-- BIGNUM by rnd v05112018b -- functions: new, tostring, rnd, importdec, _add, _sub, mul, div2, div, is_larger, is_equal, add, sub, bignum.mod if not bignum then --self.spam(1); bignum = {}; bignum.new = function(base,sgn, digits) local ret = {}; ret.base = base -- base of digit system ret.digits = {}; ret.sgn = sgn -- sign of number,+1 or -1 local data = ret.digits; local m = #digits; ret.digits = digits; -- THIS SEEMS TO MAKE A NEW COPY! if you work on this original wont change --for i=1,m do data[i] = digits[m-i+1] end -- copy return ret end bignum.rnd = function(base,sgn, length) -- random number local ret = {}; for i =1,length do ret[#ret+1] = math.random(base)-1 end return bignum.new(base,sgn,ret) end bignum.tostring = function(n) local ret = {}; for i = #n.digits,1,-1 do ret[#ret+1] = n.digits[i] end return (n.sgn>0 and "" or "-") .. table.concat(ret,"'") .. "_" ..n.base end --n1 = bignum.new(10,-1,{5,7,3,1}) --say(bignum.tostring(n1)) bignum.importdec = function(ndec) local ret = {}; local sgn = ndec>0 and 1 or -1; local base = 10; local n = ndec*sgn; local data = {}; while n>0 do local r = n%base data[#data+1] = r; n=(n-r)/base end ret.base = base; ret.sgn = sgn; ret.digits = data; return ret end importdec_test = function() local ndec = math.random(10^9); local n = bignum.importdec(ndec) say("importdec_test : " .. ndec .. " -> " .. bignum.tostring(n)) end --importdec_test() bignum.exportdec = function(n) -- warning: can cause overflow if number larger than 2^52 ~ 4.5*10^15 local ndec = 0; for i = #n.digits,1,-1 do ndec = 10*ndec + n.digits[i] end return ndec*n.sgn end ----------------------------------------------- -- ADDITION ----------------------------------------------- bignum._add = function(n1,n2,res) -- assume both >0, same base: n1+n2 -> res local b = n1.base; local m1 = #n1.digits; local m2 = #n2.digits local m = m1; if m2M then M = m2 end local data1 = n1.digits; local data2 = n2.digits; res.digits = {} -- expensive? local data = res.digits; local carry = 0; for i = 1,M do local j = (data1[i] or 0) +(data2[i] or 0) + carry; if j >=b then carry = 1; j = j-b else carry = 0 end data[i] = j end if carry== 1 then data[M+1] = 1 end res.base = n1.base end _add_test = function() local n1 = bignum.rnd(10,1,5) local n2 = bignum.rnd(10,1,5) local res = bignum.new(10,1,{}) bignum._add(n1,n2,res) say("_add_test: " .. bignum.tostring(n1) .. " + " .. bignum.tostring(n2) .. " = " .. bignum.tostring(res)) end --_add_test() ----------------------------------------------- -- SUBTRACTION ----------------------------------------------- bignum._sub = function(n1,n2,res) -- assume n1>n2>0, same base: n1-n2 -> res local b = n1.base; local m1 = #n1.digits; local m2 = #n2.digits local m = m1; if m2M then M = m2 end local data1 = n1.digits; local data2 = n2.digits; res.digits = {}; local data = res.digits; local carry = 0; local maxi = 0; for i = 1,M do local j = (data1[i] or 0) - (data2[i] or 0) + carry; if j < 0 then carry = -1; j = j+b else carry = 0 end if j~=0 then maxi = i end -- max nonzero digit data[i] = j end for i = maxi+1,M do data[i] = nil end -- remove trailing zero digits if any res.base = n1.base end _sub_test = function() local n1 = bignum.rnd(10,1,5) local n2 = bignum.rnd(10,1,5) local res = bignum.new(10,1,{}) bignum._sub(n1,n2,res) say("_sub_test: " .. bignum.tostring(n1) .. " - " .. bignum.tostring(n2) .. " = " .. bignum.tostring(res)) end --_sub_test() bignum.is_equal = function(n1,n2) -- assume both >0, same base. return true if n1==n2 local b = n1.base; local data1 = n1.digits; local data2 = n2.digits; if #data1~=#data2 then return false end for i =#data1,1,-1 do -- from high bits local d1 = data1[i]; local d2 = data2[i]; if d1~=d2 then return false end end return true -- all digits were == end bignum.is_larger = function(n1,n2) -- assume both >0, same base. return true if n1>=n2 local b = n1.base; local data1 = n1.digits; local data2 = n2.digits; if #data1>#data2 then return true elseif #data1<#data2 then return false end --remains when both same lentgth for i =#data1,1,-1 do -- from high bits local d1 = data1[i]; local d2 = data2[i]; if d1>d2 then return true elseif d1=, still larger end is_larger_test = function() local n1 = bignum.rnd(10,1,5) local n2 = bignum.rnd(10,1,5) local res = bignum.is_larger(n1,n2); if res then res = "larger" else res = "smaller" end say("is_larger_test : " .. bignum.tostring(n1) .. " is ".. res .. " than " .. bignum.tostring(n2)) end --is_larger_test() bignum.add = function(n1,n2,res) -- handle all cases, >0 or <0 local sgn1 = n1.sgn; local sgn2 = n2.sgn; if sgn1*sgn2>0 then bignum._add(n1,n2,res); res.sgn = sgn1; return end -- simple case local is_larger = bignum.is_larger(n1,n2) -- is abs(n1)>abs(n2) ? local sgn = 1; if is_larger then sgn = sgn1 else sgn = sgn2 end if is_larger then bignum._sub(n1,n2,res); else bignum._sub(n2,n1,res); end res.sgn = sgn end add_test = function() local ndec1 = math.random(10^5) * (2*math.random(2)-3); local ndec2 = math.random(10^5) * (2*math.random(2)-3); local n1 = bignum.importdec(ndec1) local n2 = bignum.importdec(ndec2) local res = bignum.new(10,1,{}) bignum.add(n1,n2,res) local resdec = bignum.exportdec(res); say("add_test: " .. bignum.tostring(n1) .. " + " .. bignum.tostring(n2) .. " = " .. bignum.tostring(res) .. " CHECK : " .. resdec-(ndec1+ndec2)) end --add_test() bignum.sub = function(n1,n2,res) -- handle all cases, >0 or <0 --just add(n1,-n2) local sgn1 = n1.sgn; local sgn2 = -n2.sgn; if sgn1*sgn2>0 then bignum._add(n1,n2,res); res.sgn = sgn1; return end -- simple case local is_larger = bignum.is_larger(n1,n2) -- is abs(n1)>abs(n2) ? local sgn = 1; if is_larger then sgn = sgn1 else sgn = sgn2 end if is_larger then bignum._sub(n1,n2,res); else bignum._sub(n2,n1,res); end res.sgn = sgn end sub_test = function() local ndec1 = math.random(10^5) * (2*math.random(2)-3); local ndec2 = math.random(10^5) * (2*math.random(2)-3); local n1 = bignum.importdec(ndec1) local n2 = bignum.importdec(ndec2) local res = bignum.new(10,1,{}) bignum.sub(n1,n2,res) local resdec = bignum.exportdec(res); say("sub_test: " .. bignum.tostring(n1) .. " - " .. bignum.tostring(n2) .. " = " .. bignum.tostring(res) .. " CHECK : " .. resdec-(ndec1-ndec2)) end --sub_test() ----------------------------------------------- -- MULTIPLY ----------------------------------------------- bignum.mul = function(n1,n2,res) local base = n1.base local sgn = n1.sgn*n2.sgn; local data1 = n1.digits; local m1 = #data1; local data2 = n2.digits; local m2 = #data2; res.digits = {}; res.base = base local data = res.digits; local m = m1+m2; local carry = 0 for i = 1, m1 do -- multiply i-th digit of data1 and add to res local d1 = data1[i]; carry = 0 for j = 1,m2 do local d2 = data2[j]; local d = carry + d1*d2; local r = (data[i+j-1] or 0) + d if r>=base then data[i+j-1] = r % base; carry = (r - (r%base))/base else data[i+j-1] = r; carry = 0 end end if carry>0 then data[i+m2] = carry % base end end end mul_test = function() local ndec1 = math.random(10^8) local ndec2 = math.random(10^8) local n1 = bignum.importdec(ndec1) local n2 = bignum.importdec(ndec2) local res = bignum.new(10,1,{}) bignum.mul(n1,n2,res) local resdec = bignum.exportdec(res); say("mul_test: " .. bignum.tostring(n1) .. "*" .. bignum.tostring(n2) .. " = " .. bignum.tostring(res) .. " CHECK : " .. resdec-(ndec1*ndec2)) end --mul_test() -- m = 300, base 2^26, 100 repeats: amd ryzen 1200: 0.1s, amd-e350 apu 1.6ghz (2010) : 5.15s mul_bench = function() local m = 300; local base = 2^26 local r = 100 local n1 = bignum.rnd(base, 1, m) local n2 = bignum.rnd(base, 1, m) local res = {digits = {}}; local t = os.clock() for i = 1, r do bignum.mul(n1,n2,res) end local elapsed = os.clock() - t; --say("n1 = " .. bignum.tostring(n1) .. ", n2 = " .. bignum.tostring(n2)) say("mul benchmark. ".. m .. " digits, base " .. base .. ", repeats " .. r .. " -> time " .. elapsed) end --mul_bench() exp_test = function() local n1 = bignum.importdec(2); local res1 = bignum.importdec(2); local res2 = bignum.importdec(1); local m=128 for i = 1, m do bignum.mul(n1,res1, res2) -- n1*res1 = res2 bignum.mul(n1,res2, res1) -- n1*res1 = res2 end say("2^" .. (2*m) .. " = " .. bignum.tostring(res2) .. " CHECK " ..2^(2*m)) end --exp_test() ----------------------------------------------- -- DIVIDE ----------------------------------------------- bignum.div2 = function(n,res) -- res = n/2, return n % 2. note: its safe to do: bignum.div2(res,res); local base = n.base; local data = n.digits; local m = #data; res.digits = {}; local rdata = res.digits; local carry = 0 local q = data[m]/2; local fq = math.floor(q); if q~=fq then carry = base end if fq>0 then rdata[m] = fq else rdata[m]=nil end -- maybe digits shrink by 1? for i = m-1,1,-1 do local q = (data[i]+carry)/2; local fq = math.floor(q) if q~= fq then carry = base else carry = 0 end rdata[i] = fq; end if carry ~= 0 then return 1 else return 0 end end div2_test = function() local ndec1 = math.random(10^8) local n1 = bignum.importdec(ndec1) local res = bignum.new(10,1,n1.digits) bignum.div2(res,res) -- res = res/2 say("div2_test: n1/2 = " .. bignum.tostring(n1) .. "/2 = " .. bignum.tostring(res) .. " = res") local rescheck = bignum.new(10,1,{}) bignum._add(res,res,res);bignum._sub(n1,res, res); say("CHECK: n1-2*res = " .. bignum.tostring(res)) end --div2_test() --[[ very simple division that works reasonably well (we only need 1 division for barrett reduction anyway, could use precomputed too) strategy: bisection for f(x) = x*D + comparison with N, takes around Log_2(initial range) steps (sums+mults), so ~O(D^2*log base^(n2-n1)) low, mid, high. pick reasonably good initial range guess, like near order of magnitude close. mid = (low+high)/2 compute: compare N and mid*D, if N bigger then low = mid else high = mid.. BENCHMARKS: (amd ryzen 1200) HUGE N=10k bit number/ D=5k bit number : 1.5 s N = 8k bit number / D = 4k bit number : 0.7s N = 1040 bit, D = 520 bit: 0.0042 s ( typical application srp,diffie-hellman in Z_~2^512 group) if D is 3900 bits it takes around 3900 steps of iteration amd-e350 apu 1.6ghz (2010) N = 8k bit, D = 4k bit, divide takes 44s ( 60x slower than ryzen) TODO: possible speed improve ?: after there are some digits correct reduce N by N = N-q0*D which will effectively decrease N and multiplies of mid ( smaller numbers ). then keep adding obtained q's together to get final quotient. --]] bignum.div = function(N,D, res) -- res = [N/D] local base = N.base; res.base = base res.digits = {}; local data = res.digits; local n1 = #N.digits;local n2 = #D.digits; -- trivial cases, prevent wasting time here if n1 time " .. elapsed) end div_bench() ----------------------------------------------- -- MODULAR MULTIPLY ----------------------------------------------- -- a,b in Z_n -> a*b mod n = ? -- how to compute a % n efficiently? We can use barrett reduction trick. -- normally: a%n = a - [a/n]*n. Instead of division we compute [a/n] with multiply and shift ( base = b) -- [a/n] = [a*(B^k/n)/B^k] = [a*m/B^k]. Here integer m is [B^k/n] for some k, where B^k>=n. since -- a*(m/B^k-1/n) < 1 we get a*(m-B^k/n) < B^k or m-B^k/n < B^k/a. since left side is always <1 this will be true if -- 1 < B^k/a or a < B^k. note since a*m/B^k - a/n < 1 after applying [ ] we can still get difference = 1 (but not more), -- so need to check if a - [a*m/B^k]*n is smaller than n. If not additional -n is needed. -- so REQUIREMENTS: n<=B^k, a< B^k. -- if we need a k = 2*(n1+1) local Bk = bignum.new(base,1,{}) local res = bignum.new(base,1,{}) local data = Bk.digits; for i =1,k do data[i]= 0 end; data[k+1]=1; -- this is B^k bignum.div(Bk, n,res); return {n=n, m=res, k=k}; end get_barrett_test = function() local d=4 local ndec2 = math.random(10^d) local n2 = bignum.importdec(ndec2) local barrett = bignum.get_barrett(n2) local barrettm = math.floor(10^(2*d+2)/ndec2) say(bignum.tostring(barrett.m) .. "(CHECK: " .. barrettm .. ")") end --get_barrett_test() bignum.mod = function(a,barrett,res) -- a should be less or equal (n-1)^2, stores a%n into res local k = barrett.k; local n = barrett.n; local m = barrett.m; local base = a.base; bignum.mul(a,m,res); -- large multiply 1: res = a*m local data = res.digits;local n1 = #data; --res = res / B^k for i = 1, n1-k do data[i]=data[i+k] end; for i = n1-k+1,n1 do data[i] = nil end -- bitshift local temp = bignum.new(base,1,{}); bignum.mul(res,n, temp); -- multiply 2: res*n bignum._sub(a,temp,res); -- subtract: res = a - res*n if bignum.is_larger(res,n) then bignum._sub(res,n,res) end end mod_test = function() local m = 3; local base = 10; local n1 = bignum.rnd(base, 1, 2*m) local n2 = bignum.rnd(base, 1, m) local barrett = bignum.get_barrett(n2) local res = bignum.new(base,1,{}); bignum.mod(n1, barrett, res); local is_larger = bignum.is_larger(n2,res); say("barrett mod_test: n1 " .. bignum.tostring(n1) .. " n2 " .. bignum.tostring(n2) .. " res = n1 % n2 = " .. bignum.tostring(res) .. " CHECK: res