/* * Demo for GLSL procedural noise. * * The shaders are loaded from external files, named in * the macro definitions VERTSHADERFILE and FRAGSHADERFILE. * The main program draws a sphere covering most of the * viewport, activates the demo shader and runs indefinitely, * reporting the fragment shading performance in Msamples/s * while it executes. * * This program uses GLFW for convenience, to handle the OS-specific * window management stuff. Some Windows-specific stuff for extension * loading is still here, but that code is short-circuited on other * platforms - this file compiles unedited on Windows, Linux and MacOS X, * provided you have the relevant libraries and header files installed * and set up your compilation to include the GLFW and OpenGL libraries. * * Author: Stefan Gustavson (stegu@itn.liu.se) 2004, 2005, 2010, 2011 * This code is in the public domain. */ #include #include #include #include #ifdef __WIN32__ // The system level include file for GL extensions might not be up to date. #include "GL/glext.h" #else #include #endif #ifdef __APPLE__ // MacOS application bundles have the executable inside a directory structure #define VERTSHADERFILE "../../../noisedemo.vert" #define FRAGSHADERFILE "../../../noisedemo.frag" #else // Windows, Linux and other Unix systems expose executables as naked files #define VERTSHADERFILE "noisedemo.vert" #define FRAGSHADERFILE "noisedemo.frag" #endif #ifdef __WIN32__ /* Global function pointers for everything we need beyond OpenGL 1.1 */ PFNGLCREATEPROGRAMPROC glCreateProgram = NULL; PFNGLDELETEPROGRAMPROC glDeleteProgram = NULL; PFNGLUSEPROGRAMPROC glUseProgram = NULL; PFNGLCREATESHADERPROC glCreateShader = NULL; PFNGLDELETESHADERPROC glDeleteShader = NULL; PFNGLSHADERSOURCEPROC glShaderSource = NULL; PFNGLCOMPILESHADERPROC glCompileShader = NULL; PFNGLGETSHADERIVPROC glGetShaderiv = NULL; PFNGLGETPROGRAMIVPROC glGetProgramiv = NULL; PFNGLATTACHSHADERPROC glAttachShader = NULL; PFNGLGETSHADERINFOLOGPROC glGetShaderInfoLog = NULL; PFNGLGETPROGRAMINFOLOGPROC glGetProgramInfoLog = NULL; PFNGLLINKPROGRAMPROC glLinkProgram = NULL; PFNGLGETUNIFORMLOCATIONPROC glGetUniformLocation = NULL; PFNGLUNIFORM1FVPROC glUniform1fv = NULL; #endif /* * printError() - Signal an error. * Simple printf() to console for portability. */ void printError(const char *errtype, const char *errmsg) { fprintf(stderr, "%s: %s\n", errtype, errmsg); } /* * Override the Win32 filelength() function with * a version that takes a Unix-style file handle as * input instead of a file ID number, and which works * on platforms other than Windows. */ long filelength(FILE *file) { long numbytes; long savedpos = ftell(file); fseek(file, 0, SEEK_END); numbytes = ftell(file); fseek(file, savedpos, SEEK_SET); return numbytes; } /* * loadExtensions() - Load OpenGL extensions for anything above OpenGL * version 1.1. (This is a requirement only on Windows, so on other * platforms, this function just checks for the required extensions.) */ void loadExtensions() { //These extension strings indicate that the OpenGL Shading Language // and GLSL shader objects are supported. if(!glfwExtensionSupported("GL_ARB_shading_language_100")) { printError("GL init error", "GL_ARB_shading_language_100 extension was not found"); return; } if(!glfwExtensionSupported("GL_ARB_shader_objects")) { printError("GL init error", "GL_ARB_shader_objects extension was not found"); return; } else { #ifdef __WIN32__ glCreateProgram = (PFNGLCREATEPROGRAMPROC)glfwGetProcAddress("glCreateProgram"); glDeleteProgram = (PFNGLDELETEPROGRAMPROC)glfwGetProcAddress("glDeleteProgram"); glUseProgram = (PFNGLUSEPROGRAMPROC)glfwGetProcAddress("glUseProgram"); glCreateShader = (PFNGLCREATESHADERPROC)glfwGetProcAddress("glCreateShader"); glDeleteShader = (PFNGLDELETESHADERPROC)glfwGetProcAddress("glDeleteShader"); glShaderSource = (PFNGLSHADERSOURCEPROC)glfwGetProcAddress("glShaderSource"); glCompileShader = (PFNGLCOMPILESHADERPROC)glfwGetProcAddress("glCompileShader"); glGetShaderiv = (PFNGLGETSHADERIVPROC)glfwGetProcAddress("glGetShaderiv"); glGetShaderInfoLog = (PFNGLGETSHADERINFOLOGPROC)glfwGetProcAddress("glGetShaderInfoLog"); glAttachShader = (PFNGLATTACHSHADERPROC)glfwGetProcAddress("glAttachShader"); glLinkProgram = (PFNGLLINKPROGRAMPROC)glfwGetProcAddress("glLinkProgram"); glGetProgramiv = (PFNGLGETPROGRAMIVPROC)glfwGetProcAddress("glGetProgramiv"); glGetProgramInfoLog = (PFNGLGETPROGRAMINFOLOGPROC)glfwGetProcAddress("glGetProgramInfoLog"); glGetUniformLocation = (PFNGLGETUNIFORMLOCATIONPROC)glfwGetProcAddress("glGetUniformLocation"); glUniform1fv = (PFNGLUNIFORM1FVPROC)glfwGetProcAddress("glUniform1fv"); if( !glCreateProgram || !glDeleteProgram || !glUseProgram || !glCreateShader || !glDeleteShader || !glShaderSource || !glCompileShader || !glGetShaderiv || !glGetShaderInfoLog || !glAttachShader || !glLinkProgram || !glGetProgramiv || !glGetProgramInfoLog || !glGetUniformLocation || !glUniform1fv ) { printError("GL init error", "One or more required OpenGL functions were not found"); return; } #endif } } /* * readShaderFile(filename) - read a shader source string from a file */ unsigned char* readShaderFile(const char *filename) { FILE *file = fopen(filename, "r"); if(file == NULL) { printError("ERROR", "Cannot open shader file!"); return 0; } int bytesinfile = filelength(file); unsigned char *buffer = (unsigned char*)malloc(bytesinfile+1); int bytesread = fread( buffer, 1, bytesinfile, file); buffer[bytesread] = 0; // Terminate the string with 0 fclose(file); return buffer; } /* * createShaders() - create, load, compile and link the GLSL shader objects. */ void createShader(GLuint *programObject, char *vertexshaderfile, char *fragmentshaderfile) { GLuint vertexShader; GLuint fragmentShader; const char *vertexShaderStrings[1]; const char *fragmentShaderStrings[1]; GLint vertexCompiled; GLint fragmentCompiled; GLint shadersLinked; char str[4096]; // For error messages from the GLSL compiler and linker // Create the vertex shader. vertexShader = glCreateShader(GL_VERTEX_SHADER); unsigned char *vertexShaderAssembly = readShaderFile( vertexshaderfile ); vertexShaderStrings[0] = (char*)vertexShaderAssembly; glShaderSource( vertexShader, 1, vertexShaderStrings, NULL ); glCompileShader( vertexShader); free((void *)vertexShaderAssembly); glGetShaderiv( vertexShader, GL_COMPILE_STATUS, &vertexCompiled ); if(vertexCompiled == GL_FALSE) { glGetShaderInfoLog(vertexShader, sizeof(str), NULL, str); printError("Vertex shader compile error", str); } // Create the fragment shader. fragmentShader = glCreateShader( GL_FRAGMENT_SHADER ); unsigned char *fragmentShaderAssembly = readShaderFile( fragmentshaderfile ); fragmentShaderStrings[0] = (char*)fragmentShaderAssembly; glShaderSource( fragmentShader, 1, fragmentShaderStrings, NULL ); glCompileShader( fragmentShader ); free((void *)fragmentShaderAssembly); glGetProgramiv( fragmentShader, GL_COMPILE_STATUS, &fragmentCompiled ); if(fragmentCompiled == GL_FALSE) { glGetShaderInfoLog( fragmentShader, sizeof(str), NULL, str ); printError("Fragment shader compile error", str); } // Create a program object and attach the two compiled shaders. *programObject = glCreateProgram(); glAttachShader( *programObject, vertexShader ); glAttachShader( *programObject, fragmentShader ); // Link the program object and print out the info log. glLinkProgram( *programObject ); glGetProgramiv( *programObject, GL_LINK_STATUS, &shadersLinked ); if( shadersLinked == GL_FALSE ) { glGetProgramInfoLog( *programObject, sizeof(str), NULL, str ); printError("Program object linking error", str); } } /* * computeFPS() - Calculate, display and return samples per second. * Stats are recomputed only once per second. */ double computeFPS() { static double t0 = 0.0; static int frames = 0; static double fps = 0.0; static char titlestring[200]; double t; int width, height; // Get current time t = glfwGetTime(); // Gets number of seconds since glfwInit() // If one second has passed, or if this is the very first frame if( (t-t0) > 1.0 || frames == 0 ) { fps = (double)frames / (t-t0); sprintf(titlestring, "GLSL noise demo (%.1f FPS)", fps); glfwSetWindowTitle(titlestring); t0 = t; frames = 0; } frames ++; return fps; } /* * drawTexturedSphere(r, segs) - Draw a sphere centered on the local * origin, with radius r and approximated by segs polygon segments, * having texture coordinates with a latitude-longitude mapping. * Yes, this is ugly old school immediate mode, but this is being * baked to a display list anyway, and that ends up being sent * to the GPU as a VBO. Desides, I had this code written already. */ void drawTexturedSphere(float r, int segs) { int i, j; float x, y, z, z1, z2, R, R1, R2; // Top cap glBegin(GL_TRIANGLE_FAN); glNormal3f(0,0,1); glTexCoord2f(0.5f,1.0f); // This is an ugly (u,v)-mapping singularity glVertex3f(0,0,r); z = cos(M_PI/segs); R = sin(M_PI/segs); for(i = 0; i <= 2*segs; i++) { x = R*cos(i*2.0*M_PI/(2*segs)); y = R*sin(i*2.0*M_PI/(2*segs)); glNormal3f(x, y, z); glTexCoord2f((float)i/(2*segs), 1.0f-1.0f/segs); glVertex3f(r*x, r*y, r*z); } glEnd(); // Height segments for(j = 1; j < segs-1; j++) { z1 = cos(j*M_PI/segs); R1 = sin(j*M_PI/segs); z2 = cos((j+1)*M_PI/segs); R2 = sin((j+1)*M_PI/segs); glBegin(GL_TRIANGLE_STRIP); for(i = 0; i <= 2*segs; i++) { x = R1*cos(i*2.0*M_PI/(2*segs)); y = R1*sin(i*2.0*M_PI/(2*segs)); glNormal3f(x, y, z1); glTexCoord2f((float)i/(2*segs), 1.0f-(float)j/segs); glVertex3f(r*x, r*y, r*z1); x = R2*cos(i*2.0*M_PI/(2*segs)); y = R2*sin(i*2.0*M_PI/(2*segs)); glNormal3f(x, y, z2); glTexCoord2f((float)i/(2*segs), 1.0f-(float)(j+1)/segs); glVertex3f(r*x, r*y, r*z2); } glEnd(); } // Bottom cap glBegin(GL_TRIANGLE_FAN); glNormal3f(0,0,-1); glTexCoord2f(0.5f, 1.0f); // This is an ugly (u,v)-mapping singularity glVertex3f(0,0,-r); z = -cos(M_PI/segs); R = sin(M_PI/segs); for(i = 2*segs; i >= 0; i--) { x = R*cos(i*2.0*M_PI/(2*segs)); y = R*sin(i*2.0*M_PI/(2*segs)); glNormal3f(x, y, z); glTexCoord2f(1.0f-(float)i/(2*segs), 1.0f/segs); glVertex3f(r*x, r*y, r*z); } glEnd(); } /* * initDisplayList(GLuint *listID, GLdouble scale) - create a display list * to render the demo geometry more efficently than by glVertex() calls. * (This is currently just as fast as a VBO, and I'm a bit lazy.) */ void initDisplayList(GLuint *listID) { *listID = glGenLists(1); glNewList(*listID, GL_COMPILE); glColor3f(1.0f, 1.0f, 1.0f); // White base color drawTexturedSphere(1.0, 20); glEndList(); } /* * setupCamera() - set up the OpenGL projection and (model)view matrices */ void setupCamera() { int width, height; // Get window size. It may start out different from the requested // size, and will change if the user resizes the window. glfwGetWindowSize( &width, &height ); if(height<=0) height=1; // Safeguard against iconified/closed window // Set viewport. This is the pixel rectangle we want to draw into. glViewport( 0, 0, width, height ); // The entire window // Select and setup the projection matrix. glMatrixMode(GL_PROJECTION); // "We want to edit the projection matrix" glLoadIdentity(); // Reset the matrix to identity // 45 degrees FOV, same aspect ratio as viewport, depth range 1 to 100 gluPerspective( 45.0f, (GLfloat)width/(GLfloat)height, 1.0f, 100.0f ); // Select and setup the modelview matrix. glMatrixMode( GL_MODELVIEW ); // "We want to edit the modelview matrix" glLoadIdentity(); // Reset the matrix to identity // Look from 0,-3,0 towards 0,0,0 with Z as "up" in the image gluLookAt( 0.0f, -3.0f, 0.0f, // Eye position 0.0f, 0.0f, 0.0f, // View point 0.0f, 0.0f, 1.0f ); // Up vector } /* * renderScene() - draw the scene with the shader active */ void renderScene( GLuint listID, GLuint programObject ) { GLint location_time = -1; float time = 0.0f; // Use vertex and fragment shaders. glUseProgram( programObject ); // Update the uniform time variable. location_time = glGetUniformLocation( programObject, "time" ); // glUniform1f() is bugged in Linux Nvidia driver 260.19.06, // so we use glUniform1fv() instead to work around the bug. if ( location_time != -1 ) { time = (float)glfwGetTime(); glUniform1fv( location_time, 1, &time ); } glRotatef(30.0f, 1.0f, 0.0f, 0.0f); // Render with the shaders active. glCallList( listID ); // Deactivate the shaders. glUseProgram(0); } /* * main(argc, argv) - the standard C entry point for the program */ int main(int argc, char *argv[]) { GLuint displayList; GLuint programObject; double performance = 0.0; GLboolean running = GL_TRUE; // Main loop exits when this is set to GL_FALSE // Initialise GLFW glfwInit(); // Open an OpenGL window if( !glfwOpenWindow(512, 512, 8,8,8,8, 32,0, GLFW_WINDOW) ) { glfwTerminate(); // glfwOpenWindow failed, quit the program. return 1; } // Load the extensions for GLSL - note that this has to be done // *after* the window has been opened, or we won't have a GL context // to query for those extensions and connect to instances of them. loadExtensions(); // Enable Z buffering (not needed for the sphere, but play nice) glEnable(GL_DEPTH_TEST); // Use the Z buffer glfwSwapInterval(0); // Do not wait for screen refresh between frames // Compile a display list for the demo geometry, to render it efficiently initDisplayList(&displayList); // Create the shader we are going to use createShader(&programObject, VERTSHADERFILE, FRAGSHADERFILE); // Main loop while(running) { // Calculate and update the frames per second (FPS) display performance = computeFPS(); // Clear the frame buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Set up the camera projection. setupCamera(); // Draw the scene. renderScene(displayList, programObject); // Swap buffers, i.e. display the image and prepare for next frame. glfwSwapBuffers(); // Exit if the ESC key is pressed or the window is closed. if(glfwGetKey(GLFW_KEY_ESC) || !glfwGetWindowParam(GLFW_OPENED)) { running = GL_FALSE; } } // Close the OpenGL window and terminate GLFW. glfwTerminate(); return 0; }