/* * Copyright (c) 2015-present, Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /*-************************************ * Dependencies **************************************/ #include "util.h" /* Compiler options, UTIL_GetFileSize */ #include /* malloc */ #include /* fprintf, fopen, ftello64 */ #include /* strcmp */ #include /* log */ #include #include #include "mem.h" #define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters, ZSTD_estimateCCtxSize */ #include "zstd.h" #include "datagen.h" #include "xxhash.h" #include "util.h" #include "bench.h" /*-************************************ * Constants **************************************/ #define PROGRAM_DESCRIPTION "ZSTD parameters tester" #define AUTHOR "Yann Collet" #define WELCOME_MESSAGE "*** %s %s %i-bits, by %s ***\n", PROGRAM_DESCRIPTION, ZSTD_VERSION_STRING, (int)(sizeof(void*)*8), AUTHOR #define KB *(1<<10) #define MB *(1<<20) #define GB *(1ULL<<30) #define NBLOOPS 2 #define TIMELOOP (2 * SEC_TO_MICRO) #define NB_LEVELS_TRACKED 22 /* ensured being >= ZSTD_maxCLevel() in BMK_init_level_constraints() */ static const size_t maxMemory = (sizeof(size_t)==4) ? (2 GB - 64 MB) : (size_t)(1ULL << ((sizeof(size_t)*8)-31)); #define COMPRESSIBILITY_DEFAULT 0.50 static const U64 g_maxVariationTime = 60 * SEC_TO_MICRO; static const int g_maxNbVariations = 64; /*-************************************ * Macros **************************************/ #define DISPLAY(...) fprintf(stderr, __VA_ARGS__) #undef MIN #undef MAX #define MIN(a,b) ( (a) < (b) ? (a) : (b) ) #define MAX(a,b) ( (a) > (b) ? (a) : (b) ) #define CUSTOM_LEVEL 99 /*-************************************ * Benchmark Parameters **************************************/ static double g_grillDuration_s = 99999; /* about 27 hours */ static U32 g_nbIterations = NBLOOPS; static double g_compressibility = COMPRESSIBILITY_DEFAULT; static U32 g_blockSize = 0; static U32 g_rand = 1; static U32 g_singleRun = 0; static U32 g_target = 0; static U32 g_noSeed = 0; static ZSTD_compressionParameters g_params = { 0, 0, 0, 0, 0, 0, ZSTD_greedy }; void BMK_SetNbIterations(int nbLoops) { g_nbIterations = nbLoops; DISPLAY("- %u iterations -\n", g_nbIterations); } /*-******************************************************* * Private functions *********************************************************/ /* accuracy in seconds only, span can be multiple years */ static double BMK_timeSpan(time_t tStart) { return difftime(time(NULL), tStart); } static size_t BMK_findMaxMem(U64 requiredMem) { size_t const step = 64 MB; void* testmem = NULL; requiredMem = (((requiredMem >> 26) + 1) << 26); if (requiredMem > maxMemory) requiredMem = maxMemory; requiredMem += 2*step; while (!testmem) { requiredMem -= step; testmem = malloc ((size_t)requiredMem); } free (testmem); return (size_t) (requiredMem - step); } static U32 FUZ_rotl32(U32 x, U32 r) { return ((x << r) | (x >> (32 - r))); } U32 FUZ_rand(U32* src) { const U32 prime1 = 2654435761U; const U32 prime2 = 2246822519U; U32 rand32 = *src; rand32 *= prime1; rand32 += prime2; rand32 = FUZ_rotl32(rand32, 13); *src = rand32; return rand32 >> 5; } /** longCommandWArg() : * check if *stringPtr is the same as longCommand. * If yes, @return 1 and advances *stringPtr to the position which immediately follows longCommand. * @return 0 and doesn't modify *stringPtr otherwise. * from zstdcli.c */ static unsigned longCommandWArg(const char** stringPtr, const char* longCommand) { size_t const comSize = strlen(longCommand); int const result = !strncmp(*stringPtr, longCommand, comSize); if (result) *stringPtr += comSize; return result; } /*-******************************************************* * Bench functions *********************************************************/ typedef struct { const char* srcPtr; size_t srcSize; char* cPtr; size_t cRoom; size_t cSize; char* resPtr; size_t resSize; } blockParam_t; const char* g_stratName[ZSTD_btultra+1] = { "(none) ", "ZSTD_fast ", "ZSTD_dfast ", "ZSTD_greedy ", "ZSTD_lazy ", "ZSTD_lazy2 ", "ZSTD_btlazy2 ", "ZSTD_btopt ", "ZSTD_btultra "}; /* TODO: support additional parameters (more files, fileSizes) */ //TODO: benchMem dctx can't = NULL in new system static size_t BMK_benchParam(BMK_result_t* resultPtr, const void* srcBuffer, size_t srcSize, ZSTD_CCtx* ctx, ZSTD_DCtx* dctx, const ZSTD_compressionParameters cParams) { BMK_return_t res = BMK_benchMem(srcBuffer,srcSize, &srcSize, 1, 0, &cParams, NULL, 0, ctx, dctx, 0, "File"); *resultPtr = res.result; return res.errorCode; } static void BMK_printWinner(FILE* f, U32 cLevel, BMK_result_t result, ZSTD_compressionParameters params, size_t srcSize) { char lvlstr[15] = "Custom Level"; DISPLAY("\r%79s\r", ""); fprintf(f," {%3u,%3u,%3u,%3u,%3u,%3u, %s }, ", params.windowLog, params.chainLog, params.hashLog, params.searchLog, params.searchLength, params.targetLength, g_stratName[(U32)(params.strategy)]); if(cLevel != CUSTOM_LEVEL) { snprintf(lvlstr, 15, " Level %2u ", cLevel); } fprintf(f, "/* %s */ /* R:%5.3f at %5.1f MB/s - %5.1f MB/s */\n", lvlstr, (double)srcSize / result.cSize, result.cSpeed / 1000000., result.dSpeed / 1000000.); } typedef struct { BMK_result_t result; ZSTD_compressionParameters params; } winnerInfo_t; static void BMK_printWinners2(FILE* f, const winnerInfo_t* winners, size_t srcSize) { int cLevel; fprintf(f, "\n /* Proposed configurations : */ \n"); fprintf(f, " /* W, C, H, S, L, T, strat */ \n"); for (cLevel=0; cLevel <= NB_LEVELS_TRACKED; cLevel++) BMK_printWinner(f, cLevel, winners[cLevel].result, winners[cLevel].params, srcSize); } static void BMK_printWinners(FILE* f, const winnerInfo_t* winners, size_t srcSize) { fseek(f, 0, SEEK_SET); BMK_printWinners2(f, winners, srcSize); fflush(f); BMK_printWinners2(stdout, winners, srcSize); } typedef struct { double cSpeed_min; double dSpeed_min; U32 windowLog_max; ZSTD_strategy strategy_max; } level_constraints_t; static level_constraints_t g_level_constraint[NB_LEVELS_TRACKED+1]; static void BMK_init_level_constraints(int bytePerSec_level1) { assert(NB_LEVELS_TRACKED >= ZSTD_maxCLevel()); memset(g_level_constraint, 0, sizeof(g_level_constraint)); g_level_constraint[1].cSpeed_min = bytePerSec_level1; g_level_constraint[1].dSpeed_min = 0.; g_level_constraint[1].windowLog_max = 19; g_level_constraint[1].strategy_max = ZSTD_fast; /* establish speed objectives (relative to level 1) */ { int l; for (l=2; l<=NB_LEVELS_TRACKED; l++) { g_level_constraint[l].cSpeed_min = (g_level_constraint[l-1].cSpeed_min * 49) / 64; g_level_constraint[l].dSpeed_min = 0.; g_level_constraint[l].windowLog_max = (l<20) ? 23 : l+5; /* only --ultra levels >= 20 can use windowlog > 23 */ g_level_constraint[l].strategy_max = (l<19) ? ZSTD_btopt : ZSTD_btultra; /* level 19 is allowed to use btultra */ } } } static int BMK_seed(winnerInfo_t* winners, const ZSTD_compressionParameters params, const void* srcBuffer, size_t srcSize, ZSTD_CCtx* ctx, ZSTD_DCtx* dctx) { BMK_result_t testResult; int better = 0; int cLevel; BMK_benchParam(&testResult, srcBuffer, srcSize, ctx, dctx, params); for (cLevel = 1; cLevel <= NB_LEVELS_TRACKED; cLevel++) { if (testResult.cSpeed < g_level_constraint[cLevel].cSpeed_min) continue; /* not fast enough for this level */ if (testResult.dSpeed < g_level_constraint[cLevel].dSpeed_min) continue; /* not fast enough for this level */ if (params.windowLog > g_level_constraint[cLevel].windowLog_max) continue; /* too much memory for this level */ if (params.strategy > g_level_constraint[cLevel].strategy_max) continue; /* forbidden strategy for this level */ if (winners[cLevel].result.cSize==0) { /* first solution for this cLevel */ winners[cLevel].result = testResult; winners[cLevel].params = params; BMK_printWinner(stdout, cLevel, testResult, params, srcSize); better = 1; continue; } if ((double)testResult.cSize <= ((double)winners[cLevel].result.cSize * (1. + (0.02 / cLevel))) ) { /* Validate solution is "good enough" */ double W_ratio = (double)srcSize / testResult.cSize; double O_ratio = (double)srcSize / winners[cLevel].result.cSize; double W_ratioNote = log (W_ratio); double O_ratioNote = log (O_ratio); size_t W_DMemUsed = (1 << params.windowLog) + (16 KB); size_t O_DMemUsed = (1 << winners[cLevel].params.windowLog) + (16 KB); double W_DMemUsed_note = W_ratioNote * ( 40 + 9*cLevel) - log((double)W_DMemUsed); double O_DMemUsed_note = O_ratioNote * ( 40 + 9*cLevel) - log((double)O_DMemUsed); size_t W_CMemUsed = (1 << params.windowLog) + ZSTD_estimateCCtxSize_usingCParams(params); size_t O_CMemUsed = (1 << winners[cLevel].params.windowLog) + ZSTD_estimateCCtxSize_usingCParams(winners[cLevel].params); double W_CMemUsed_note = W_ratioNote * ( 50 + 13*cLevel) - log((double)W_CMemUsed); double O_CMemUsed_note = O_ratioNote * ( 50 + 13*cLevel) - log((double)O_CMemUsed); double W_CSpeed_note = W_ratioNote * ( 30 + 10*cLevel) + log(testResult.cSpeed); double O_CSpeed_note = O_ratioNote * ( 30 + 10*cLevel) + log(winners[cLevel].result.cSpeed); double W_DSpeed_note = W_ratioNote * ( 20 + 2*cLevel) + log(testResult.dSpeed); double O_DSpeed_note = O_ratioNote * ( 20 + 2*cLevel) + log(winners[cLevel].result.dSpeed); if (W_DMemUsed_note < O_DMemUsed_note) { /* uses too much Decompression memory for too little benefit */ if (W_ratio > O_ratio) DISPLAY ("Decompression Memory : %5.3f @ %4.1f MB vs %5.3f @ %4.1f MB : not enough for level %i\n", W_ratio, (double)(W_DMemUsed) / 1024 / 1024, O_ratio, (double)(O_DMemUsed) / 1024 / 1024, cLevel); continue; } if (W_CMemUsed_note < O_CMemUsed_note) { /* uses too much memory for compression for too little benefit */ if (W_ratio > O_ratio) DISPLAY ("Compression Memory : %5.3f @ %4.1f MB vs %5.3f @ %4.1f MB : not enough for level %i\n", W_ratio, (double)(W_CMemUsed) / 1024 / 1024, O_ratio, (double)(O_CMemUsed) / 1024 / 1024, cLevel); continue; } if (W_CSpeed_note < O_CSpeed_note ) { /* too large compression speed difference for the compression benefit */ if (W_ratio > O_ratio) DISPLAY ("Compression Speed : %5.3f @ %4.1f MB/s vs %5.3f @ %4.1f MB/s : not enough for level %i\n", W_ratio, testResult.cSpeed / 1000000, O_ratio, winners[cLevel].result.cSpeed / 1000000., cLevel); continue; } if (W_DSpeed_note < O_DSpeed_note ) { /* too large decompression speed difference for the compression benefit */ if (W_ratio > O_ratio) DISPLAY ("Decompression Speed : %5.3f @ %4.1f MB/s vs %5.3f @ %4.1f MB/s : not enough for level %i\n", W_ratio, testResult.dSpeed / 1000000., O_ratio, winners[cLevel].result.dSpeed / 1000000., cLevel); continue; } if (W_ratio < O_ratio) DISPLAY("Solution %4.3f selected over %4.3f at level %i, due to better secondary statistics \n", W_ratio, O_ratio, cLevel); winners[cLevel].result = testResult; winners[cLevel].params = params; BMK_printWinner(stdout, cLevel, testResult, params, srcSize); better = 1; } } return better; } /* nullified useless params, to ensure count stats */ static ZSTD_compressionParameters* sanitizeParams(ZSTD_compressionParameters params) { g_params = params; if (params.strategy == ZSTD_fast) g_params.chainLog = 0, g_params.searchLog = 0; if (params.strategy == ZSTD_dfast) g_params.searchLog = 0; if (params.strategy != ZSTD_btopt && params.strategy != ZSTD_btultra) g_params.targetLength = 0; return &g_params; } static void paramVariation(ZSTD_compressionParameters* ptr) { ZSTD_compressionParameters p; U32 validated = 0; while (!validated) { U32 nbChanges = (FUZ_rand(&g_rand) & 3) + 1; p = *ptr; for ( ; nbChanges ; nbChanges--) { const U32 changeID = FUZ_rand(&g_rand) % 14; switch(changeID) { case 0: p.chainLog++; break; case 1: p.chainLog--; break; case 2: p.hashLog++; break; case 3: p.hashLog--; break; case 4: p.searchLog++; break; case 5: p.searchLog--; break; case 6: p.windowLog++; break; case 7: p.windowLog--; break; case 8: p.searchLength++; break; case 9: p.searchLength--; break; case 10: p.strategy = (ZSTD_strategy)(((U32)p.strategy)+1); break; case 11: p.strategy = (ZSTD_strategy)(((U32)p.strategy)-1); break; case 12: p.targetLength *= 1 + ((double)(FUZ_rand(&g_rand)&255)) / 256.; break; case 13: p.targetLength /= 1 + ((double)(FUZ_rand(&g_rand)&255)) / 256.; break; } } validated = !ZSTD_isError(ZSTD_checkCParams(p)); } *ptr = p; } #define PARAMTABLELOG 25 #define PARAMTABLESIZE (1<> 3) & PARAMTABLEMASK] static void playAround(FILE* f, winnerInfo_t* winners, ZSTD_compressionParameters params, const void* srcBuffer, size_t srcSize, ZSTD_CCtx* ctx, ZSTD_DCtx* dctx) { int nbVariations = 0; UTIL_time_t const clockStart = UTIL_getTime(); while (UTIL_clockSpanMicro(clockStart) < g_maxVariationTime) { ZSTD_compressionParameters p = params; if (nbVariations++ > g_maxNbVariations) break; paramVariation(&p); /* exclude faster if already played params */ if (FUZ_rand(&g_rand) & ((1 << NB_TESTS_PLAYED(p))-1)) continue; /* test */ NB_TESTS_PLAYED(p)++; if (!BMK_seed(winners, p, srcBuffer, srcSize, ctx, dctx)) continue; /* improvement found => search more */ BMK_printWinners(f, winners, srcSize); playAround(f, winners, p, srcBuffer, srcSize, ctx, dctx); } } static ZSTD_compressionParameters randomParams(void) { ZSTD_compressionParameters p; U32 validated = 0; while (!validated) { /* totally random entry */ p.chainLog = (FUZ_rand(&g_rand) % (ZSTD_CHAINLOG_MAX+1 - ZSTD_CHAINLOG_MIN)) + ZSTD_CHAINLOG_MIN; p.hashLog = (FUZ_rand(&g_rand) % (ZSTD_HASHLOG_MAX+1 - ZSTD_HASHLOG_MIN)) + ZSTD_HASHLOG_MIN; p.searchLog = (FUZ_rand(&g_rand) % (ZSTD_SEARCHLOG_MAX+1 - ZSTD_SEARCHLOG_MIN)) + ZSTD_SEARCHLOG_MIN; p.windowLog = (FUZ_rand(&g_rand) % (ZSTD_WINDOWLOG_MAX+1 - ZSTD_WINDOWLOG_MIN)) + ZSTD_WINDOWLOG_MIN; p.searchLength=(FUZ_rand(&g_rand) % (ZSTD_SEARCHLENGTH_MAX+1 - ZSTD_SEARCHLENGTH_MIN)) + ZSTD_SEARCHLENGTH_MIN; p.targetLength=(FUZ_rand(&g_rand) % (512)); p.strategy = (ZSTD_strategy) (FUZ_rand(&g_rand) % (ZSTD_btultra +1)); validated = !ZSTD_isError(ZSTD_checkCParams(p)); } return p; } static void BMK_selectRandomStart( FILE* f, winnerInfo_t* winners, const void* srcBuffer, size_t srcSize, ZSTD_CCtx* ctx, ZSTD_DCtx* dctx) { U32 const id = FUZ_rand(&g_rand) % (NB_LEVELS_TRACKED+1); if ((id==0) || (winners[id].params.windowLog==0)) { /* use some random entry */ ZSTD_compressionParameters const p = ZSTD_adjustCParams(randomParams(), srcSize, 0); playAround(f, winners, p, srcBuffer, srcSize, ctx, dctx); } else { playAround(f, winners, winners[id].params, srcBuffer, srcSize, ctx, dctx); } } static void BMK_benchOnce(ZSTD_CCtx* cctx, ZSTD_DCtx* dctx, const void* srcBuffer, size_t srcSize) { BMK_result_t testResult; g_params = ZSTD_adjustCParams(g_params, srcSize, 0); BMK_benchParam(&testResult, srcBuffer, srcSize, cctx, dctx, g_params); DISPLAY("Compression Ratio: %.3f Compress Speed: %.1f MB/s Decompress Speed: %.1f MB/s\n", (double)srcSize / testResult.cSize, testResult.cSpeed / 1000000, testResult.dSpeed / 1000000); return; } static void BMK_benchFullTable(ZSTD_CCtx* cctx, ZSTD_DCtx* dctx, const void* srcBuffer, size_t srcSize) { ZSTD_compressionParameters params; winnerInfo_t winners[NB_LEVELS_TRACKED+1]; const char* const rfName = "grillResults.txt"; FILE* const f = fopen(rfName, "w"); const size_t blockSize = g_blockSize ? g_blockSize : srcSize; /* cut by block or not ? */ /* init */ assert(g_singleRun==0); memset(winners, 0, sizeof(winners)); if (f==NULL) { DISPLAY("error opening %s \n", rfName); exit(1); } if (g_target) { BMK_init_level_constraints(g_target*1000000); } else { /* baseline config for level 1 */ ZSTD_compressionParameters const l1params = ZSTD_getCParams(1, blockSize, 0); BMK_result_t testResult; BMK_benchParam(&testResult, srcBuffer, srcSize, cctx, dctx, l1params); BMK_init_level_constraints((int)((testResult.cSpeed * 31) / 32)); } /* populate initial solution */ { const int maxSeeds = g_noSeed ? 1 : ZSTD_maxCLevel(); int i; for (i=0; i<=maxSeeds; i++) { params = ZSTD_getCParams(i, blockSize, 0); BMK_seed(winners, params, srcBuffer, srcSize, cctx, dctx); } } BMK_printWinners(f, winners, srcSize); /* start tests */ { const time_t grillStart = time(NULL); do { BMK_selectRandomStart(f, winners, srcBuffer, srcSize, cctx, dctx); } while (BMK_timeSpan(grillStart) < g_grillDuration_s); } /* end summary */ BMK_printWinners(f, winners, srcSize); DISPLAY("grillParams operations completed \n"); /* clean up*/ fclose(f); } static void BMK_benchMem_usingCCtx(ZSTD_CCtx* const cctx, ZSTD_DCtx* const dctx, const void* srcBuffer, size_t srcSize) { if (g_singleRun) return BMK_benchOnce(cctx, dctx, srcBuffer, srcSize); else return BMK_benchFullTable(cctx, dctx, srcBuffer, srcSize); } static void BMK_benchMemCCtxInit(const void* srcBuffer, size_t srcSize) { ZSTD_CCtx* const cctx = ZSTD_createCCtx(); ZSTD_DCtx* const dctx = ZSTD_createDCtx(); if (cctx==NULL || dctx==NULL) { DISPLAY("Context Creation failed \n"); exit(1); } BMK_benchMem_usingCCtx(cctx, dctx, srcBuffer, srcSize); ZSTD_freeCCtx(cctx); } static int benchSample(void) { const char* const name = "Sample 10MB"; size_t const benchedSize = 10000000; void* origBuff = malloc(benchedSize); if (!origBuff) { perror("not enough memory"); return 12; } /* Fill buffer */ RDG_genBuffer(origBuff, benchedSize, g_compressibility, 0.0, 0); /* bench */ DISPLAY("\r%79s\r", ""); DISPLAY("using %s %i%%: \n", name, (int)(g_compressibility*100)); BMK_benchMemCCtxInit(origBuff, benchedSize); free(origBuff); return 0; } /* benchFiles() : * note: while this function takes a table of filenames, * in practice, only the first filename will be used */ int benchFiles(const char** fileNamesTable, int nbFiles) { int fileIdx=0; /* Loop for each file */ while (fileIdx inFileSize) benchedSize = (size_t)inFileSize; if (benchedSize < inFileSize) DISPLAY("Not enough memory for '%s' full size; testing %i MB only...\n", inFileName, (int)(benchedSize>>20)); origBuff = malloc(benchedSize); if (origBuff==NULL) { DISPLAY("\nError: not enough memory!\n"); fclose(inFile); return 12; } /* Fill input buffer */ DISPLAY("Loading %s... \r", inFileName); { size_t const readSize = fread(origBuff, 1, benchedSize, inFile); fclose(inFile); if(readSize != benchedSize) { DISPLAY("\nError: problem reading file '%s' !! \n", inFileName); free(origBuff); return 13; } } /* bench */ DISPLAY("\r%79s\r", ""); DISPLAY("using %s : \n", inFileName); BMK_benchMemCCtxInit(origBuff, benchedSize); /* clean */ free(origBuff); } return 0; } static void BMK_translateAdvancedParams(ZSTD_compressionParameters params) { DISPLAY("--zstd=windowLog=%u,chainLog=%u,hashLog=%u,searchLog=%u,searchLength=%u,targetLength=%u,strategy=%u \n", params.windowLog, params.chainLog, params.hashLog, params.searchLog, params.searchLength, params.targetLength, (U32)(params.strategy)); } /* optimizeForSize(): * targetSpeed : expressed in MB/s */ int optimizeForSize(const char* inFileName, U32 targetSpeed) { FILE* const inFile = fopen( inFileName, "rb" ); U64 const inFileSize = UTIL_getFileSize(inFileName); size_t benchedSize = BMK_findMaxMem(inFileSize*3) / 3; void* origBuff; /* Init */ if (inFile==NULL) { DISPLAY( "Pb opening %s\n", inFileName); return 11; } if (inFileSize == UTIL_FILESIZE_UNKNOWN) { DISPLAY("Pb evaluatin size of %s \n", inFileName); fclose(inFile); return 11; } /* Memory allocation & restrictions */ if ((U64)benchedSize > inFileSize) benchedSize = (size_t)inFileSize; if (benchedSize < inFileSize) { DISPLAY("Not enough memory for '%s' \n", inFileName); fclose(inFile); return 11; } /* Alloc */ origBuff = malloc(benchedSize); if(!origBuff) { DISPLAY("\nError: not enough memory!\n"); fclose(inFile); return 12; } /* Fill input buffer */ DISPLAY("Loading %s... \r", inFileName); { size_t const readSize = fread(origBuff, 1, benchedSize, inFile); fclose(inFile); if(readSize != benchedSize) { DISPLAY("\nError: problem reading file '%s' !! \n", inFileName); free(origBuff); return 13; } } /* bench */ DISPLAY("\r%79s\r", ""); DISPLAY("optimizing for %s - limit speed %u MB/s \n", inFileName, targetSpeed); targetSpeed *= 1000000; { ZSTD_CCtx* const ctx = ZSTD_createCCtx(); ZSTD_DCtx* const dctx = ZSTD_createDCtx(); winnerInfo_t winner; BMK_result_t candidate; const size_t blockSize = g_blockSize ? g_blockSize : benchedSize; /* init */ if (ctx==NULL) { DISPLAY("\n ZSTD_createCCtx error \n"); free(origBuff); return 14;} memset(&winner, 0, sizeof(winner)); winner.result.cSize = (size_t)(-1); /* find best solution from default params */ { const int maxSeeds = g_noSeed ? 1 : ZSTD_maxCLevel(); int i; for (i=1; i<=maxSeeds; i++) { ZSTD_compressionParameters const CParams = ZSTD_getCParams(i, blockSize, 0); BMK_benchParam(&candidate, origBuff, benchedSize, ctx, dctx, CParams); if (candidate.cSpeed < (double)targetSpeed) { break; } if ( (candidate.cSize < winner.result.cSize) | ((candidate.cSize == winner.result.cSize) & (candidate.cSpeed > winner.result.cSpeed)) ) { winner.params = CParams; winner.result = candidate; BMK_printWinner(stdout, i, winner.result, winner.params, benchedSize); } } } BMK_printWinner(stdout, CUSTOM_LEVEL, winner.result, winner.params, benchedSize); BMK_translateAdvancedParams(winner.params); /* start tests */ { time_t const grillStart = time(NULL); do { ZSTD_compressionParameters params = winner.params; paramVariation(¶ms); if ((FUZ_rand(&g_rand) & 31) == 3) params = randomParams(); /* totally random config to improve search space */ params = ZSTD_adjustCParams(params, blockSize, 0); /* exclude faster if already played set of params */ if (FUZ_rand(&g_rand) & ((1 << NB_TESTS_PLAYED(params))-1)) continue; /* test */ NB_TESTS_PLAYED(params)++; BMK_benchParam(&candidate, origBuff, benchedSize, ctx, dctx, params); /* improvement found => new winner */ if ( (candidate.cSpeed > targetSpeed) & ( (candidate.cSize < winner.result.cSize) | ((candidate.cSize == winner.result.cSize) & (candidate.cSpeed > winner.result.cSpeed)) ) ) { winner.params = params; winner.result = candidate; BMK_printWinner(stdout, CUSTOM_LEVEL, winner.result, winner.params, benchedSize); BMK_translateAdvancedParams(winner.params); } } while (BMK_timeSpan(grillStart) < g_grillDuration_s); } /* end summary */ BMK_printWinner(stdout, CUSTOM_LEVEL, winner.result, winner.params, benchedSize); BMK_translateAdvancedParams(winner.params); DISPLAY("grillParams size - optimizer completed \n"); /* clean up*/ ZSTD_freeCCtx(ctx); ZSTD_freeDCtx(dctx); } free(origBuff); return 0; } static void errorOut(const char* msg) { DISPLAY("%s \n", msg); exit(1); } /*! readU32FromChar() : * @return : unsigned integer value read from input in `char` format. * allows and interprets K, KB, KiB, M, MB and MiB suffix. * Will also modify `*stringPtr`, advancing it to position where it stopped reading. * Note : function will exit() program if digit sequence overflows */ static unsigned readU32FromChar(const char** stringPtr) { const char errorMsg[] = "error: numeric value too large"; unsigned result = 0; while ((**stringPtr >='0') && (**stringPtr <='9')) { unsigned const max = (((unsigned)(-1)) / 10) - 1; if (result > max) errorOut(errorMsg); result *= 10, result += **stringPtr - '0', (*stringPtr)++ ; } if ((**stringPtr=='K') || (**stringPtr=='M')) { unsigned const maxK = ((unsigned)(-1)) >> 10; if (result > maxK) errorOut(errorMsg); result <<= 10; if (**stringPtr=='M') { if (result > maxK) errorOut(errorMsg); result <<= 10; } (*stringPtr)++; /* skip `K` or `M` */ if (**stringPtr=='i') (*stringPtr)++; if (**stringPtr=='B') (*stringPtr)++; } return result; } static int usage(const char* exename) { DISPLAY( "Usage :\n"); DISPLAY( " %s [arg] file\n", exename); DISPLAY( "Arguments :\n"); DISPLAY( " file : path to the file used as reference (if none, generates a compressible sample)\n"); DISPLAY( " -H/-h : Help (this text + advanced options)\n"); return 0; } static int usage_advanced(void) { DISPLAY( "\nAdvanced options :\n"); DISPLAY( " -T# : set level 1 speed objective \n"); DISPLAY( " -B# : cut input into blocks of size # (default : single block) \n"); DISPLAY( " -i# : iteration loops [1-9](default : %i) \n", NBLOOPS); DISPLAY( " -O# : find Optimized parameters for # MB/s compression speed (default : 0) \n"); DISPLAY( " -S : Single run \n"); DISPLAY( " --zstd : Single run, parameter selection same as zstdcli \n"); DISPLAY( " -P# : generated sample compressibility (default : %.1f%%) \n", COMPRESSIBILITY_DEFAULT * 100); DISPLAY( " -t# : Caps runtime of operation in seconds (default : %u seconds (%.1f hours)) \n", (U32)g_grillDuration_s, g_grillDuration_s / 3600); DISPLAY( " -v : Prints Benchmarking output\n"); return 0; } static int badusage(const char* exename) { DISPLAY("Wrong parameters\n"); usage(exename); return 1; } int main(int argc, const char** argv) { int i, filenamesStart=0, result; const char* exename=argv[0]; const char* input_filename=0; U32 optimizer = 0; U32 main_pause = 0; U32 targetSpeed = 0; assert(argc>=1); /* for exename */ /* Welcome message */ DISPLAY(WELCOME_MESSAGE); for(i=1; i>10); break; /* caps runtime (in seconds) */ case 't': argument++; g_grillDuration_s = (double)readU32FromChar(&argument); break; /* Unknown command */ default : return badusage(exename); } } continue; } /* if (argument[0]=='-') */ /* first provided filename is input */ if (!input_filename) { input_filename=argument; filenamesStart=i; continue; } } if (filenamesStart==0) { if (optimizer) { DISPLAY("Optimizer Expects File\n"); return 1; } else { result = benchSample(); } } else { if (optimizer) { result = optimizeForSize(input_filename, targetSpeed); } else { result = benchFiles(argv+filenamesStart, argc-filenamesStart); } } if (main_pause) { int unused; printf("press enter...\n"); unused = getchar(); (void)unused; } return result; }