// // Description : Array and textureless GLSL 2D/3D/4D simplex // noise functions. // Author : Ian McEwan, Ashima Arts. // Maintainer : ijm // Lastmod : 20110223 // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the Artistic License 2.0; See LICENCE file. // #define NORMALIZE_GRADIENTS #undef USE_CIRCLE #define COLLAPSE_SORTNET #define MOREDOTS float permute(float x0,vec3 p) { float x1 = mod(x0 * p.y, p.x); return floor( mod( (x1 + p.z) *x0, p.x )); } vec2 permute(vec2 x0,vec3 p) { vec2 x1 = mod(x0 * p.y, p.x); return floor( mod( (x1 + p.z) *x0, p.x )); } vec3 permute(vec3 x0,vec3 p) { vec3 x1 = mod(x0 * p.y, p.x); return floor( mod( (x1 + p.z) *x0, p.x )); } vec4 permute(vec4 x0,vec3 p) { vec4 x1 = mod(x0 * p.y, p.x); return floor( mod( (x1 + p.z) *x0, p.x )); } uniform vec4 pParam; // Example // const vec4 pParam = vec4( 17.* 17., 34., 1., 7.); float taylorInvSqrt(float r) { return ( 0.83666002653408 + 0.7*0.85373472095314 - 0.85373472095314 * r ); } float simplexNoise2(vec2 v) { const vec2 C = vec2(0.211324865405187134, // (3.0-sqrt(3.0))/6.; 0.366025403784438597); // 0.5*(sqrt(3.0)-1.); const vec3 D = vec3( 0., 0.5, 2.0) * 3.14159265358979312; // First corner vec2 i = floor(v + dot(v, C.yy) ); vec2 x0 = v - i + dot(i, C.xx); // Other corners vec2 i1; i1.x = float( (x0.x>x0.y) ); i1.y = 1. - i1.x; // x0 = x0 - 0. + 0. * C.xx ; // x1 = x0 - i1 + 1. * C.xx ; // x2 = x0 - 1. + 2. * C.xx ; vec4 xC = x0.xyxy + vec4( C.xx, -1. + 2.* C.xx); xC.xy -= i1; // Permutations i = mod(i, pParam.x); vec3 p = permute( permute( i.y + vec3(0., i1.y, 1. ), pParam.xyz) + i.x + vec3(0., i1.x, 1. ), pParam.xyz); vec3 m = max(0.5 - vec3(dot(x0,x0), dot(xC.xy,xC.xy), dot(xC.zw,xC.zw)), 0.); m = m*m ; m = m*m ; #ifndef USE_CIRCLE // ( N points uniformly over a line, mapped onto a diamond.) vec3 x = 2.0 * fract(p / pParam.w) - 1. ; vec3 h = 0.5 - abs(x) ; vec3 sx = 2.*floor(x) + 1.; vec3 sh = floor(h); vec3 a0 = x + sx*sh; # ifdef NORMALISE_GRADIENTS m *= taylorInvSqrt( a0*a0 + h*h ); # endif //vec2 p0 = vec2(a0.x,h.x); //vec2 p1 = vec2(a0.y,h.y); //vec2 p2 = vec2(a0.z,h.z); //vec3 g = vec3( dot(p0, x0), dot(p1, xC.xy), dot(p2, xC.zw) ); vec3 g; // a0 *= m; // h *= m; g.x = a0.x * x0.x + h.x * x0.y; g.yz = a0.yz * xC.xz + h.yz * xC.yw; return 1.66666* 70. *2. * dot(m, g); #else // N points around a unit circle. vec3 phi = D.z * mod(p,pParam.w) /pParam.w ; vec4 a0 = sin(phi.xxyy+D.xyxy); vec2 a1 = sin(phi.zz +D.xy); // mix vec3 g = vec3( dot(a0.xy, x0), dot(a0.zw, xC.xy), dot(a1.xy, xC.zw) ); return 1.66666* 70.*dot(m, g); #endif } float simplexNoise3(vec3 v) { const vec2 C = vec2(1./6. , 1./3. ) ; const vec4 D = vec4(0., 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners #ifdef COLLAPSE_SORTNET vec3 g = vec3( greaterThan( x0.xyz, x0.yzx) ); // vec3 l = vec3( lessThanEqual( x0.xyz, x0.yzx) ); vec3 l = 1. - g; vec3 i1 = g.xyz * l.zxy; vec3 i2 = max( g.xyz, l.zxy); #else // Keeping this clean - let the compiler optimize. // Force existance of strict total ordering in sort. vec3 q0 = floor(x0 * 1024.0) + vec3( 0., 1./4., 2./4.); vec3 q1; q1.x = max(q0.x, q0.y); q1.y = min(q0.x, q0.y); q1.z = q0.z; vec3 q2; q2.x = max(q1.x,q1.z); q2.z = min(q1.x,q1.z); q2.y = q1.y; vec3 q3; q3.y = max(q2.y, q2.z); q3.z = min(q2.y, q2.z); q3.x = q2.x; vec3 i1 = vec3(lessThanEqual(q3.xxx, q0)); vec3 i2 = vec3(lessThanEqual(q3.yyy, q0)); #endif // x0 = x0 - 0. + 0. * C vec3 x1 = x0 - i1 + 1. * C.xxx; vec3 x2 = x0 - i2 + 2. * C.xxx; vec3 x3 = x0 - 1. + 3. * C.xxx; // Permutations i = mod(i, pParam.x ); vec4 p = permute( permute( permute( i.z + vec4(0., i1.z, i2.z, 1. ), pParam.xyz) + i.y + vec4(0., i1.y, i2.y, 1. ), pParam.xyz) + i.x + vec4(0., i1.x, i2.x, 1. ), pParam.xyz); // Gradients // ( N*N points uniformly over a square, mapped onto a octohedron.) float n_ = 1.0/pParam.w ; vec3 ns = n_ * D.wyz - D.xzx ; vec4 j = p - pParam.w*pParam.w*floor(p * ns.z *ns.z); // mod(p,N*N) vec4 x_ = floor(j * ns.z) ; vec4 y_ = floor(j - pParam.w * x_ ) ; // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1. - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,D.xxxx)) *2. -1.; //vec4 s1 = vec4(lessThan(b1,D.xxxx)) *2. -1.; vec4 s0 = floor(b0) *2. +1.; vec4 s1 = floor(b1) *2. +1.; vec4 sh = -vec4(lessThan(h, D.xxxx)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); #ifdef NORMALISE_GRADIENTS p0 *= taylorInvSqrt(dot(p0,p0)); p1 *= taylorInvSqrt(dot(p1,p1)); p2 *= taylorInvSqrt(dot(p2,p2)); p3 *= taylorInvSqrt(dot(p3,p3)); #endif // Mix vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.); m = m * m; //used to be 64. return 48.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } vec4 grad4(float j, vec4 ip) { const vec4 ones = vec4(1.,1.,1.,-1.); vec4 p,s; p.xyz = floor( fract (vec3(j) * ip.xyz) *pParam.w) * ip.z -1.0; p.w = 1.5 - dot(abs(p.xyz), ones.xyz); s = vec4(lessThan(p,vec4(0.))); p.xyz = p.xyz + (s.xyz*2.-1.) * s.www; return p; } float simplexNoise4(vec4 v) { const vec2 C = vec2( 0.138196601125010504, // (5 - sqrt(5))/20 G4 0.309016994374947451); // (sqrt(5) - 1)/4 F4 // First corner vec4 i = floor(v + dot(v, C.yyyy) ); vec4 x0 = v - i + dot(i, C.xxxx); // Other corners // Force existance of strict total ordering in sort. vec4 q0 = floor(x0 * 1024.0) + vec4( 0., 1./4., 2./4. , 3./4.); vec4 q1; q1.xy = max(q0.xy,q0.zw); // x:z y:w q1.zw = min(q0.xy,q0.zw); vec4 q2; q2.xz = max(q1.xz,q1.yw); // x:y z:w q2.yw = min(q1.xz,q1.yw); vec4 q3; q3.y = max(q2.y,q2.z); // y:z q3.z = min(q2.y,q2.z); q3.xw = q2.xw; vec4 i1 = vec4(lessThanEqual(q3.xxxx, q0)); vec4 i2 = vec4(lessThanEqual(q3.yyyy, q0)); vec4 i3 = vec4(lessThanEqual(q3.zzzz, q0)); // x0 = x0 - 0. + 0. * C vec4 x1 = x0 - i1 + 1. * C.xxxx; vec4 x2 = x0 - i2 + 2. * C.xxxx; vec4 x3 = x0 - i3 + 3. * C.xxxx; vec4 x4 = x0 - 1. + 4. * C.xxxx; // Permutations i = mod(i, pParam.x ); float j0 = permute( permute( permute( permute ( i.w, pParam.xyz) + i.z, pParam.xyz) + i.y, pParam.xyz) + i.x, pParam.xyz); vec4 j1 = permute( permute( permute( permute ( i.w + vec4(i1.w, i2.w, i3.w, 1. ), pParam.xyz) + i.z + vec4(i1.z, i2.z, i3.z, 1. ), pParam.xyz) + i.y + vec4(i1.y, i2.y, i3.y, 1. ), pParam.xyz) + i.x + vec4(i1.x, i2.x, i3.x, 1. ), pParam.xyz); // Gradients // ( N*N*N points uniformly over a cube, mapped onto a 4-octohedron.) vec4 ip = vec4(pParam.w) ; ip.xy *= pParam.w ; ip.x *= pParam.w ; ip = vec4(1.,1.,1.,2.) / ip ; vec4 p0 = grad4(j0, ip); vec4 p1 = grad4(j1.x, ip); vec4 p2 = grad4(j1.y, ip); vec4 p3 = grad4(j1.z, ip); vec4 p4 = grad4(j1.w, ip); #ifdef NORMALISE_GRADIENTS p0 *= taylorInvSqrt(dot(p0,p0)); p1 *= taylorInvSqrt(dot(p1,p1)); p2 *= taylorInvSqrt(dot(p2,p2)); p3 *= taylorInvSqrt(dot(p3,p3)); p4 *= taylorInvSqrt(dot(p4,p4)); #endif // Mix vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.); vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.); m0 = m0 * m0; m1 = m1 * m1; return 32. * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 ))) + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ; }