/* Fuzzer test tool for zstd Copyright (C) Yann Collet 2014-2105 GPL v2 License This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. You can contact the author at : - ZSTD source repository : https://github.com/Cyan4973/zstd - ZSTD public forum : https://groups.google.com/forum/#!forum/lz4c */ /************************************** * Compiler specific **************************************/ #ifdef _MSC_VER /* Visual Studio */ # define _CRT_SECURE_NO_WARNINGS /* fgets */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4146) /* disable: C4146: minus unsigned expression */ #endif #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #ifdef __GNUC__ # pragma GCC diagnostic ignored "-Wmissing-braces" /* GCC bug 53119 : doesn't accept { 0 } as initializer (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=53119) */ # pragma GCC diagnostic ignored "-Wmissing-field-initializers" /* GCC bug 53119 : doesn't accept { 0 } as initializer (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=53119) */ #endif /************************************** * Includes **************************************/ #include /* free */ #include /* fgets, sscanf */ #include /* timeb */ #include /* strcmp */ #include "zstd_static.h" #include "datagen.h" /* RDG_genBuffer */ #include "xxhash.h" /* XXH64 */ #include "mem.h" /************************************** Constants **************************************/ #ifndef ZSTD_VERSION # define ZSTD_VERSION "" #endif #define KB *(1U<<10) #define MB *(1U<<20) #define GB *(1U<<30) static const U32 nbTestsDefault = 30000; #define COMPRESSIBLE_NOISE_LENGTH (10 MB) #define FUZ_COMPRESSIBILITY_DEFAULT 50 static const U32 prime1 = 2654435761U; static const U32 prime2 = 2246822519U; /************************************** * Display Macros **************************************/ #define DISPLAY(...) fprintf(stderr, __VA_ARGS__) #define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); } static U32 g_displayLevel = 2; #define DISPLAYUPDATE(l, ...) if (g_displayLevel>=l) { \ if ((FUZ_GetMilliSpan(g_displayTime) > g_refreshRate) || (g_displayLevel>=4)) \ { g_displayTime = FUZ_GetMilliStart(); DISPLAY(__VA_ARGS__); \ if (g_displayLevel>=4) fflush(stdout); } } static const U32 g_refreshRate = 150; static U32 g_displayTime = 0; static U32 g_testTime = 0; /********************************************************* * Fuzzer functions *********************************************************/ #define MIN(a,b) ((a)<(b)?(a):(b)) #define MAX(a,b) ((a)>(b)?(a):(b)) static U32 FUZ_GetMilliStart(void) { struct timeb tb; U32 nCount; ftime( &tb ); nCount = (U32) (((tb.time & 0xFFFFF) * 1000) + tb.millitm); return nCount; } static U32 FUZ_GetMilliSpan(U32 nTimeStart) { U32 nCurrent = FUZ_GetMilliStart(); U32 nSpan = nCurrent - nTimeStart; if (nTimeStart > nCurrent) nSpan += 0x100000 * 1000; return nSpan; } # define FUZ_rotl32(x,r) ((x << r) | (x >> (32 - r))) unsigned int FUZ_rand(unsigned int* src) { U32 rand32 = *src; rand32 *= prime1; rand32 += prime2; rand32 = FUZ_rotl32(rand32, 13); *src = rand32; return rand32 >> 5; } static unsigned FUZ_highbit32(U32 v32) { unsigned nbBits = 0; if (v32==0) return 0; while (v32) { v32 >>= 1; nbBits ++; } return nbBits; } static int basicUnitTests(U32 seed, double compressibility) { int testResult = 0; void* CNBuffer; void* compressedBuffer; void* decodedBuffer; U32 randState = seed; size_t result, cSize; U32 testNb=0; /* Create compressible test buffer */ CNBuffer = malloc(COMPRESSIBLE_NOISE_LENGTH); compressedBuffer = malloc(ZSTD_compressBound(COMPRESSIBLE_NOISE_LENGTH)); decodedBuffer = malloc(COMPRESSIBLE_NOISE_LENGTH); if (!CNBuffer || !compressedBuffer || !decodedBuffer) { DISPLAY("Not enough memory, aborting\n"); testResult = 1; goto _end; } RDG_genBuffer(CNBuffer, COMPRESSIBLE_NOISE_LENGTH, compressibility, 0., randState); /* Basic tests */ DISPLAYLEVEL(4, "test%3i : compress %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH); result = ZSTD_compress(compressedBuffer, ZSTD_compressBound(COMPRESSIBLE_NOISE_LENGTH), CNBuffer, COMPRESSIBLE_NOISE_LENGTH, 1); if (ZSTD_isError(result)) goto _output_error; cSize = result; DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/COMPRESSIBLE_NOISE_LENGTH*100); DISPLAYLEVEL(4, "test%3i : decompress %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH); result = ZSTD_decompress(decodedBuffer, COMPRESSIBLE_NOISE_LENGTH, compressedBuffer, cSize); if (ZSTD_isError(result)) goto _output_error; if (result != COMPRESSIBLE_NOISE_LENGTH) goto _output_error; DISPLAYLEVEL(4, "OK \n"); { size_t i; DISPLAYLEVEL(4, "test%3i : check decompressed result : ", testNb++); for (i=0; i "); DISPLAY(__VA_ARGS__); \ DISPLAY(" (seed %u, test nb %u) \n", seed, testNb); goto _output_error; } static const U32 maxSrcLog = 23; static const U32 maxSampleLog = 22; int fuzzerTests(U32 seed, U32 nbTests, unsigned startTest, double compressibility) { BYTE* cNoiseBuffer[5]; BYTE* srcBuffer; BYTE* cBuffer; BYTE* dstBuffer; BYTE* mirrorBuffer; size_t srcBufferSize = (size_t)1<= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); } else { DISPLAYUPDATE(2, "\r%6u ", testNb); } FUZ_rand(&coreSeed); lseed = coreSeed ^ prime1; buffNb = FUZ_rand(&lseed) & 127; if (buffNb & 7) buffNb=2; else { buffNb >>= 3; if (buffNb & 7) { const U32 tnb[2] = { 1, 3 }; buffNb = tnb[buffNb >> 3]; } else { const U32 tnb[2] = { 0, 4 }; buffNb = tnb[buffNb >> 3]; } } srcBuffer = cNoiseBuffer[buffNb]; sampleSizeLog = FUZ_rand(&lseed) % maxSampleLog; sampleSize = (size_t)1 << sampleSizeLog; sampleSize += FUZ_rand(&lseed) & (sampleSize-1); sampleStart = FUZ_rand(&lseed) % (srcBufferSize - sampleSize); /* create sample buffer (to catch read error with valgrind & sanitizers) */ sampleBuffer = (BYTE*)malloc(sampleSize); CHECK (sampleBuffer==NULL, "not enough memory for sample buffer"); memcpy(sampleBuffer, srcBuffer + sampleStart, sampleSize); crcOrig = XXH64(sampleBuffer, sampleSize, 0); /* compression test */ //cLevelMod = MAX(1, 38 - (int)(MAX(9, sampleSizeLog) * 2)); /* high levels only for small samples, for manageable speed */ cLevelMod = MIN( ZSTD_maxCLevel(), (U32)MAX(1, 55 - 3*(int)sampleSizeLog) ); /* high levels only for small samples, for manageable speed */ cLevel = (FUZ_rand(&lseed) % cLevelMod) +1; cSize = ZSTD_compressCCtx(ctx, cBuffer, cBufferSize, sampleBuffer, sampleSize, cLevel); CHECK(ZSTD_isError(cSize), "ZSTD_compressCCtx failed"); /* compression failure test : too small dest buffer */ if (cSize > 3) { const size_t missing = (FUZ_rand(&lseed) % (cSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */ const size_t tooSmallSize = cSize - missing; static const U32 endMark = 0x4DC2B1A9; U32 endCheck; memcpy(dstBuffer+tooSmallSize, &endMark, 4); errorCode = ZSTD_compressCCtx(ctx, dstBuffer, tooSmallSize, sampleBuffer, sampleSize, cLevel); CHECK(!ZSTD_isError(errorCode), "ZSTD_compressCCtx should have failed ! (buffer too small : %u < %u)", (U32)tooSmallSize, (U32)cSize); memcpy(&endCheck, dstBuffer+tooSmallSize, 4); CHECK(endCheck != endMark, "ZSTD_compressCCtx : dst buffer overflow"); } /* decompression header test */ { ZSTD_frameParams dParams; size_t const check = ZSTD_getFrameParams(&dParams, cBuffer, cSize); CHECK(ZSTD_isError(check), "Frame Parameters extraction failed"); CHECK(dParams.frameContentSize != sampleSize, "Frame content size incorrect"); } /* successfull decompression tests*/ dSupSize = (FUZ_rand(&lseed) & 1) ? 0 : (FUZ_rand(&lseed) & 31) + 1; dSize = ZSTD_decompress(dstBuffer, sampleSize + dSupSize, cBuffer, cSize); CHECK(dSize != sampleSize, "ZSTD_decompress failed (%s) (srcSize : %u ; cSize : %u)", ZSTD_getErrorName(dSize), (U32)sampleSize, (U32)cSize); crcDest = XXH64(dstBuffer, sampleSize, 0); CHECK(crcOrig != crcDest, "decompression result corrupted (pos %u / %u)", (U32)findDiff(sampleBuffer, dstBuffer, sampleSize), (U32)sampleSize); free(sampleBuffer); /* no longer useful after this point */ /* truncated src decompression test */ { const size_t missing = (FUZ_rand(&lseed) % (cSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */ const size_t tooSmallSize = cSize - missing; void* cBufferTooSmall = malloc(tooSmallSize); /* valgrind will catch overflows */ CHECK(cBufferTooSmall == NULL, "not enough memory !"); memcpy(cBufferTooSmall, cBuffer, tooSmallSize); errorCode = ZSTD_decompress(dstBuffer, dstBufferSize, cBufferTooSmall, tooSmallSize); CHECK(!ZSTD_isError(errorCode), "ZSTD_decompress should have failed ! (truncated src buffer)"); free(cBufferTooSmall); } /* too small dst decompression test */ if (sampleSize > 3) { const size_t missing = (FUZ_rand(&lseed) % (sampleSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */ const size_t tooSmallSize = sampleSize - missing; static const BYTE token = 0xA9; dstBuffer[tooSmallSize] = token; errorCode = ZSTD_decompress(dstBuffer, tooSmallSize, cBuffer, cSize); CHECK(!ZSTD_isError(errorCode), "ZSTD_decompress should have failed : %u > %u (dst buffer too small)", (U32)errorCode, (U32)tooSmallSize); CHECK(dstBuffer[tooSmallSize] != token, "ZSTD_decompress : dst buffer overflow"); } /* noisy src decompression test */ if (cSize > 6) { const U32 maxNbBits = FUZ_highbit32((U32)(cSize-4)); size_t pos = 4; /* preserve magic number (too easy to detect) */ U32 nbBits = FUZ_rand(&lseed) % maxNbBits; size_t mask = (1<0) nbBits--; mask = (1< cSize ) noiseLength = cSize-pos; noiseStart = FUZ_rand(&lseed) % (srcBufferSize - noiseLength); memcpy(cBuffer + pos, srcBuffer + noiseStart, noiseLength); pos += noiseLength; /* keep some original src */ nbBits = FUZ_rand(&lseed) % maxNbBits; mask = (1<sampleSize), "ZSTD_decompress on noisy src : result is too large : %u > %u (dst buffer)", (U32)errorCode, (U32)sampleSize); memcpy(&endCheck, dstBuffer+sampleSize, 4); CHECK(endMark!=endCheck, "ZSTD_decompress on noisy src : dst buffer overflow"); } } /* Streaming compression of scattered segments test */ XXH64_reset(xxh64, 0); nbChunks = (FUZ_rand(&lseed) & 127) + 2; sampleSizeLog = FUZ_rand(&lseed) % maxSrcLog; maxTestSize = (size_t)1 << sampleSizeLog; maxTestSize += FUZ_rand(&lseed) & (maxTestSize-1); if (maxTestSize >= dstBufferSize) maxTestSize = dstBufferSize-1; sampleSizeLog = FUZ_rand(&lseed) % maxSampleLog; sampleSize = (size_t)1 << sampleSizeLog; sampleSize += FUZ_rand(&lseed) & (sampleSize-1); sampleStart = FUZ_rand(&lseed) % (srcBufferSize - sampleSize); dict = srcBuffer + sampleStart; dictSize = sampleSize; errorCode = ZSTD_compressBegin_usingDict(refCtx, dict, dictSize, (FUZ_rand(&lseed) % (20 - (sampleSizeLog/3))) + 1); CHECK (ZSTD_isError(errorCode), "ZSTD_compressBegin_usingDict error : %s", ZSTD_getErrorName(errorCode)); errorCode = ZSTD_copyCCtx(ctx, refCtx); CHECK (ZSTD_isError(errorCode), "ZSTD_copyCCtx error : %s", ZSTD_getErrorName(errorCode)); totalTestSize = 0; cSize = 0; for (n=0; n maxTestSize) break; errorCode = ZSTD_compressContinue(ctx, cBuffer+cSize, cBufferSize-cSize, srcBuffer+sampleStart, sampleSize); CHECK (ZSTD_isError(errorCode), "multi-segments compression error : %s", ZSTD_getErrorName(errorCode)); cSize += errorCode; XXH64_update(xxh64, srcBuffer+sampleStart, sampleSize); memcpy(mirrorBuffer + totalTestSize, srcBuffer+sampleStart, sampleSize); totalTestSize += sampleSize; } errorCode = ZSTD_compressEnd(ctx, cBuffer+cSize, cBufferSize-cSize); CHECK (ZSTD_isError(errorCode), "multi-segments epilogue error : %s", ZSTD_getErrorName(errorCode)); cSize += errorCode; crcOrig = XXH64_digest(xxh64); /* streaming decompression test */ errorCode = ZSTD_decompressBegin_usingDict(dctx, dict, dictSize); CHECK (ZSTD_isError(errorCode), "cannot init DCtx : %s", ZSTD_getErrorName(errorCode)); totalCSize = 0; totalGenSize = 0; while (totalCSize < cSize) { size_t inSize = ZSTD_nextSrcSizeToDecompress(dctx); size_t genSize = ZSTD_decompressContinue(dctx, dstBuffer+totalGenSize, dstBufferSize-totalGenSize, cBuffer+totalCSize, inSize); CHECK (ZSTD_isError(genSize), "streaming decompression error : %s", ZSTD_getErrorName(genSize)); totalGenSize += genSize; totalCSize += inSize; } CHECK (ZSTD_nextSrcSizeToDecompress(dctx) != 0, "frame not fully decoded"); CHECK (totalGenSize != totalTestSize, "decompressed data : wrong size") CHECK (totalCSize != cSize, "compressed data should be fully read") crcDest = XXH64(dstBuffer, totalTestSize, 0); if (crcDest!=crcOrig) errorCode = findDiff(mirrorBuffer, dstBuffer, totalTestSize); CHECK (crcDest!=crcOrig, "streaming decompressed data corrupted : byte %u / %u (%02X!=%02X)", (U32)errorCode, (U32)totalTestSize, dstBuffer[errorCode], mirrorBuffer[errorCode]); } DISPLAY("\r%u fuzzer tests completed \n", testNb-1); _cleanup: ZSTD_freeCCtx(refCtx); ZSTD_freeCCtx(ctx); ZSTD_freeDCtx(dctx); free(cNoiseBuffer[0]); free(cNoiseBuffer[1]); free(cNoiseBuffer[2]); free(cNoiseBuffer[3]); free(cNoiseBuffer[4]); free(cBuffer); free(dstBuffer); free(mirrorBuffer); return result; _output_error: result = 1; goto _cleanup; } /********************************************************* * Command line *********************************************************/ int FUZ_usage(char* programName) { DISPLAY( "Usage :\n"); DISPLAY( " %s [args]\n", programName); DISPLAY( "\n"); DISPLAY( "Arguments :\n"); DISPLAY( " -i# : Nb of tests (default:%u) \n", nbTestsDefault); DISPLAY( " -s# : Select seed (default:prompt user)\n"); DISPLAY( " -t# : Select starting test number (default:0)\n"); DISPLAY( " -P# : Select compressibility in %% (default:%i%%)\n", FUZ_COMPRESSIBILITY_DEFAULT); DISPLAY( " -v : verbose\n"); DISPLAY( " -p : pause at the end\n"); DISPLAY( " -h : display help and exit\n"); return 0; } int main(int argc, char** argv) { U32 seed=0; int seedset=0; int argNb; int nbTests = nbTestsDefault; int testNb = 0; int proba = FUZ_COMPRESSIBILITY_DEFAULT; int result=0; U32 mainPause = 0; char* programName; /* Check command line */ programName = argv[0]; for(argNb=1; argNb='0') && (*argument<='9')) { nbTests *= 10; nbTests += *argument - '0'; argument++; } break; case 'T': argument++; nbTests=0; g_testTime=0; while ((*argument>='0') && (*argument<='9')) { g_testTime *= 10; g_testTime += *argument - '0'; argument++; } if (*argument=='m') g_testTime *=60, argument++; if (*argument=='n') argument++; g_testTime *= 1000; break; case 's': argument++; seed=0; seedset=1; while ((*argument>='0') && (*argument<='9')) { seed *= 10; seed += *argument - '0'; argument++; } break; case 't': argument++; testNb=0; while ((*argument>='0') && (*argument<='9')) { testNb *= 10; testNb += *argument - '0'; argument++; } break; case 'P': /* compressibility % */ argument++; proba=0; while ((*argument>='0') && (*argument<='9')) { proba *= 10; proba += *argument - '0'; argument++; } if (proba<0) proba=0; if (proba>100) proba=100; break; default: return FUZ_usage(programName); } } } } /* Get Seed */ DISPLAY("Starting zstd tester (%i-bits, %s)\n", (int)(sizeof(size_t)*8), ZSTD_VERSION); if (!seedset) seed = FUZ_GetMilliStart() % 10000; DISPLAY("Seed = %u\n", seed); if (proba!=FUZ_COMPRESSIBILITY_DEFAULT) DISPLAY("Compressibility : %i%%\n", proba); if (testNb==0) result = basicUnitTests(0, ((double)proba) / 100); /* constant seed for predictability */ if (!result) result = fuzzerTests(seed, nbTests, testNb, ((double)proba) / 100); if (mainPause) { int unused; DISPLAY("Press Enter \n"); unused = getchar(); (void)unused; } return result; }