/* ****************************************************************** Error codes and messages Copyright (C) 2013-2015, Yann Collet BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef ERROR_H_MODULE #define ERROR_H_MODULE #if defined (__cplusplus) extern "C" { #endif #include /* size_t, ptrdiff_t */ #include "zstd_v03.h" /****************************************** * Compiler-specific ******************************************/ #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # define ERR_STATIC static inline #elif defined(_MSC_VER) # define ERR_STATIC static __inline #elif defined(__GNUC__) # define ERR_STATIC static __attribute__((unused)) #else # define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ #endif /****************************************** * Error Management ******************************************/ #define PREFIX(name) ZSTD_error_##name #define ERROR(name) (size_t)-PREFIX(name) #define ERROR_LIST(ITEM) \ ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \ ITEM(PREFIX(memory_allocation)) \ ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \ ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \ ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \ ITEM(PREFIX(maxCode)) #define ERROR_GENERATE_ENUM(ENUM) ENUM, typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */ #define ERROR_CONVERTTOSTRING(STRING) #STRING, #define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR) ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); } #if defined (__cplusplus) } #endif #endif /* ERROR_H_MODULE */ /* ****************************************************************** mem.h low-level memory access routines Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef MEM_H_MODULE #define MEM_H_MODULE #if defined (__cplusplus) extern "C" { #endif /****************************************** * Includes ******************************************/ #include /* size_t, ptrdiff_t */ #include /* memcpy */ /****************************************** * Compiler-specific ******************************************/ #if defined(__GNUC__) # define MEM_STATIC static __attribute__((unused)) #elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # define MEM_STATIC static inline #elif defined(_MSC_VER) # define MEM_STATIC static __inline #else # define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ #endif /**************************************************************** * Basic Types *****************************************************************/ #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # include typedef uint8_t BYTE; typedef uint16_t U16; typedef int16_t S16; typedef uint32_t U32; typedef int32_t S32; typedef uint64_t U64; typedef int64_t S64; #else typedef unsigned char BYTE; typedef unsigned short U16; typedef signed short S16; typedef unsigned int U32; typedef signed int S32; typedef unsigned long long U64; typedef signed long long S64; #endif /**************************************************************** * Memory I/O *****************************************************************/ /* MEM_FORCE_MEMORY_ACCESS * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. * The below switch allow to select different access method for improved performance. * Method 0 (default) : use `memcpy()`. Safe and portable. * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. * Method 2 : direct access. This method is portable but violate C standard. * It can generate buggy code on targets generating assembly depending on alignment. * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details. * Prefer these methods in priority order (0 > 1 > 2) */ #ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) # define MEM_FORCE_MEMORY_ACCESS 2 # elif defined(__INTEL_COMPILER) || \ (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) # define MEM_FORCE_MEMORY_ACCESS 1 # endif #endif MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; } MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; } MEM_STATIC unsigned MEM_isLittleEndian(void) { const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ return one.c[0]; } #if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2) /* violates C standard on structure alignment. Only use if no other choice to achieve best performance on target platform */ MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; } MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; } MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; } MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; } MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; } MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; } #elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1) /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ /* currently only defined for gcc and icc */ typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign; MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; } MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; } MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; } MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign*)memPtr)->u32 = value; } MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign*)memPtr)->u64 = value; } #else /* default method, safe and standard. can sometimes prove slower */ MEM_STATIC U16 MEM_read16(const void* memPtr) { U16 val; memcpy(&val, memPtr, sizeof(val)); return val; } MEM_STATIC U32 MEM_read32(const void* memPtr) { U32 val; memcpy(&val, memPtr, sizeof(val)); return val; } MEM_STATIC U64 MEM_read64(const void* memPtr) { U64 val; memcpy(&val, memPtr, sizeof(val)); return val; } MEM_STATIC void MEM_write16(void* memPtr, U16 value) { memcpy(memPtr, &value, sizeof(value)); } MEM_STATIC void MEM_write32(void* memPtr, U32 value) { memcpy(memPtr, &value, sizeof(value)); } MEM_STATIC void MEM_write64(void* memPtr, U64 value) { memcpy(memPtr, &value, sizeof(value)); } #endif // MEM_FORCE_MEMORY_ACCESS MEM_STATIC U16 MEM_readLE16(const void* memPtr) { if (MEM_isLittleEndian()) return MEM_read16(memPtr); else { const BYTE* p = (const BYTE*)memPtr; return (U16)(p[0] + (p[1]<<8)); } } MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val) { if (MEM_isLittleEndian()) { MEM_write16(memPtr, val); } else { BYTE* p = (BYTE*)memPtr; p[0] = (BYTE)val; p[1] = (BYTE)(val>>8); } } MEM_STATIC U32 MEM_readLE32(const void* memPtr) { if (MEM_isLittleEndian()) return MEM_read32(memPtr); else { const BYTE* p = (const BYTE*)memPtr; return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24)); } } MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32) { if (MEM_isLittleEndian()) { MEM_write32(memPtr, val32); } else { BYTE* p = (BYTE*)memPtr; p[0] = (BYTE)val32; p[1] = (BYTE)(val32>>8); p[2] = (BYTE)(val32>>16); p[3] = (BYTE)(val32>>24); } } MEM_STATIC U64 MEM_readLE64(const void* memPtr) { if (MEM_isLittleEndian()) return MEM_read64(memPtr); else { const BYTE* p = (const BYTE*)memPtr; return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24) + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56)); } } MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64) { if (MEM_isLittleEndian()) { MEM_write64(memPtr, val64); } else { BYTE* p = (BYTE*)memPtr; p[0] = (BYTE)val64; p[1] = (BYTE)(val64>>8); p[2] = (BYTE)(val64>>16); p[3] = (BYTE)(val64>>24); p[4] = (BYTE)(val64>>32); p[5] = (BYTE)(val64>>40); p[6] = (BYTE)(val64>>48); p[7] = (BYTE)(val64>>56); } } MEM_STATIC size_t MEM_readLEST(const void* memPtr) { if (MEM_32bits()) return (size_t)MEM_readLE32(memPtr); else return (size_t)MEM_readLE64(memPtr); } MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val) { if (MEM_32bits()) MEM_writeLE32(memPtr, (U32)val); else MEM_writeLE64(memPtr, (U64)val); } #if defined (__cplusplus) } #endif #endif /* MEM_H_MODULE */ /* ****************************************************************** bitstream Part of NewGen Entropy library header file (to include) Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef BITSTREAM_H_MODULE #define BITSTREAM_H_MODULE #if defined (__cplusplus) extern "C" { #endif /* * This API consists of small unitary functions, which highly benefit from being inlined. * Since link-time-optimization is not available for all compilers, * these functions are defined into a .h to be included. */ /********************************************** * bitStream decompression API (read backward) **********************************************/ typedef struct { size_t bitContainer; unsigned bitsConsumed; const char* ptr; const char* start; } BIT_DStream_t; typedef enum { BIT_DStream_unfinished = 0, BIT_DStream_endOfBuffer = 1, BIT_DStream_completed = 2, BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize); MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits); MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD); MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD); /* * Start by invoking BIT_initDStream(). * A chunk of the bitStream is then stored into a local register. * Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t). * You can then retrieve bitFields stored into the local register, **in reverse order**. * Local register is manually filled from memory by the BIT_reloadDStream() method. * A reload guarantee a minimum of ((8*sizeof(size_t))-7) bits when its result is BIT_DStream_unfinished. * Otherwise, it can be less than that, so proceed accordingly. * Checking if DStream has reached its end can be performed with BIT_endOfDStream() */ /****************************************** * unsafe API ******************************************/ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits); /* faster, but works only if nbBits >= 1 */ /**************************************************************** * Helper functions ****************************************************************/ MEM_STATIC unsigned BIT_highbit32 (register U32 val) { # if defined(_MSC_VER) /* Visual */ unsigned long r=0; _BitScanReverse ( &r, val ); return (unsigned) r; # elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */ return 31 - __builtin_clz (val); # else /* Software version */ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; U32 v = val; unsigned r; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27]; return r; # endif } /********************************************************** * bitStream decoding **********************************************************/ /*!BIT_initDStream * Initialize a BIT_DStream_t. * @bitD : a pointer to an already allocated BIT_DStream_t structure * @srcBuffer must point at the beginning of a bitStream * @srcSize must be the exact size of the bitStream * @result : size of stream (== srcSize) or an errorCode if a problem is detected */ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize) { if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); } if (srcSize >= sizeof(size_t)) /* normal case */ { U32 contain32; bitD->start = (const char*)srcBuffer; bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t); bitD->bitContainer = MEM_readLEST(bitD->ptr); contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */ bitD->bitsConsumed = 8 - BIT_highbit32(contain32); } else { U32 contain32; bitD->start = (const char*)srcBuffer; bitD->ptr = bitD->start; bitD->bitContainer = *(const BYTE*)(bitD->start); switch(srcSize) { case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16); case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24); case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32); case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8; default:; } contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */ bitD->bitsConsumed = 8 - BIT_highbit32(contain32); bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8; } return srcSize; } /*!BIT_lookBits * Provides next n bits from local register * local register is not modified (bits are still present for next read/look) * On 32-bits, maxNbBits==25 * On 64-bits, maxNbBits==57 * @return : value extracted */ MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits) { const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask); } /*! BIT_lookBitsFast : * unsafe version; only works only if nbBits >= 1 */ MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits) { const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask); } MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits) { bitD->bitsConsumed += nbBits; } /*!BIT_readBits * Read next n bits from local register. * pay attention to not read more than nbBits contained into local register. * @return : extracted value. */ MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits) { size_t value = BIT_lookBits(bitD, nbBits); BIT_skipBits(bitD, nbBits); return value; } /*!BIT_readBitsFast : * unsafe version; only works only if nbBits >= 1 */ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits) { size_t value = BIT_lookBitsFast(bitD, nbBits); BIT_skipBits(bitD, nbBits); return value; } MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD) { if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */ return BIT_DStream_overflow; if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) { bitD->ptr -= bitD->bitsConsumed >> 3; bitD->bitsConsumed &= 7; bitD->bitContainer = MEM_readLEST(bitD->ptr); return BIT_DStream_unfinished; } if (bitD->ptr == bitD->start) { if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer; return BIT_DStream_completed; } { U32 nbBytes = bitD->bitsConsumed >> 3; BIT_DStream_status result = BIT_DStream_unfinished; if (bitD->ptr - nbBytes < bitD->start) { nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */ result = BIT_DStream_endOfBuffer; } bitD->ptr -= nbBytes; bitD->bitsConsumed -= nbBytes*8; bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */ return result; } } /*! BIT_endOfDStream * @return Tells if DStream has reached its exact end */ MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream) { return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8)); } #if defined (__cplusplus) } #endif #endif /* BITSTREAM_H_MODULE */ /* ****************************************************************** Error codes and messages Copyright (C) 2013-2015, Yann Collet BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef ERROR_H_MODULE #define ERROR_H_MODULE #if defined (__cplusplus) extern "C" { #endif /****************************************** * Compiler-specific ******************************************/ #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # define ERR_STATIC static inline #elif defined(_MSC_VER) # define ERR_STATIC static __inline #elif defined(__GNUC__) # define ERR_STATIC static __attribute__((unused)) #else # define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ #endif /****************************************** * Error Management ******************************************/ #define PREFIX(name) ZSTD_error_##name #define ERROR(name) (size_t)-PREFIX(name) #define ERROR_LIST(ITEM) \ ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \ ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \ ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \ ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \ ITEM(PREFIX(maxCode)) #define ERROR_GENERATE_ENUM(ENUM) ENUM, typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */ #define ERROR_CONVERTTOSTRING(STRING) #STRING, #define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR) static const char* ERR_strings[] = { ERROR_LIST(ERROR_GENERATE_STRING) }; ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); } ERR_STATIC const char* ERR_getErrorName(size_t code) { static const char* codeError = "Unspecified error code"; if (ERR_isError(code)) return ERR_strings[-(int)(code)]; return codeError; } #if defined (__cplusplus) } #endif #endif /* ERROR_H_MODULE */ /* Constructor and Destructor of type FSE_CTable Note that its size depends on 'tableLog' and 'maxSymbolValue' */ typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */ typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ /* ****************************************************************** FSE : Finite State Entropy coder header file for static linking (only) Copyright (C) 2013-2015, Yann Collet BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #if defined (__cplusplus) extern "C" { #endif /****************************************** * Static allocation ******************************************/ /* FSE buffer bounds */ #define FSE_NCOUNTBOUND 512 #define FSE_BLOCKBOUND(size) (size + (size>>7)) #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ /* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */ #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2)) #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<= BIT_DStream_completed When it's done, verify decompression is fully completed, by checking both DStream and the relevant states. Checking if DStream has reached its end is performed by : BIT_endOfDStream(&DStream); Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible. FSE_endOfDState(&DState); */ /****************************************** * FSE unsafe API ******************************************/ static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ /****************************************** * Implementation of inline functions ******************************************/ /* decompression */ typedef struct { U16 tableLog; U16 fastMode; } FSE_DTableHeader; /* sizeof U32 */ typedef struct { unsigned short newState; unsigned char symbol; unsigned char nbBits; } FSE_decode_t; /* size == U32 */ MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) { FSE_DTableHeader DTableH; memcpy(&DTableH, dt, sizeof(DTableH)); DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog); BIT_reloadDStream(bitD); DStatePtr->table = dt + 1; } MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) { const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; const U32 nbBits = DInfo.nbBits; BYTE symbol = DInfo.symbol; size_t lowBits = BIT_readBits(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; return symbol; } MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) { const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; const U32 nbBits = DInfo.nbBits; BYTE symbol = DInfo.symbol; size_t lowBits = BIT_readBitsFast(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; return symbol; } MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) { return DStatePtr->state == 0; } #if defined (__cplusplus) } #endif /* ****************************************************************** Huff0 : Huffman coder, part of New Generation Entropy library header file for static linking (only) Copyright (C) 2013-2015, Yann Collet BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - Source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #if defined (__cplusplus) extern "C" { #endif /****************************************** * Static allocation macros ******************************************/ /* Huff0 buffer bounds */ #define HUF_CTABLEBOUND 129 #define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */ #define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ /* static allocation of Huff0's DTable */ #define HUF_DTABLE_SIZE(maxTableLog) (1 + (1< /* size_t */ /* ************************************* * Version ***************************************/ #define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */ #define ZSTD_VERSION_MINOR 2 /* for new (non-breaking) interface capabilities */ #define ZSTD_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */ #define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE) /* ************************************* * Advanced functions ***************************************/ typedef struct ZSTD_CCtx_s ZSTD_CCtx; /* incomplete type */ #if defined (__cplusplus) } #endif /* zstd - standard compression library Header File for static linking only Copyright (C) 2014-2015, Yann Collet. BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - zstd source repository : https://github.com/Cyan4973/zstd - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c */ /* The objects defined into this file should be considered experimental. * They are not labelled stable, as their prototype may change in the future. * You can use them for tests, provide feedback, or if you can endure risk of future changes. */ #if defined (__cplusplus) extern "C" { #endif /* ************************************* * Streaming functions ***************************************/ typedef struct ZSTD_DCtx_s ZSTD_DCtx; /* Use above functions alternatively. ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue(). ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block. Result is the number of bytes regenerated within 'dst'. It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header. */ /* ************************************* * Prefix - version detection ***************************************/ #define ZSTD_magicNumber 0xFD2FB523 /* v0.3 */ #if defined (__cplusplus) } #endif /* ****************************************************************** FSE : Finite State Entropy coder Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ #ifndef FSE_COMMONDEFS_ONLY /**************************************************************** * Tuning parameters ****************************************************************/ /* MEMORY_USAGE : * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) * Increasing memory usage improves compression ratio * Reduced memory usage can improve speed, due to cache effect * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ #define FSE_MAX_MEMORY_USAGE 14 #define FSE_DEFAULT_MEMORY_USAGE 13 /* FSE_MAX_SYMBOL_VALUE : * Maximum symbol value authorized. * Required for proper stack allocation */ #define FSE_MAX_SYMBOL_VALUE 255 /**************************************************************** * template functions type & suffix ****************************************************************/ #define FSE_FUNCTION_TYPE BYTE #define FSE_FUNCTION_EXTENSION /**************************************************************** * Byte symbol type ****************************************************************/ #endif /* !FSE_COMMONDEFS_ONLY */ /**************************************************************** * Compiler specifics ****************************************************************/ #ifdef _MSC_VER /* Visual Studio */ # define FORCE_INLINE static __forceinline # include /* For Visual 2005 */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */ #else # ifdef __GNUC__ # define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) # define FORCE_INLINE static inline __attribute__((always_inline)) # else # define FORCE_INLINE static inline # endif #endif /**************************************************************** * Includes ****************************************************************/ #include /* malloc, free, qsort */ #include /* memcpy, memset */ #include /* printf (debug) */ /**************************************************************** * Constants *****************************************************************/ #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) #define FSE_MAX_TABLESIZE (1U< FSE_TABLELOG_ABSOLUTE_MAX #error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" #endif /**************************************************************** * Error Management ****************************************************************/ #define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ /**************************************************************** * Complex types ****************************************************************/ typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)]; /**************************************************************** * Templates ****************************************************************/ /* designed to be included for type-specific functions (template emulation in C) Objective is to write these functions only once, for improved maintenance */ /* safety checks */ #ifndef FSE_FUNCTION_EXTENSION # error "FSE_FUNCTION_EXTENSION must be defined" #endif #ifndef FSE_FUNCTION_TYPE # error "FSE_FUNCTION_TYPE must be defined" #endif /* Function names */ #define FSE_CAT(X,Y) X##Y #define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y) #define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y) /* Function templates */ #define FSE_DECODE_TYPE FSE_decode_t static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; } static size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) { void* ptr = dt+1; FSE_DTableHeader DTableH; FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)ptr; const U32 tableSize = 1 << tableLog; const U32 tableMask = tableSize-1; const U32 step = FSE_tableStep(tableSize); U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1]; U32 position = 0; U32 highThreshold = tableSize-1; const S16 largeLimit= (S16)(1 << (tableLog-1)); U32 noLarge = 1; U32 s; /* Sanity Checks */ if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge); if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Init, lay down lowprob symbols */ DTableH.tableLog = (U16)tableLog; for (s=0; s<=maxSymbolValue; s++) { if (normalizedCounter[s]==-1) { tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s; symbolNext[s] = 1; } else { if (normalizedCounter[s] >= largeLimit) noLarge=0; symbolNext[s] = normalizedCounter[s]; } } /* Spread symbols */ for (s=0; s<=maxSymbolValue; s++) { int i; for (i=0; i highThreshold) position = (position + step) & tableMask; /* lowprob area */ } } if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ /* Build Decoding table */ { U32 i; for (i=0; i FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge); bitStream >>= 4; bitCount = 4; *tableLogPtr = nbBits; remaining = (1<1) && (charnum<=*maxSVPtr)) { if (previous0) { unsigned n0 = charnum; while ((bitStream & 0xFFFF) == 0xFFFF) { n0+=24; if (ip < iend-5) { ip+=2; bitStream = MEM_readLE32(ip) >> bitCount; } else { bitStream >>= 16; bitCount+=16; } } while ((bitStream & 3) == 3) { n0+=3; bitStream>>=2; bitCount+=2; } n0 += bitStream & 3; bitCount += 2; if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall); while (charnum < n0) normalizedCounter[charnum++] = 0; if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { ip += bitCount>>3; bitCount &= 7; bitStream = MEM_readLE32(ip) >> bitCount; } else bitStream >>= 2; } { const short max = (short)((2*threshold-1)-remaining); short count; if ((bitStream & (threshold-1)) < (U32)max) { count = (short)(bitStream & (threshold-1)); bitCount += nbBits-1; } else { count = (short)(bitStream & (2*threshold-1)); if (count >= threshold) count -= max; bitCount += nbBits; } count--; /* extra accuracy */ remaining -= FSE_abs(count); normalizedCounter[charnum++] = count; previous0 = !count; while (remaining < threshold) { nbBits--; threshold >>= 1; } { if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { ip += bitCount>>3; bitCount &= 7; } else { bitCount -= (int)(8 * (iend - 4 - ip)); ip = iend - 4; } bitStream = MEM_readLE32(ip) >> (bitCount & 31); } } } if (remaining != 1) return ERROR(GENERIC); *maxSVPtr = charnum-1; ip += (bitCount+7)>>3; if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong); return ip-istart; } /********************************************************* * Decompression (Byte symbols) *********************************************************/ static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue) { void* ptr = dt; FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1; DTableH->tableLog = 0; DTableH->fastMode = 0; cell->newState = 0; cell->symbol = symbolValue; cell->nbBits = 0; return 0; } static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits) { void* ptr = dt; FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1; const unsigned tableSize = 1 << nbBits; const unsigned tableMask = tableSize - 1; const unsigned maxSymbolValue = tableMask; unsigned s; /* Sanity checks */ if (nbBits < 1) return ERROR(GENERIC); /* min size */ /* Build Decoding Table */ DTableH->tableLog = (U16)nbBits; DTableH->fastMode = 1; for (s=0; s<=maxSymbolValue; s++) { dinfo[s].newState = 0; dinfo[s].symbol = (BYTE)s; dinfo[s].nbBits = (BYTE)nbBits; } return 0; } FORCE_INLINE size_t FSE_decompress_usingDTable_generic( void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt, const unsigned fast) { BYTE* const ostart = (BYTE*) dst; BYTE* op = ostart; BYTE* const omax = op + maxDstSize; BYTE* const olimit = omax-3; BIT_DStream_t bitD; FSE_DState_t state1; FSE_DState_t state2; size_t errorCode; /* Init */ errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */ if (FSE_isError(errorCode)) return errorCode; FSE_initDState(&state1, &bitD, dt); FSE_initDState(&state2, &bitD, dt); #define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD) /* 4 symbols per loop */ for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op sizeof(bitD.bitContainer)*8) /* This test must be static */ BIT_reloadDStream(&bitD); op[1] = FSE_GETSYMBOL(&state2); if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } } op[2] = FSE_GETSYMBOL(&state1); if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ BIT_reloadDStream(&bitD); op[3] = FSE_GETSYMBOL(&state2); } /* tail */ /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */ while (1) { if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) ) break; *op++ = FSE_GETSYMBOL(&state1); if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) ) break; *op++ = FSE_GETSYMBOL(&state2); } /* end ? */ if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2)) return op-ostart; if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */ return ERROR(corruption_detected); } static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt) { FSE_DTableHeader DTableH; memcpy(&DTableH, dt, sizeof(DTableH)); /* select fast mode (static) */ if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1); return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0); } static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize) { const BYTE* const istart = (const BYTE*)cSrc; const BYTE* ip = istart; short counting[FSE_MAX_SYMBOL_VALUE+1]; DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */ unsigned tableLog; unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE; size_t errorCode; if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */ /* normal FSE decoding mode */ errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize); if (FSE_isError(errorCode)) return errorCode; if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */ ip += errorCode; cSrcSize -= errorCode; errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog); if (FSE_isError(errorCode)) return errorCode; /* always return, even if it is an error code */ return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); } #endif /* FSE_COMMONDEFS_ONLY */ /* ****************************************************************** Huff0 : Huffman coder, part of New Generation Entropy library Copyright (C) 2013-2015, Yann Collet. BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy - Public forum : https://groups.google.com/forum/#!forum/lz4c ****************************************************************** */ /**************************************************************** * Compiler specifics ****************************************************************/ #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) /* inline is defined */ #elif defined(_MSC_VER) # define inline __inline #else # define inline /* disable inline */ #endif #ifdef _MSC_VER /* Visual Studio */ # define FORCE_INLINE static __forceinline # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ #else # ifdef __GNUC__ # define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) # define FORCE_INLINE static inline __attribute__((always_inline)) # else # define FORCE_INLINE static inline # endif #endif /**************************************************************** * Includes ****************************************************************/ #include /* malloc, free, qsort */ #include /* memcpy, memset */ #include /* printf (debug) */ /**************************************************************** * Error Management ****************************************************************/ #define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ /****************************************** * Helper functions ******************************************/ static unsigned HUF_isError(size_t code) { return ERR_isError(code); } #define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */ #define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */ #define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */ #define HUF_MAX_SYMBOL_VALUE 255 #if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG) # error "HUF_MAX_TABLELOG is too large !" #endif /********************************************************* * Huff0 : Huffman block decompression *********************************************************/ typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */ typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */ typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t; /*! HUF_readStats Read compact Huffman tree, saved by HUF_writeCTable @huffWeight : destination buffer @return : size read from `src` */ static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr, const void* src, size_t srcSize) { U32 weightTotal; U32 tableLog; const BYTE* ip = (const BYTE*) src; size_t iSize = ip[0]; size_t oSize; U32 n; //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */ if (iSize >= 128) /* special header */ { if (iSize >= (242)) /* RLE */ { static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 }; oSize = l[iSize-242]; memset(huffWeight, 1, hwSize); iSize = 0; } else /* Incompressible */ { oSize = iSize - 127; iSize = ((oSize+1)/2); if (iSize+1 > srcSize) return ERROR(srcSize_wrong); if (oSize >= hwSize) return ERROR(corruption_detected); ip += 1; for (n=0; n> 4; huffWeight[n+1] = ip[n/2] & 15; } } } else /* header compressed with FSE (normal case) */ { if (iSize+1 > srcSize) return ERROR(srcSize_wrong); oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */ if (FSE_isError(oSize)) return oSize; } /* collect weight stats */ memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32)); weightTotal = 0; for (n=0; n= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected); rankStats[huffWeight[n]]++; weightTotal += (1 << huffWeight[n]) >> 1; } /* get last non-null symbol weight (implied, total must be 2^n) */ tableLog = BIT_highbit32(weightTotal) + 1; if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected); { U32 total = 1 << tableLog; U32 rest = total - weightTotal; U32 verif = 1 << BIT_highbit32(rest); U32 lastWeight = BIT_highbit32(rest) + 1; if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */ huffWeight[oSize] = (BYTE)lastWeight; rankStats[lastWeight]++; } /* check tree construction validity */ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */ /* results */ *nbSymbolsPtr = (U32)(oSize+1); *tableLogPtr = tableLog; return iSize+1; } /**************************/ /* single-symbol decoding */ /**************************/ static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize) { BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1]; U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */ U32 tableLog = 0; const BYTE* ip = (const BYTE*) src; size_t iSize = ip[0]; U32 nbSymbols = 0; U32 n; U32 nextRankStart; void* ptr = DTable+1; HUF_DEltX2* const dt = (HUF_DEltX2*)(ptr); HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */ //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */ iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize); if (HUF_isError(iSize)) return iSize; /* check result */ if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */ DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */ /* Prepare ranks */ nextRankStart = 0; for (n=1; n<=tableLog; n++) { U32 current = nextRankStart; nextRankStart += (rankVal[n] << (n-1)); rankVal[n] = current; } /* fill DTable */ for (n=0; n> 1; U32 i; HUF_DEltX2 D; D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w); for (i = rankVal[w]; i < rankVal[w] + length; i++) dt[i] = D; rankVal[w] += length; } return iSize; } static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog) { const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ const BYTE c = dt[val].byte; BIT_skipBits(Dstream, dt[val].nbBits); return c; } #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ if (MEM_64bits()) \ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog) { BYTE* const pStart = p; /* up to 4 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) { HUF_DECODE_SYMBOLX2_2(p, bitDPtr); HUF_DECODE_SYMBOLX2_1(p, bitDPtr); HUF_DECODE_SYMBOLX2_2(p, bitDPtr); HUF_DECODE_SYMBOLX2_0(p, bitDPtr); } /* closer to the end */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd)) HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no more data to retrieve from bitstream, hence no need to reload */ while (p < pEnd) HUF_DECODE_SYMBOLX2_0(p, bitDPtr); return pEnd-pStart; } static size_t HUF_decompress4X2_usingDTable( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const U16* DTable) { if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ { const BYTE* const istart = (const BYTE*) cSrc; BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; const void* ptr = DTable; const HUF_DEltX2* const dt = ((const HUF_DEltX2*)ptr) +1; const U32 dtLog = DTable[0]; size_t errorCode; /* Init */ BIT_DStream_t bitD1; BIT_DStream_t bitD2; BIT_DStream_t bitD3; BIT_DStream_t bitD4; const size_t length1 = MEM_readLE16(istart); const size_t length2 = MEM_readLE16(istart+2); const size_t length3 = MEM_readLE16(istart+4); size_t length4; const BYTE* const istart1 = istart + 6; /* jumpTable */ const BYTE* const istart2 = istart1 + length1; const BYTE* const istart3 = istart2 + length2; const BYTE* const istart4 = istart3 + length3; const size_t segmentSize = (dstSize+3) / 4; BYTE* const opStart2 = ostart + segmentSize; BYTE* const opStart3 = opStart2 + segmentSize; BYTE* const opStart4 = opStart3 + segmentSize; BYTE* op1 = ostart; BYTE* op2 = opStart2; BYTE* op3 = opStart3; BYTE* op4 = opStart4; U32 endSignal; length4 = cSrcSize - (length1 + length2 + length3 + 6); if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ errorCode = BIT_initDStream(&bitD1, istart1, length1); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD2, istart2, length2); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD3, istart3, length3); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD4, istart4, length4); if (HUF_isError(errorCode)) return errorCode; /* 16-32 symbols per loop (4-8 symbols per stream) */ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) { HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_1(op1, &bitD1); HUF_DECODE_SYMBOLX2_1(op2, &bitD2); HUF_DECODE_SYMBOLX2_1(op3, &bitD3); HUF_DECODE_SYMBOLX2_1(op4, &bitD4); HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_0(op1, &bitD1); HUF_DECODE_SYMBOLX2_0(op2, &bitD2); HUF_DECODE_SYMBOLX2_0(op3, &bitD3); HUF_DECODE_SYMBOLX2_0(op4, &bitD4); endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); } /* check corruption */ if (op1 > opStart2) return ERROR(corruption_detected); if (op2 > opStart3) return ERROR(corruption_detected); if (op3 > opStart4) return ERROR(corruption_detected); /* note : op4 supposed already verified within main loop */ /* finish bitStreams one by one */ HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); /* check */ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); if (!endSignal) return ERROR(corruption_detected); /* decoded size */ return dstSize; } } static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) { HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG); const BYTE* ip = (const BYTE*) cSrc; size_t errorCode; errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize); if (HUF_isError(errorCode)) return errorCode; if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); ip += errorCode; cSrcSize -= errorCode; return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable); } /***************************/ /* double-symbols decoding */ /***************************/ static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed, const U32* rankValOrigin, const int minWeight, const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, U32 nbBitsBaseline, U16 baseSeq) { HUF_DEltX4 DElt; U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; U32 s; /* get pre-calculated rankVal */ memcpy(rankVal, rankValOrigin, sizeof(rankVal)); /* fill skipped values */ if (minWeight>1) { U32 i, skipSize = rankVal[minWeight]; MEM_writeLE16(&(DElt.sequence), baseSeq); DElt.nbBits = (BYTE)(consumed); DElt.length = 1; for (i = 0; i < skipSize; i++) DTable[i] = DElt; } /* fill DTable */ for (s=0; s= 1 */ rankVal[weight] += length; } } typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1]; static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog, const sortedSymbol_t* sortedList, const U32 sortedListSize, const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight, const U32 nbBitsBaseline) { U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ const U32 minBits = nbBitsBaseline - maxWeight; U32 s; memcpy(rankVal, rankValOrigin, sizeof(rankVal)); /* fill DTable */ for (s=0; s= minBits) /* enough room for a second symbol */ { U32 sortedRank; int minWeight = nbBits + scaleLog; if (minWeight < 1) minWeight = 1; sortedRank = rankStart[minWeight]; HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits, rankValOrigin[nbBits], minWeight, sortedList+sortedRank, sortedListSize-sortedRank, nbBitsBaseline, symbol); } else { U32 i; const U32 end = start + length; HUF_DEltX4 DElt; MEM_writeLE16(&(DElt.sequence), symbol); DElt.nbBits = (BYTE)(nbBits); DElt.length = 1; for (i = start; i < end; i++) DTable[i] = DElt; } rankVal[weight] += length; } } static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize) { BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1]; sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1]; U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 }; U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 }; U32* const rankStart = rankStart0+1; rankVal_t rankVal; U32 tableLog, maxW, sizeOfSort, nbSymbols; const U32 memLog = DTable[0]; const BYTE* ip = (const BYTE*) src; size_t iSize = ip[0]; void* ptr = DTable; HUF_DEltX4* const dt = ((HUF_DEltX4*)ptr) + 1; HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */ if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge); //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */ iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize); if (HUF_isError(iSize)) return iSize; /* check result */ if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ /* find maxWeight */ for (maxW = tableLog; rankStats[maxW]==0; maxW--) { if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */ /* Get start index of each weight */ { U32 w, nextRankStart = 0; for (w=1; w<=maxW; w++) { U32 current = nextRankStart; nextRankStart += rankStats[w]; rankStart[w] = current; } rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ sizeOfSort = nextRankStart; } /* sort symbols by weight */ { U32 s; for (s=0; s> consumed; } } } HUF_fillDTableX4(dt, memLog, sortedSymbol, sizeOfSort, rankStart0, rankVal, maxW, tableLog+1); return iSize; } static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog) { const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ memcpy(op, dt+val, 2); BIT_skipBits(DStream, dt[val].nbBits); return dt[val].length; } static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog) { const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ memcpy(op, dt+val, 1); if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits); else { if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { BIT_skipBits(DStream, dt[val].nbBits); if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ } } return 1; } #define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \ if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \ if (MEM_64bits()) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog) { BYTE* const pStart = p; /* up to 8 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7)) { HUF_DECODE_SYMBOLX4_2(p, bitDPtr); HUF_DECODE_SYMBOLX4_1(p, bitDPtr); HUF_DECODE_SYMBOLX4_2(p, bitDPtr); HUF_DECODE_SYMBOLX4_0(p, bitDPtr); } /* closer to the end */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2)) HUF_DECODE_SYMBOLX4_0(p, bitDPtr); while (p <= pEnd-2) HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ if (p < pEnd) p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog); return p-pStart; } static size_t HUF_decompress4X4_usingDTable( void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, const U32* DTable) { if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ { const BYTE* const istart = (const BYTE*) cSrc; BYTE* const ostart = (BYTE*) dst; BYTE* const oend = ostart + dstSize; const void* ptr = DTable; const HUF_DEltX4* const dt = ((const HUF_DEltX4*)ptr) +1; const U32 dtLog = DTable[0]; size_t errorCode; /* Init */ BIT_DStream_t bitD1; BIT_DStream_t bitD2; BIT_DStream_t bitD3; BIT_DStream_t bitD4; const size_t length1 = MEM_readLE16(istart); const size_t length2 = MEM_readLE16(istart+2); const size_t length3 = MEM_readLE16(istart+4); size_t length4; const BYTE* const istart1 = istart + 6; /* jumpTable */ const BYTE* const istart2 = istart1 + length1; const BYTE* const istart3 = istart2 + length2; const BYTE* const istart4 = istart3 + length3; const size_t segmentSize = (dstSize+3) / 4; BYTE* const opStart2 = ostart + segmentSize; BYTE* const opStart3 = opStart2 + segmentSize; BYTE* const opStart4 = opStart3 + segmentSize; BYTE* op1 = ostart; BYTE* op2 = opStart2; BYTE* op3 = opStart3; BYTE* op4 = opStart4; U32 endSignal; length4 = cSrcSize - (length1 + length2 + length3 + 6); if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ errorCode = BIT_initDStream(&bitD1, istart1, length1); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD2, istart2, length2); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD3, istart3, length3); if (HUF_isError(errorCode)) return errorCode; errorCode = BIT_initDStream(&bitD4, istart4, length4); if (HUF_isError(errorCode)) return errorCode; /* 16-32 symbols per loop (4-8 symbols per stream) */ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) { HUF_DECODE_SYMBOLX4_2(op1, &bitD1); HUF_DECODE_SYMBOLX4_2(op2, &bitD2); HUF_DECODE_SYMBOLX4_2(op3, &bitD3); HUF_DECODE_SYMBOLX4_2(op4, &bitD4); HUF_DECODE_SYMBOLX4_1(op1, &bitD1); HUF_DECODE_SYMBOLX4_1(op2, &bitD2); HUF_DECODE_SYMBOLX4_1(op3, &bitD3); HUF_DECODE_SYMBOLX4_1(op4, &bitD4); HUF_DECODE_SYMBOLX4_2(op1, &bitD1); HUF_DECODE_SYMBOLX4_2(op2, &bitD2); HUF_DECODE_SYMBOLX4_2(op3, &bitD3); HUF_DECODE_SYMBOLX4_2(op4, &bitD4); HUF_DECODE_SYMBOLX4_0(op1, &bitD1); HUF_DECODE_SYMBOLX4_0(op2, &bitD2); HUF_DECODE_SYMBOLX4_0(op3, &bitD3); HUF_DECODE_SYMBOLX4_0(op4, &bitD4); endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); } /* check corruption */ if (op1 > opStart2) return ERROR(corruption_detected); if (op2 > opStart3) return ERROR(corruption_detected); if (op3 > opStart4) return ERROR(corruption_detected); /* note : op4 supposed already verified within main loop */ /* finish bitStreams one by one */ HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog); HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog); HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog); HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog); /* check */ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); if (!endSignal) return ERROR(corruption_detected); /* decoded size */ return dstSize; } } static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) { HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG); const BYTE* ip = (const BYTE*) cSrc; size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize); if (HUF_isError(hSize)) return hSize; if (hSize >= cSrcSize) return ERROR(srcSize_wrong); ip += hSize; cSrcSize -= hSize; return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable); } /**********************************/ /* quad-symbol decoding */ /**********************************/ typedef struct { BYTE nbBits; BYTE nbBytes; } HUF_DDescX6; typedef union { BYTE byte[4]; U32 sequence; } HUF_DSeqX6; /* recursive, up to level 3; may benefit from