/* Copyright (c) 2014, Randolph Voorhies, Shane Grant All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of cereal nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES AND SHANE GRANT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable : 4244 4267) #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //! Runs serialization to save data to an ostringstream /*! Used to time how long it takes to save data to an ostringstream. Everything that happens within the save function will be timed, including any set-up necessary to perform the serialization. @param data The data to save @param saveFunction A function taking in an ostringstream and the data and returning void @return The ostringstream and the time it took to save the data */ template std::chrono::nanoseconds saveData( T const & data, std::function saveFunction, std::ostringstream & os ) { auto start = std::chrono::high_resolution_clock::now(); saveFunction( os, data ); return std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - start ); } //! Runs serialization to load data to from an istringstream /*! Used to time how long it takes to load data from an istringstream. Everything that happens within the load function will be timed, including any set-up necessary to perform the serialization. @param dataStream The saved data stream @param loadFunction A function taking in an istringstream and a data reference and returning void @return The loaded data and the time it took to save the data */ template std::pair loadData( std::ostringstream const & dataStream, std::function loadFunction ) { T data; std::istringstream os( dataStream.str() ); auto start = std::chrono::high_resolution_clock::now(); loadFunction( os, data ); return {data, std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - start )}; } struct cerealBinary { //! Saves data to a cereal binary archive template static void save( std::ostringstream & os, T const & data ) { cereal::BinaryOutputArchive oar(os); oar(data); } //! Loads data to a cereal binary archive template static void load( std::istringstream & is, T & data ) { cereal::BinaryInputArchive iar(is); iar(data); } }; struct boostBinary { //! Saves data to a boost binary archive template static void save( std::ostringstream & os, T const & data ) { boost::archive::binary_oarchive oar(os); oar & data; } //! Loads data to a boost binary archive template static void load( std::istringstream & is, T & data ) { boost::archive::binary_iarchive iar(is); iar & data; } }; struct binary { typedef boostBinary boost; typedef cerealBinary cereal; }; //! Times how long it takes to serialize (load and store) some data /*! Times how long and the size of the serialization object used to serialize some data. Result is output to standard out. @tparam SerializationT The serialization struct that has all save and load functions @tparam DataTCereal The type of data to test for cereal @tparam DataTBoost The type of data to test for boost @param name The name for this test @param data The data to serialize for cereal @param data The data to serialize for boost @param numAverages The number of times to average @param validateData Whether data should be validated (input == output) */ template void test( std::string const & name, DataTCereal const & dataC, DataTBoost const & dataB, size_t numAverages = 100, bool validateData = false ); template void test( std::string const & name, DataTCereal const & dataC, DataTBoost const & dataB, size_t numAverages, bool /*validateData*/ ) { std::cout << "-----------------------------------" << std::endl; std::cout << "Running test: " << name << std::endl; std::chrono::nanoseconds totalBoostSave{0}; std::chrono::nanoseconds totalBoostLoad{0}; std::chrono::nanoseconds totalCerealSave{0}; std::chrono::nanoseconds totalCerealLoad{0}; size_t boostSize = 0; size_t cerealSize = 0; for(size_t i = 0; i < numAverages; ++i) { // Boost { std::ostringstream os; auto saveResult = saveData( dataB, {SerializationT::boost::template save}, os ); totalBoostSave += saveResult; if(!boostSize) boostSize = os.tellp(); auto loadResult = loadData( os, {SerializationT::boost::template load} ); totalBoostLoad += loadResult.second; } // Cereal { std::ostringstream os; auto saveResult = saveData( dataC, {SerializationT::cereal::template save}, os ); totalCerealSave += saveResult; if(!cerealSize) cerealSize = os.tellp(); auto loadResult = loadData( os, {SerializationT::cereal::template load} ); totalCerealLoad += loadResult.second; } } // Averages double averageBoostSave = std::chrono::duration_cast(totalBoostSave).count() / static_cast( numAverages ); double averageBoostLoad = std::chrono::duration_cast(totalBoostLoad).count() / static_cast( numAverages ); double averageCerealSave = std::chrono::duration_cast(totalCerealSave).count() / static_cast( numAverages ); double averageCerealLoad = std::chrono::duration_cast(totalCerealLoad).count() / static_cast( numAverages ); // Percentages relative to boost double cerealSaveP = averageCerealSave / averageBoostSave; double cerealLoadP = averageCerealLoad / averageBoostLoad; double cerealSizeP = cerealSize / static_cast( boostSize ); std::cout << " Boost results:" << std::endl; std::cout << boost::format("\tsave | time: %06.4fms (%1.2f) size: %20.8fkb (%1.8f) total: %6.1fms") % averageBoostSave % 1.0 % (boostSize / 1024.0) % 1.0 % static_cast( std::chrono::duration_cast(totalBoostSave).count() ); std::cout << std::endl; std::cout << boost::format("\tload | time: %06.4fms (%1.2f) total: %6.1fms") % averageBoostLoad % 1.0 % static_cast( std::chrono::duration_cast(totalBoostLoad).count() ); std::cout << std::endl; std::cout << " Cereal results:" << std::endl; std::cout << boost::format("\tsave | time: %06.4fms (%1.2f) size: %20.8fkb (%1.8f) total: %6.1fms") % averageCerealSave % cerealSaveP % (cerealSize / 1024.0) % cerealSizeP % static_cast( std::chrono::duration_cast(totalCerealSave).count() ); std::cout << std::endl; std::cout << boost::format("\tload | time: %06.4fms (%1.2f) total: %6.1fms") % averageCerealLoad % cerealLoadP % static_cast( std::chrono::duration_cast(totalCerealLoad).count() ); std::cout << std::endl; } template void test( std::string const & name, DataT const & data, size_t numAverages = 100, bool validateData = false ) { return test( name, data, data, numAverages, validateData ); } template typename std::enable_if::value, T>::type random_value(std::mt19937 & gen) { return std::uniform_real_distribution(-10000.0, 10000.0)(gen); } template typename std::enable_if::value && sizeof(T) != sizeof(char), T>::type random_value(std::mt19937 & gen) { return std::uniform_int_distribution(std::numeric_limits::lowest(), std::numeric_limits::max())(gen); } template typename std::enable_if::value && sizeof(T) == sizeof(char), T>::type random_value(std::mt19937 & gen) { return static_cast( std::uniform_int_distribution(std::numeric_limits::lowest(), std::numeric_limits::max())(gen) ); } template typename std::enable_if::value, std::string>::type random_value(std::mt19937 & gen) { std::string s(std::uniform_int_distribution(3, 30)(gen), ' '); for(char & c : s) c = std::uniform_int_distribution(' ', '~')(gen); return s; } template std::basic_string random_basic_string(std::mt19937 & gen, size_t maxSize = 30) { std::basic_string s(std::uniform_int_distribution(3, maxSize)(gen), ' '); for(C & c : s) c = static_cast( std::uniform_int_distribution( '~', '~' )(gen) ); return s; return s; } template std::string random_binary_string(std::mt19937 & gen) { std::string s(N, ' '); for(auto & c : s ) c = std::uniform_int_distribution('0', '1')(gen); return s; } struct PoDStructCereal { int32_t a; int64_t b; float c; double d; template void serialize( Archive & ar ) { ar(a, b, c, d); } }; struct PoDStructBoost { int32_t a; int64_t b; float c; double d; template void serialize( Archive & ar, const unsigned int /*version*/ ) { ar & a & b & c & d; } }; struct PoDChildCereal : virtual PoDStructCereal { PoDChildCereal() : v(1024) { } std::vector v; template void serialize( Archive & ar ) { ar( cereal::virtual_base_class(this), v ); } }; struct PoDChildBoost : virtual PoDStructBoost { PoDChildBoost() : v(1024) { } std::vector v; template void serialize( Archive & ar, const unsigned int /*version*/ ) { ar & boost::serialization::base_object(*this); ar & v; } }; int main() { std::random_device rd; std::mt19937 gen(rd()); auto rngC = [&](){ return random_value(gen); }; auto rngD = [&](){ return random_value(gen); }; const bool randomize = false; //######################################## auto vectorDoubleTest = [&](size_t s, bool randomize_) { std::ostringstream name; name << "Vector(double) size " << s; std::vector data(s); if(randomize_) for( auto & d : data ) d = rngD(); test( name.str(), data ); }; vectorDoubleTest(1, randomize); // 8B vectorDoubleTest(16, randomize); // 128B vectorDoubleTest(1024, randomize); // 8KB vectorDoubleTest(1024*1024, randomize); // 8MB //######################################## auto vectorCharTest = [&](size_t s, bool randomize_) { std::ostringstream name; name << "Vector(uint8_t) size " << s; std::vector data(s); if(randomize_) for( auto & d : data ) d = rngC(); test( name.str(), data ); }; vectorCharTest(1024*1024*64, randomize); //######################################## auto vectorPoDStructTest = [&](size_t s) { std::ostringstream name; name << "Vector(PoDStruct) size " << s; std::vector dataC(s); std::vector dataB(s); test( name.str(), dataC, dataB ); }; vectorPoDStructTest(1); vectorPoDStructTest(64); vectorPoDStructTest(1024); vectorPoDStructTest(1024*1024); vectorPoDStructTest(1024*1024*2); //######################################## auto vectorPoDChildTest = [&](size_t s) { std::ostringstream name; name << "Vector(PoDChild) size " << s; std::vector dataC(s); std::vector dataB(s); test( name.str(), dataC, dataB ); }; vectorPoDChildTest(1024); vectorPoDChildTest(1024*32); //######################################## auto stringTest = [&](size_t s) { std::ostringstream name; name << "String size " << s; std::string data = random_basic_string(gen, s); std::cout << "data.size " << data.size() << std::endl; test( name.str(), data ); }; stringTest(200000); stringTest(2000000); stringTest(20000000); //######################################## auto vectorStringTest = [&](size_t s) { std::ostringstream name; name << "Vector(String) size " << s; std::vector data(s); for(size_t i=0; i(gen); test( name.str(), data ); }; vectorStringTest(512); vectorStringTest(1024); vectorStringTest(1024*64); vectorStringTest(1024*128); //######################################## auto mapPoDStructTest = [&](size_t s) { std::ostringstream name; name << "Map(PoDStruct) size " < mC; std::map mB; for(size_t i=0; i(name.str(), mC, mB); }; mapPoDStructTest(1024); mapPoDStructTest(1024*64); return 0; } #ifdef _MSC_VER #pragma warning(pop) #endif