! Subtract another matrix. template inline CMatrix4 CMatrix4::operator-(const CMatrix4& other) const { CMatrix4 temp ( EM4CONST_NOTHING ); temp[0] = M[0]-other[0]; temp[1] = M[1]-other[1]; temp[2] = M[2]-other[2]; temp[3] = M[3]-other[3]; temp[4] = M[4]-other[4]; temp[5] = M[5]-other[5]; temp[6] = M[6]-other[6]; temp[7] = M[7]-other[7]; temp[8] = M[8]-other[8]; temp[9] = M[9]-other[9]; temp[10] = M[10]-other[10]; temp[11] = M[11]-other[11]; temp[12] = M[12]-other[12]; temp[13] = M[13]-other[13]; temp[14] = M[14]-other[14]; temp[15] = M[15]-other[15]; return temp; } //! Subtract another matrix. template inline CMatrix4& CMatrix4::operator-=(const CMatrix4& other) { M[0]-=other[0]; M[1]-=other[1]; M[2]-=other[2]; M[3]-=other[3]; M[4]-=other[4]; M[5]-=other[5]; M[6]-=other[6]; M[7]-=other[7]; M[8]-=other[8]; M[9]-=other[9]; M[10]-=other[10]; M[11]-=other[11]; M[12]-=other[12]; M[13]-=other[13]; M[14]-=other[14]; M[15]-=other[15]; return *this; } //! Multiply by scalar. template inline CMatrix4 CMatrix4::operator*(const T& scalar) const { CMatrix4 temp ( EM4CONST_NOTHING ); temp[0] = M[0]*scalar; temp[1] = M[1]*scalar; temp[2] = M[2]*scalar; temp[3] = M[3]*scalar; temp[4] = M[4]*scalar; temp[5] = M[5]*scalar; temp[6] = M[6]*scalar; temp[7] = M[7]*scalar; temp[8] = M[8]*scalar; temp[9] = M[9]*scalar; temp[10] = M[10]*scalar; temp[11] = M[11]*scalar; temp[12] = M[12]*scalar; temp[13] = M[13]*scalar; temp[14] = M[14]*scalar; temp[15] = M[15]*scalar; return temp; } //! Multiply by scalar. template inline CMatrix4& CMatrix4::operator*=(const T& scalar) { M[0]*=scalar; M[1]*=scalar; M[2]*=scalar; M[3]*=scalar; M[4]*=scalar; M[5]*=scalar; M[6]*=scalar; M[7]*=scalar; M[8]*=scalar; M[9]*=scalar; M[10]*=scalar; M[11]*=scalar; M[12]*=scalar; M[13]*=scalar; M[14]*=scalar; M[15]*=scalar; return *this; } //! Multiply by another matrix. template inline CMatrix4& CMatrix4::operator*=(const CMatrix4& other) { CMatrix4 temp ( *this ); setbyproduct ( temp, other ); return *this; } //! multiply by another matrix // set this matrix to the product of two other matrices // goal is to reduce stack use and copy template inline void CMatrix4::setbyproduct_nocheck(const CMatrix4& other_a,const CMatrix4& other_b ) { const T *m1 = other_a.M; const T *m2 = other_b.M; M[0] = m1[0]*m2[0] + m1[4]*m2[1] + m1[8]*m2[2] + m1[12]*m2[3]; M[1] = m1[1]*m2[0] + m1[5]*m2[1] + m1[9]*m2[2] + m1[13]*m2[3]; M[2] = m1[2]*m2[0] + m1[6]*m2[1] + m1[10]*m2[2] + m1[14]*m2[3]; M[3] = m1[3]*m2[0] + m1[7]*m2[1] + m1[11]*m2[2] + m1[15]*m2[3]; M[4] = m1[0]*m2[4] + m1[4]*m2[5] + m1[8]*m2[6] + m1[12]*m2[7]; M[5] = m1[1]*m2[4] + m1[5]*m2[5] + m1[9]*m2[6] + m1[13]*m2[7]; M[6] = m1[2]*m2[4] + m1[6]*m2[5] + m1[10]*m2[6] + m1[14]*m2[7]; M[7] = m1[3]*m2[4] + m1[7]*m2[5] + m1[11]*m2[6] + m1[15]*m2[7]; M[8] = m1[0]*m2[8] + m1[4]*m2[9] + m1[8]*m2[10] + m1[12]*m2[11]; M[9] = m1[1]*m2[8] + m1[5]*m2[9] + m1[9]*m2[10] + m1[13]*m2[11]; M[10] = m1[2]*m2[8] + m1[6]*m2[9] + m1[10]*m2[10] + m1[14]*m2[11]; M[11] = m1[3]*m2[8] + m1[7]*m2[9] + m1[11]*m2[10] + m1[15]*m2[11]; M[12] = m1[0]*m2[12] + m1[4]*m2[13] + m1[8]*m2[14] + m1[12]*m2[15]; M[13] = m1[1]*m2[12] + m1[5]*m2[13] + m1[9]*m2[14] + m1[13]*m2[15]; M[14] = m1[2]*m2[12] + m1[6]*m2[13] + m1[10]*m2[14] + m1[14]*m2[15]; M[15] = m1[3]*m2[12] + m1[7]*m2[13] + m1[11]*m2[14] + m1[15]*m2[15]; definitelyIdentityMatrix=false; } //! multiply by another matrix // set this matrix to the product of two other matrices // goal is to reduce stack use and copy template inline void CMatrix4::setbyproduct(const CMatrix4& other_a,const CMatrix4& other_b ) { if ( other_a.isIdentity () ) { *this = other_b; return; } else if ( other_b.isIdentity () ) { *this = other_a; return; } setbyproduct_nocheck(other_a,other_b); } //! multiply by another matrix template inline CMatrix4 CMatrix4::operator*(const CMatrix4& m2) const { // Testing purpose.. if ( this->isIdentity() ) return m2; if ( m2.isIdentity() ) return *this; CMatrix4 m3 ( EM4CONST_NOTHING ); const T *m1 = M; m3[0] = m1[0]*m2[0] + m1[4]*m2[1] + m1[8]*m2[2] + m1[12]*m2[3]; m3[1] = m1[1]*m2[0] + m1[5]*m2[1] + m1[9]*m2[2] + m1[13]*m2[3]; m3[2] = m1[2]*m2[0] + m1[6]*m2[1] + m1[10]*m2[2] + m1[14]*m2[3]; m3[3] = m1[3]*m2[0] + m1[7]*m2[1] + m1[11]*m2[2] + m1[15]*m2[3]; m3[4] = m1[0]*m2[4] + m1[4]*m2[5] + m1[8]*m2[6] + m1[12]*m2[7]; m3[5] = m1[1]*m2[4] + m1[5]*m2[5] + m1[9]*m2[6] + m1[13]*m2[7]; m3[6] = m1[2]*m2[4] + m1[6]*m2[5] + m1[10]*m2[6] + m1[14]*m2[7]; m3[7] = m1[3]*m2[4] + m1[7]*m2[5] + m1[11]*m2[6] + m1[15]*m2[7]; m3[8] = m1[0]*m2[8] + m1[4]*m2[9] + m1[8]*m2[10] + m1[12]*m2[11]; m3[9] = m1[1]*m2[8] + m1[5]*m2[9] + m1[9]*m2[10] + m1[13]*m2[11]; m3[10] = m1[2]*m2[8] + m1[6]*m2[9] + m1[10]*m2[10] + m1[14]*m2[11]; m3[11] = m1[3]*m2[8] + m1[7]*m2[9] + m1[11]*m2[10] + m1[15]*m2[11]; m3[12] = m1[0]*m2[12] + m1[4]*m2[13] + m1[8]*m2[14] + m1[12]*m2[15]; m3[13] = m1[1]*m2[12] + m1[5]*m2[13] + m1[9]*m2[14] + m1[13]*m2[15]; m3[14] = m1[2]*m2[12] + m1[6]*m2[13] + m1[10]*m2[14] + m1[14]*m2[15]; m3[15] = m1[3]*m2[12] + m1[7]*m2[13] + m1[11]*m2[14] + m1[15]*m2[15]; return m3; } template inline vector3df CMatrix4::getTranslation() const { return vector3df(M[12], M[13], M[14]); } template inline void CMatrix4::setTranslation( const vector3df& translation ) { M[12] = translation.X; M[13] = translation.Y; M[14] = translation.Z; definitelyIdentityMatrix=false; } template inline void CMatrix4::setInverseTranslation( const vector3df& translation ) { M[12] = -translation.X; M[13] = -translation.Y; M[14] = -translation.Z; definitelyIdentityMatrix=false; } template inline void CMatrix4::setScale( const vector3df& scale ) { M[0] = scale.X; M[5] = scale.Y; M[10] = scale.Z; definitelyIdentityMatrix=false; } template inline vector3df CMatrix4::getScale() const { return vector3df(M[0],M[5],M[10]); } template inline void CMatrix4::setRotationDegrees( const vector3df& rotation ) { setRotationRadians( rotation * core::DEGTORAD ); } template inline void CMatrix4::setInverseRotationDegrees( const vector3df& rotation ) { setInverseRotationRadians( rotation * core::DEGTORAD ); } template inline void CMatrix4::setRotationRadians( const vector3df& rotation ) { f64 cr = cos( rotation.X ); f64 sr = sin( rotation.X ); f64 cp = cos( rotation.Y ); f64 sp = sin( rotation.Y ); f64 cy = cos( rotation.Z ); f64 sy = sin( rotation.Z ); M[0] = (T)( cp*cy ); M[1] = (T)( cp*sy ); M[2] = (T)( -sp ); f64 srsp = sr*sp; f64 crsp = cr*sp; M[4] = (T)( srsp*cy-cr*sy ); M[5] = (T)( srsp*sy+cr*cy ); M[6] = (T)( sr*cp ); M[8] = (T)( crsp*cy+sr*sy ); M[9] = (T)( crsp*sy-sr*cy ); M[10] = (T)( cr*cp ); definitelyIdentityMatrix=false; } //! Returns the rotation, as set by setRotation(). This code was sent //! in by Chev. template inline core::vector3df CMatrix4::getRotationDegrees() const { const CMatrix4 &mat = *this; f64 Y = -asin(mat(0,2)); f64 C = cos(Y); Y *= RADTODEG64; f64 rotx, roty, X, Z; if (fabs(C)>0.0005f) { rotx = mat(2,2) / C; roty = mat(1,2) / C; X = atan2( roty, rotx ) * RADTODEG64; rotx = mat(0,0) / C; roty = mat(0,1) / C; Z = atan2( roty, rotx ) * RADTODEG64; } else { X = 0.0; rotx = mat(1,1); roty = -mat(1,0); Z = atan2( roty, rotx ) * RADTODEG64; } // fix values that get below zero // before it would set (!) values to 360 // that where above 360: if (X < 0.0) X += 360.0; if (Y < 0.0) Y += 360.0; if (Z < 0.0) Z += 360.0; return vector3df((f32)X,(f32)Y,(f32)Z); } template inline void CMatrix4::setInverseRotationRadians( const vector3df& rotation ) { f64 cr = cos( rotation.X ); f64 sr = sin( rotation.X ); f64 cp = cos( rotation.Y ); f64 sp = sin( rotation.Y ); f64 cy = cos( rotation.Z ); f64 sy = sin( rotation.Z ); M[0] = (T)( cp*cy ); M[4] = (T)( cp*sy ); M[8] = (T)( -sp ); f64 srsp = sr*sp; f64 crsp = cr*sp; M[1] = (T)( srsp*cy-cr*sy ); M[5] = (T)( srsp*sy+cr*cy ); M[9] = (T)( sr*cp ); M[2] = (T)( crsp*cy+sr*sy ); M[6] = (T)( crsp*sy-sr*cy ); M[10] = (T)( cr*cp ); definitelyIdentityMatrix=false; } /*! */ template inline void CMatrix4::makeIdentity() { memset(M, 0, 16*sizeof(T)); M[0] = M[5] = M[10] = M[15] = (T)1; definitelyIdentityMatrix=true; } /* check identity with epsilon solve floating range problems.. */ template inline bool CMatrix4::isIdentity() const { if (definitelyIdentityMatrix) return true; if ( !equals ( M[ 0], (T)1 ) || !equals ( M[ 5], (T)1 ) || !equals ( M[10], (T)1 ) || !equals ( M[15], (T)1 ) ) return false; for (s32 i=0; i<4; ++i) for (s32 j=0; j<4; ++j) if (j != i) if (!iszero((*this)(i,j))) return false; return true; } /* doesn't solve floating range problems.. but takes care on +/- 0 on translation because we are changing it.. reducing floating point branches but it needs the floats in memory.. */ template inline bool CMatrix4::isIdentity_integer_base() const { if (definitelyIdentityMatrix) return true; if(IR(M[0])!=F32_VALUE_1) return false; if(IR(M[1])!=0) return false; if(IR(M[2])!=0) return false; if(IR(M[3])!=0) return false; if(IR(M[4])!=0) return false; if(IR(M[5])!=F32_VALUE_1) return false; if(IR(M[6])!=0) return false; if(IR(M[7])!=0) return false; if(IR(M[8])!=0) return false; if(IR(M[9])!=0) return false; if(IR(M[10])!=F32_VALUE_1) return false; if(IR(M[11])!=0) return false; if(IR(M[12])!=0) return false; if(IR(M[13])!=0) return false; if(IR(M[13])!=0) return false; if(IR(M[15])!=F32_VALUE_1) return false; return true; } template inline void CMatrix4::rotateVect( vector3df& vect ) const { vector3df tmp = vect; vect.X = tmp.X*M[0] + tmp.Y*M[4] + tmp.Z*M[8]; vect.Y = tmp.X*M[1] + tmp.Y*M[5] + tmp.Z*M[9]; vect.Z = tmp.X*M[2] + tmp.Y*M[6] + tmp.Z*M[10]; } //! An alternate transform vector method, writing into an array of 3 floats template inline void CMatrix4::rotateVect(T *out,const core::vector3df &in) const { out[0] = in.X*M[0] + in.Y*M[4] + in.Z*M[8]; out[1] = in.X*M[1] + in.Y*M[5] + in.Z*M[9]; out[2] = in.X*M[2] + in.Y*M[6] + in.Z*M[10]; } template inline void CMatrix4::inverseRotateVect( vector3df& vect ) const { vector3df tmp = vect; vect.X = tmp.X*M[0] + tmp.Y*M[1] + tmp.Z*M[2]; vect.Y = tmp.X*M[4] + tmp.Y*M[5] + tmp.Z*M[6]; vect.Z = tmp.X*M[8] + tmp.Y*M[9] + tmp.Z*M[10]; } template inline void CMatrix4::transformVect( vector3df& vect) const { f32 vector[3]; vector[0] = vect.X*M[0] + vect.Y*M[4] + vect.Z*M[8] + M[12]; vector[1] = vect.X*M[1] + vect.Y*M[5] + vect.Z*M[9] + M[13]; vector[2] = vect.X*M[2] + vect.Y*M[6] + vect.Z*M[10] + M[14]; vect.X = vector[0]; vect.Y = vector[1]; vect.Z = vector[2]; } template inline void CMatrix4::transformVect( vector3df& out, const vector3df& in) const { out.X = in.X*M[0] + in.Y*M[4] + in.Z*M[8] + M[12]; out.Y = in.X*M[1] + in.Y*M[5] + in.Z*M[9] + M[13]; out.Z = in.X*M[2] + in.Y*M[6] + in.Z*M[10] + M[14]; } template inline void CMatrix4::transformVect(T *out,const vector3df &in) const { out[0] = in.X*M[0] + in.Y*M[4] + in.Z*M[8] + M[12]; out[1] = in.X*M[1] + in.Y*M[5] + in.Z*M[9] + M[13]; out[2] = in.X*M[2] + in.Y*M[6] + in.Z*M[10] + M[14]; out[3] = in.X*M[3] + in.Y*M[7] + in.Z*M[11] + M[15]; } //! Transforms a plane by this matrix template inline void CMatrix4::transformPlane( core::plane3d &plane) const { vector3df member; transformVect(member, plane.getMemberPoint()); vector3df origin(0,0,0); transformVect(plane.Normal); transformVect(origin); plane.Normal -= origin; plane.D = - member.dotProduct(plane.Normal); } //! Transforms a plane by this matrix template inline void CMatrix4::transformPlane_new( core::plane3d &plane) const { // rotate normal -> rotateVect ( plane.n ); vector3df n; n.X = plane.Normal.X*M[0] + plane.Normal.Y*M[4] + plane.Normal.Z*M[8]; n.Y = plane.Normal.X*M[1] + plane.Normal.Y*M[5] + plane.Normal.Z*M[9]; n.Z = plane.Normal.X*M[2] + plane.Normal.Y*M[6] + plane.Normal.Z*M[10]; // compute new d. -> getTranslation(). dotproduct ( plane.n ) plane.D -= M[12] * n.X + M[13] * n.Y + M[14] * n.Z; plane.Normal.X = n.X; plane.Normal.Y = n.Y; plane.Normal.Z = n.Z; } //! Transforms a plane by this matrix template inline void CMatrix4::transformPlane( const core::plane3d &in, core::plane3d &out) const { out = in; transformPlane( out ); } //! Transforms a axis aligned bounding box template inline void CMatrix4::transformBox(core::aabbox3d& box) const { if (isIdentity() ) return; transformVect(box.MinEdge); transformVect(box.MaxEdge); box.repair(); } //! Transforms a axis aligned bounding box more accurately than transformBox() template inline void CMatrix4::transformBoxEx(core::aabbox3d& box) const { f32 Amin[3]; f32 Amax[3]; f32 Bmin[3]; f32 Bmax[3]; Amin[0] = box.MinEdge.X; Amin[1] = box.MinEdge.Y; Amin[2] = box.MinEdge.Z; Amax[0] = box.MaxEdge.X; Amax[1] = box.MaxEdge.Y; Amax[2] = box.MaxEdge.Z; Bmin[0] = Bmax[0] = M[12]; Bmin[1] = Bmax[1] = M[13]; Bmin[2] = Bmax[2] = M[14]; u32 i, j; const CMatrix4 &m = *this; for (i = 0; i < 3; ++i) { for (j = 0; j < 3; ++j) { f32 a = m(j,i) * Amin[j]; f32 b = m(j,i) * Amax[j]; if (a < b) { Bmin[i] += a; Bmax[i] += b; } else { Bmin[i] += b; Bmax[i] += a; } } } box.MinEdge.X = Bmin[0]; box.MinEdge.Y = Bmin[1]; box.MinEdge.Z = Bmin[2]; box.MaxEdge.X = Bmax[0]; box.MaxEdge.Y = Bmax[1]; box.MaxEdge.Z = Bmax[2]; } //! Multiplies this matrix by a 1x4 matrix template inline void CMatrix4::multiplyWith1x4Matrix(T* matrix) const { /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ T mat[4]; mat[0] = matrix[0]; mat[1] = matrix[1]; mat[2] = matrix[2]; mat[3] = matrix[3]; matrix[0] = M[0]*mat[0] + M[4]*mat[1] + M[8]*mat[2] + M[12]*mat[3]; matrix[1] = M[1]*mat[0] + M[5]*mat[1] + M[9]*mat[2] + M[13]*mat[3]; matrix[2] = M[2]*mat[0] + M[6]*mat[1] + M[10]*mat[2] + M[14]*mat[3]; matrix[3] = M[3]*mat[0] + M[7]*mat[1] + M[11]*mat[2] + M[15]*mat[3]; } template inline void CMatrix4::inverseTranslateVect( vector3df& vect ) const { vect.X = vect.X-M[12]; vect.Y = vect.Y-M[13]; vect.Z = vect.Z-M[14]; } template inline void CMatrix4::translateVect( vector3df& vect ) const { vect.X = vect.X+M[12]; vect.Y = vect.Y+M[13]; vect.Z = vect.Z+M[14]; } template inline bool CMatrix4::getInverse(CMatrix4& out) const { /// Calculates the inverse of this Matrix /// The inverse is calculated using Cramers rule. /// If no inverse exists then 'false' is returned. const CMatrix4 &m = *this; f32 d = (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0)) * (m(2, 2) * m(3, 3) - m(2, 3) * m(3, 2)) - (m(0, 0) * m(1, 2) - m(0, 2) * m(1, 0)) * (m(2, 1) * m(3, 3) - m(2, 3) * m(3, 1)) + (m(0, 0) * m(1, 3) - m(0, 3) * m(1, 0)) * (m(2, 1) * m(3, 2) - m(2, 2) * m(3, 1)) + (m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1)) * (m(2, 0) * m(3, 3) - m(2, 3) * m(3, 0)) - (m(0, 1) * m(1, 3) - m(0, 3) * m(1, 1)) * (m(2, 0) * m(3, 2) - m(2, 2) * m(3, 0)) + (m(0, 2) * m(1, 3) - m(0, 3) * m(1, 2)) * (m(2, 0) * m(3, 1) - m(2, 1) * m(3, 0)); if( core::iszero ( d ) ) return false; d = core::reciprocal ( d ); out(0, 0) = d * (m(1, 1) * (m(2, 2) * m(3, 3) - m(2, 3) * m(3, 2)) + m(1, 2) * (m(2, 3) * m(3, 1) - m(2, 1) * m(3, 3)) + m(1, 3) * (m(2, 1) * m(3, 2) - m(2, 2) * m(3, 1))); out(0, 1) = d * (m(2, 1) * (m(0, 2) * m(3, 3) - m(0, 3) * m(3, 2)) + m(2, 2) * (m(0, 3) * m(3, 1) - m(0, 1) * m(3, 3)) + m(2, 3) * (m(0, 1) * m(3, 2) - m(0, 2) * m(3, 1))); out(0, 2) = d * (m(3, 1) * (m(0, 2) * m(1, 3) - m(0, 3) * m(1, 2)) + m(3, 2) * (m(0, 3) * m(1, 1) - m(0, 1) * m(1, 3)) + m(3, 3) * (m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1))); out(0, 3) = d * (m(0, 1) * (m(1, 3) * m(2, 2) - m(1, 2) * m(2, 3)) + m(0, 2) * (m(1, 1) * m(2, 3) - m(1, 3) * m(2, 1)) + m(0, 3) * (m(1, 2) * m(2, 1) - m(1, 1) * m(2, 2))); out(1, 0) = d * (m(1, 2) * (m(2, 0) * m(3, 3) - m(2, 3) * m(3, 0)) + m(1, 3) * (m(2, 2) * m(3, 0) - m(2, 0) * m(3, 2)) + m(1, 0) * (m(2, 3) * m(3, 2) - m(2, 2) * m(3, 3))); out(1, 1) = d * (m(2, 2) * (m(0, 0) * m(3, 3) - m(0, 3) * m(3, 0)) + m(2, 3) * (m(0, 2) * m(3, 0) - m(0, 0) * m(3, 2)) + m(2, 0) * (m(0, 3) * m(3, 2) - m(0, 2) * m(3, 3))); out(1, 2) = d * (m(3, 2) * (m(0, 0) * m(1, 3) - m(0, 3) * m(1, 0)) + m(3, 3) * (m(0, 2) * m(1, 0) - m(0, 0) * m(1, 2)) + m(3, 0) * (m(0, 3) * m(1, 2) - m(0, 2) * m(1, 3))); out(1, 3) = d * (m(0, 2) * (m(1, 3) * m(2, 0) - m(1, 0) * m(2, 3)) + m(0, 3) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + m(0, 0) * (m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2))); out(2, 0) = d * (m(1, 3) * (m(2, 0) * m(3, 1) - m(2, 1) * m(3, 0)) + m(1, 0) * (m(2, 1) * m(3, 3) - m(2, 3) * m(3, 1)) + m(1, 1) * (m(2, 3) * m(3, 0) - m(2, 0) * m(3, 3))); out(2, 1) = d * (m(2, 3) * (m(0, 0) * m(3, 1) - m(0, 1) * m(3, 0)) + m(2, 0) * (m(0, 1) * m(3, 3) - m(0, 3) * m(3, 1)) + m(2, 1) * (m(0, 3) * m(3, 0) - m(0, 0) * m(3, 3))); out(2, 2) = d * (m(3, 3) * (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0)) + m(3, 0) * (m(0, 1) * m(1, 3) - m(0, 3) * m(1, 1)) + m(3, 1) * (m(0, 3) * m(1, 0) - m(0, 0) * m(1, 3))); out(2, 3) = d * (m(0, 3) * (m(1, 1) * m(2, 0) - m(1, 0) * m(2, 1)) + m(0, 0) * (m(1, 3) * m(2, 1) - m(1, 1) * m(2, 3)) + m(0, 1) * (m(1, 0) * m(2, 3) - m(1, 3) * m(2, 0))); out(3, 0) = d * (m(1, 0) * (m(2, 2) * m(3, 1) - m(2, 1) * m(3, 2)) + m(1, 1) * (m(2, 0) * m(3, 2) - m(2, 2) * m(3, 0)) + m(1, 2) * (m(2, 1) * m(3, 0) - m(2, 0) * m(3, 1))); out(3, 1) = d * (m(2, 0) * (m(0, 2) * m(3, 1) - m(0, 1) * m(3, 2)) + m(2, 1) * (m(0, 0) * m(3, 2) - m(0, 2) * m(3, 0)) + m(2, 2) * (m(0, 1) * m(3, 0) - m(0, 0) * m(3, 1))); out(3, 2) = d * (m(3, 0) * (m(0, 2) * m(1, 1) - m(0, 1) * m(1, 2)) + m(3, 1) * (m(0, 0) * m(1, 2) - m(0, 2) * m(1, 0)) + m(3, 2) * (m(0, 1) * m(1, 0) - m(0, 0) * m(1, 1))); out(3, 3) = d * (m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) + m(0, 1) * (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2)) + m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))); out.definitelyIdentityMatrix = definitelyIdentityMatrix; return true; } //! Inverts a primitive matrix which only contains a translation and a rotation //! \param out: where result matrix is written to. template inline bool CMatrix4::getInversePrimitive ( CMatrix4& out ) const { out.M[0 ] = M[0]; out.M[1 ] = M[4]; out.M[2 ] = M[8]; out.M[3 ] = 0; out.M[4 ] = M[1]; out.M[5 ] = M[5]; out.M[6 ] = M[9]; out.M[7 ] = 0; out.M[8 ] = M[2]; out.M[9 ] = M[6]; out.M[10] = M[10]; out.M[11] = 0; out.M[12] = (T)-(M[12]*M[0] + M[13]*M[1] + M[14]*M[2]); out.M[13] = (T)-(M[12]*M[4] + M[13]*M[5] + M[14]*M[6]); out.M[14] = (T)-(M[12]*M[8] + M[13]*M[9] + M[14]*M[10]); out.M[15] = 1; out.definitelyIdentityMatrix = definitelyIdentityMatrix; return true; } /*! */ template inline bool CMatrix4::makeInverse() { CMatrix4 temp ( EM4CONST_NOTHING ); if (getInverse(temp)) { *this = temp; return true; } return false; } template inline CMatrix4& CMatrix4::operator=(const CMatrix4 &other) { if (this==&other) return *this; memcpy(M, other.M, 16*sizeof(T)); definitelyIdentityMatrix=other.definitelyIdentityMatrix; return *this; } template inline CMatrix4& CMatrix4::operator=(const T& scalar) { for (s32 i = 0; i < 16; ++i) M[i]=scalar; definitelyIdentityMatrix=false; return *this; } template inline bool CMatrix4::operator==(const CMatrix4 &other) const { if (definitelyIdentityMatrix && other.definitelyIdentityMatrix) return true; for (s32 i = 0; i < 16; ++i) if (M[i] != other.M[i]) return false; return true; } template inline bool CMatrix4::operator!=(const CMatrix4 &other) const { return !(*this == other); } //! Builds a right-handed perspective projection matrix based on a field of view template inline void CMatrix4::buildProjectionMatrixPerspectiveFovRH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar) { f64 h = 1.0/tan(fieldOfViewRadians/2.0); T w = h / aspectRatio; M[0] = w; M[1] = 0; M[2] = 0; M[3] = 0; M[4] = 0; M[5] = (T)h; M[6] = 0; M[7] = 0; M[8] = 0; M[9] = 0; M[10] = (T)(zFar/(zNear-zFar)); // DirectX version // M[10] = (T)(zFar+zNear/(zNear-zFar)); // OpenGL version M[11] = -1; M[12] = 0; M[13] = 0; M[14] = (T)(zNear*zFar/(zNear-zFar)); // DirectX version // M[14] = (T)(2.0f*zNear*zFar/(zNear-zFar)); // OpenGL version M[15] = 0; definitelyIdentityMatrix=false; } //! Builds a left-handed perspective projection matrix based on a field of view template inline void CMatrix4::buildProjectionMatrixPerspectiveFovLH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar) { f64 h = 1.0/tan(fieldOfViewRadians/2.0); T w = (T)(h / aspectRatio); M[0] = w; M[1] = 0; M[2] = 0; M[3] = 0; M[4] = 0; M[5] = (T)h; M[6] = 0; M[7] = 0; M[8] = 0; M[9] = 0; M[10] = (T)(zFar/(zFar-zNear)); M[11] = 1; M[12] = 0; M[13] = 0; M[14] = (T)(-zNear*zFar/(zFar-zNear)); M[15] = 0; definitelyIdentityMatrix=false; } //! Builds a left-handed orthogonal projection matrix. template inline void CMatrix4::buildProjectionMatrixOrthoLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar) { M[0] = (T)(2/widthOfViewVolume); M[1] = 0; M[2] = 0; M[3] = 0; M[4] = 0; M[5] = (T)(2/heightOfViewVolume); M[6] = 0; M[7] = 0; M[8] = 0; M[9] = 0; M[10] = (T)(1/(zFar-zNear)); M[11] = 0; M[12] = 0; M[13] = 0; M[14] = (T)(zNear/(zNear-zFar)); M[15] = 1; definitelyIdentityMatrix=false; } //! Builds a right-handed orthogonal projection matrix. template inline void CMatrix4::buildProjectionMatrixOrthoRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar) { M[0] = (T)(2/widthOfViewVolume); M[1] = 0; M[2] = 0; M[3] = 0; M[4] = 0; M[5] = (T)(2/heightOfViewVolume); M[6] = 0; M[7] = 0; M[8] = 0; M[9] = 0; M[10] = (T)(1/(zNear-zFar)); M[11] = 0; M[12] = 0; M[13] = 0; M[14] = (T)(zNear/(zNear-zFar)); M[15] = -1; definitelyIdentityMatrix=false; } //! Builds a right-handed perspective projection matrix. template inline void CMatrix4::buildProjectionMatrixPerspectiveRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar) { M[0] = (T)(2*zNear/widthOfViewVolume); M[1] = 0; M[2] = 0; M[3] = 0; M[4] = 0; M[5] = (T)(2*zNear/heightOfViewVolume); M[6] = 0; M[7] = 0; M[8] = 0; M[9] = 0; M[10] = (T)(zFar/(zNear-zFar)); M[11] = -1; M[12] = 0; M[13] = 0; M[14] = (T)(zNear*zFar/(zNear-zFar)); M[15] = 0; definitelyIdentityMatrix=false; } //! Builds a left-handed perspective projection matrix. template inline void CMatrix4::buildProjectionMatrixPerspectiveLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar) { M[0] = (T)(2*zNear/widthOfViewVolume); M[1] = 0; M[2] = 0; M[3] = 0; M[4] = 0; M[5] = (T)(2*zNear/heightOfViewVolume); M[6] = 0; M[7] = 0; M[8] = 0; M[9] = 0; M[10] = (T)(zFar/(zFar-zNear)); M[11] = 1; M[12] = 0; M[13] = 0; M[14] = (T)(zNear*zFar/(zNear-zFar)); M[15] = 0; definitelyIdentityMatrix=false; } //! Builds a matrix that flattens geometry into a plane. template inline void CMatrix4::buildShadowMatrix(const core::vector3df& light, core::plane3df plane, f32 point) { plane.Normal.normalize(); f32 d = plane.Normal.dotProduct(light); M[ 0] = (T)(-plane.Normal.X * light.X + d); M[ 1] = (T)(-plane.Normal.X * light.Y); M[ 2] = (T)(-plane.Normal.X * light.Z); M[ 3] = (T)(-plane.Normal.X * point); M[ 4] = (T)(-plane.Normal.Y * light.X); M[ 5] = (T)(-plane.Normal.Y * light.Y + d); M[ 6] = (T)(-plane.Normal.Y * light.Z); M[ 7] = (T)(-plane.Normal.Y * point); M[ 8] = (T)(-plane.Normal.Z * light.X); M[ 9] = (T)(-plane.Normal.Z * light.Y); M[10] = (T)(-plane.Normal.Z * light.Z + d); M[11] = (T)(-plane.Normal.Z * point); M[12] = (T)(-plane.D * light.X); M[13] = (T)(-plane.D * light.Y); M[14] = (T)(-plane.D * light.Z); M[15] = (T)(-plane.D * point + d); definitelyIdentityMatrix=false; } //! Builds a left-handed look-at matrix. template inline void CMatrix4::buildCameraLookAtMatrixLH( const vector3df& position, const vector3df& target, const vector3df& upVector) { vector3df zaxis = target - position; zaxis.normalize(); vector3df xaxis = upVector.crossProduct(zaxis); xaxis.normalize(); vector3df yaxis = zaxis.crossProduct(xaxis); M[0] = (T)xaxis.X; M[1] = (T)yaxis.X; M[2] = (T)zaxis.X; M[3] = 0; M[4] = (T)xaxis.Y; M[5] = (T)yaxis.Y; M[6] = (T)zaxis.Y; M[7] = 0; M[8] = (T)xaxis.Z; M[9] = (T)yaxis.Z; M[10] = (T)zaxis.Z; M[11] = 0; M[12] = (T)-xaxis.dotProduct(position); M[13] = (T)-yaxis.dotProduct(position); M[14] = (T)-zaxis.dotProduct(position); M[15] = 1; definitelyIdentityMatrix=false; } //! Builds a right-handed look-at matrix. template inline void CMatrix4::buildCameraLookAtMatrixRH( const vector3df& position, const vector3df& target, const vector3df& upVector) { vector3df zaxis = position - target; zaxis.normalize(); vector3df xaxis = upVector.crossProduct(zaxis); xaxis.normalize(); vector3df yaxis = zaxis.crossProduct(xaxis); M[0] = (T)xaxis.X; M[1] = (T)yaxis.X; M[2] = (T)zaxis.X; M[3] = 0; M[4] = (T)xaxis.Y; M[5] = (T)yaxis.Y; M[6] = (T)zaxis.Y; M[7] = 0; M[8] = (T)xaxis.Z; M[9] = (T)yaxis.Z; M[10] = (T)zaxis.Z; M[11] = 0; M[12] = (T)-xaxis.dotProduct(position); M[13] = (T)-yaxis.dotProduct(position); M[14] = (T)-zaxis.dotProduct(position); M[15] = 1; definitelyIdentityMatrix=false; } //! creates a new matrix as interpolated matrix from to other ones. //! \param time: Must be a value between 0 and 1. template inline CMatrix4 CMatrix4::interpolate(const core::CMatrix4& b, f32 time) const { CMatrix4 mat ( EM4CONST_NOTHING ); for (u32 i=0; i < 16; i += 4) { mat.M[i+0] = (T)(M[i+0] + ( b.M[i+0] - M[i+0] ) * time); mat.M[i+1] = (T)(M[i+1] + ( b.M[i+1] - M[i+1] ) * time); mat.M[i+2] = (T)(M[i+2] + ( b.M[i+2] - M[i+2] ) * time); mat.M[i+3] = (T)(M[i+3] + ( b.M[i+3] - M[i+3] ) * time); } return mat; } //! returns transposed matrix template inline CMatrix4 CMatrix4::getTransposed() const { CMatrix4 t ( EM4CONST_NOTHING ); getTransposed ( t ); return t; } //! returns transposed matrix template inline void CMatrix4::getTransposed( CMatrix4& o ) const { o[ 0] = M[ 0]; o[ 1] = M[ 4]; o[ 2] = M[ 8]; o[ 3] = M[12]; o[ 4] = M[ 1]; o[ 5] = M[ 5]; o[ 6] = M[ 9]; o[ 7] = M[13]; o[ 8] = M[ 2]; o[ 9] = M[ 6]; o[10] = M[10]; o[11] = M[14]; o[12] = M[ 3]; o[13] = M[ 7]; o[14] = M[11]; o[15] = M[15]; o.definitelyIdentityMatrix=definitelyIdentityMatrix; } // used to scale <-1,-1><1,1> to viewport template inline void CMatrix4::buildNDCToDCMatrix( const core::rect& viewport, f32 zScale) { f32 scaleX = (viewport.getWidth() - 0.75f ) / 2.0f; f32 scaleY = -(viewport.getHeight() - 0.75f ) / 2.0f; f32 dx = -0.5f + ( (viewport.UpperLeftCorner.X + viewport.LowerRightCorner.X ) / 2.0f ); f32 dy = -0.5f + ( (viewport.UpperLeftCorner.Y + viewport.LowerRightCorner.Y ) / 2.0f ); makeIdentity(); M[0] = (T)scaleX; M[5] = (T)scaleY; M[10] = (T)zScale; M[12] = (T)dx; M[13] = (T)dy; definitelyIdentityMatrix=false; } /*! Generate texture coordinates as linear functions so that: u = Ux*x + Uy*y + Uz*z + Uw v = Vx*x + Vy*y + Vz*z + Vw The matrix M for this case is: Ux Vx 0 0 Uy Vy 0 0 Uz Vz 0 0 Uw Vw 0 0 */ template inline void CMatrix4::buildTextureTransform( f32 rotateRad, const core::vector2df &rotatecenter, const core::vector2df &translate, const core::vector2df &scale) { f32 c = cosf(rotateRad); f32 s = sinf(rotateRad); M[0] = (T)(c * scale.X); M[1] = (T)(s * scale.Y); M[2] = 0; M[3] = 0; M[4] = (T)(-s * scale.X); M[5] = (T)(c * scale.Y); M[6] = 0; M[7] = 0; M[8] = (T)(c * scale.X * rotatecenter.X + -s * rotatecenter.Y + translate.X); M[9] = (T)(s * scale.Y * rotatecenter.X + c * rotatecenter.Y + translate.Y); M[10] = 1; M[11] = 0; M[12] = 0; M[13] = 0; M[14] = 0; M[15] = 1; definitelyIdentityMatrix=false; } //! rotate about z axis, center ( 0.5, 0.5 ) template inline void CMatrix4::setTextureRotationCenter( f32 rotateRad ) { f32 c = cosf(rotateRad); f32 s = sinf(rotateRad); M[0] = (T)c; M[1] = (T)s; M[2] = (T)(-0.5f * ( c + s) + 0.5f); M[4] = (T)-s; M[5] = (T)c; M[6] = (T)(-0.5f * (-s + c) + 0.5f); definitelyIdentityMatrix=false; } template inline void CMatrix4::setTextureTranslate ( f32 x, f32 y ) { M[2] = (T)x; M[6] = (T)y; definitelyIdentityMatrix=false; } template inline void CMatrix4::setTextureScale ( f32 sx, f32 sy ) { M[0] = (T)sx; M[5] = (T)sy; definitelyIdentityMatrix=false; } template inline void CMatrix4::setTextureScaleCenter( f32 sx, f32 sy ) { M[0] = (T)sx; M[2] = (T)(-0.5f * sx + 0.5f); M[5] = (T)sy; M[6] = (T)(-0.5f * sy + 0.5f); definitelyIdentityMatrix=false; } //! sets all matrix data members at once template inline void CMatrix4::setM(const T* data) { for (u32 i = 0; i < 16; ++i) M[i] = data[i]; definitelyIdentityMatrix = false; } //! sets if the matrix is definitely identity matrix template inline void CMatrix4::setDefinitelyIdentityMatrix( bool isDefinitelyIdentityMatrix) { definitelyIdentityMatrix = isDefinitelyIdentityMatrix; } //! gets if the matrix is definitely identity matrix template inline bool CMatrix4::getDefinitelyIdentityMatrix() const { return definitelyIdentityMatrix; } //! Multiply by scalar. template inline CMatrix4 operator*(const T scalar, const CMatrix4& mat) { return mat*scalar; } typedef CMatrix4 matrix4; const matrix4 IdentityMatrix(matrix4::EM4CONST_IDENTITY); } // end namespace core } // end namespace irr #endif