#include "voxel_terrain.h" #include "../streams/voxel_stream_file.h" #include "../streams/voxel_stream_test.h" #include "../util/profiling_clock.h" #include "../util/utility.h" #include "../util/voxel_raycast.h" #include "voxel_block.h" #include "voxel_map.h" #include #include #include #include const uint32_t MAIN_THREAD_MESHING_BUDGET_MS = 8; VoxelTerrain::VoxelTerrain() { // Note: don't do anything heavy in the constructor. // Godot may create and destroy dozens of instances of all node types on startup, // due to how ClassDB gets its default values. _map = Ref(memnew(VoxelMap)); _view_distance_blocks = 8; _last_view_distance_blocks = 0; _stream_thread = NULL; _block_updater = NULL; _run_in_editor = false; _smooth_meshing_enabled = false; } VoxelTerrain::~VoxelTerrain() { print_line("Destroying VoxelTerrain"); if (_stream_thread) { // Schedule saving of all modified blocks, // without copy because we are destroying the map anyways save_all_modified_blocks(false); memdelete(_stream_thread); } if (_block_updater) { memdelete(_block_updater); } } // TODO See if there is a way to specify materials in voxels directly? bool VoxelTerrain::_set(const StringName &p_name, const Variant &p_value) { if (p_name.operator String().begins_with("material/")) { unsigned int idx = p_name.operator String().get_slicec('/', 1).to_int(); ERR_FAIL_COND_V(idx >= VoxelMesherBlocky::MAX_MATERIALS || idx < 0, false); set_material(idx, p_value); return true; } return false; } bool VoxelTerrain::_get(const StringName &p_name, Variant &r_ret) const { if (p_name.operator String().begins_with("material/")) { unsigned int idx = p_name.operator String().get_slicec('/', 1).to_int(); ERR_FAIL_COND_V(idx >= VoxelMesherBlocky::MAX_MATERIALS || idx < 0, false); r_ret = get_material(idx); return true; } return false; } void VoxelTerrain::_get_property_list(List *p_list) const { for (unsigned int i = 0; i < VoxelMesherBlocky::MAX_MATERIALS; ++i) { p_list->push_back(PropertyInfo(Variant::OBJECT, "material/" + itos(i), PROPERTY_HINT_RESOURCE_TYPE, "ShaderMaterial,SpatialMaterial")); } } void VoxelTerrain::set_stream(Ref p_stream) { if (p_stream == _stream) { return; } if (_stream.is_valid()) { if (_stream->is_connected(CoreStringNames::get_singleton()->changed, this, "_on_stream_params_changed")) { _stream->disconnect(CoreStringNames::get_singleton()->changed, this, "_on_stream_params_changed"); } } _stream = p_stream; if (_stream.is_valid()) { _stream->connect(CoreStringNames::get_singleton()->changed, this, "_on_stream_params_changed"); } _on_stream_params_changed(); } Ref VoxelTerrain::get_stream() const { return _stream; } void VoxelTerrain::set_block_size_po2(unsigned int p_block_size_po2) { ERR_FAIL_COND(p_block_size_po2 < 1); ERR_FAIL_COND(p_block_size_po2 > 32); unsigned int block_size_po2 = p_block_size_po2; Ref file_stream = _stream; if (file_stream.is_valid()) { block_size_po2 = file_stream->get_block_size_po2(); } if (block_size_po2 == get_block_size_pow2()) { return; } bool updater_was_running = _block_updater != nullptr; stop_streamer(); stop_updater(); reset_map(); _set_block_size_po2(p_block_size_po2); if (_stream.is_valid()) { start_streamer(); } if (updater_was_running) { start_updater(); } } void VoxelTerrain::_set_block_size_po2(int p_block_size_po2) { _map->create(p_block_size_po2, 0); } unsigned int VoxelTerrain::get_block_size_pow2() const { return _map->get_block_size_pow2(); } void VoxelTerrain::_on_stream_params_changed() { stop_streamer(); bool was_updater_running = _block_updater != nullptr; stop_updater(); Ref file_stream = _stream; if (file_stream.is_valid()) { int stream_block_size_po2 = file_stream->get_block_size_po2(); _set_block_size_po2(stream_block_size_po2); } if (_stream.is_valid()) { start_streamer(); } if (was_updater_running) { start_updater(); } // The whole map might change, so make all area dirty // TODO Actually, we should regenerate the whole map, not just update all its blocks make_all_view_dirty_deferred(); } Ref VoxelTerrain::get_voxel_library() const { return _library; } void VoxelTerrain::set_voxel_library(Ref library) { if (library == _library) { return; } #ifdef TOOLS_ENABLED if (library->get_voxel_count() == 0) { library->load_default(); } #endif _library = library; bool updater_was_running = _block_updater != nullptr; stop_updater(); if (updater_was_running) { start_updater(); } // Voxel appearance might completely change make_all_view_dirty_deferred(); } void VoxelTerrain::set_generate_collisions(bool enabled) { _generate_collisions = enabled; } int VoxelTerrain::get_view_distance() const { return _view_distance_blocks * _map->get_block_size(); } void VoxelTerrain::set_view_distance(int distance_in_voxels) { ERR_FAIL_COND(distance_in_voxels < 0) int d = distance_in_voxels / _map->get_block_size(); if (d != _view_distance_blocks) { print_line(String("View distance changed from ") + String::num(_view_distance_blocks) + String(" blocks to ") + String::num(d)); _view_distance_blocks = d; // Blocks too far away will be removed in _process, same for blocks to load } } void VoxelTerrain::set_viewer_path(NodePath path) { _viewer_path = path; } NodePath VoxelTerrain::get_viewer_path() const { return _viewer_path; } Spatial *VoxelTerrain::get_viewer(NodePath path) const { if (path.is_empty()) { return NULL; } if (!is_inside_tree()) { return NULL; } Node *node = get_node(path); if (node == NULL) { return NULL; } return Object::cast_to(node); } void VoxelTerrain::set_material(unsigned int id, Ref material) { // TODO Update existing block surfaces ERR_FAIL_COND(id < 0 || id >= VoxelMesherBlocky::MAX_MATERIALS); _materials[id] = material; } Ref VoxelTerrain::get_material(unsigned int id) const { ERR_FAIL_COND_V(id < 0 || id >= VoxelMesherBlocky::MAX_MATERIALS, Ref()); return _materials[id]; } bool VoxelTerrain::is_smooth_meshing_enabled() const { return _smooth_meshing_enabled; } void VoxelTerrain::set_smooth_meshing_enabled(bool enabled) { if (_smooth_meshing_enabled != enabled) { _smooth_meshing_enabled = enabled; stop_updater(); start_updater(); make_all_view_dirty_deferred(); } } void VoxelTerrain::make_block_dirty(Vector3i bpos) { // TODO Immediate update viewer distance? VoxelBlock *block = _map->get_block(bpos); if (block == nullptr) { // The block isn't available, we may need to load it if (!_loading_blocks.has(bpos)) { _blocks_pending_load.push_back(bpos); _loading_blocks.insert(bpos); } } else if (block->get_mesh_state() != VoxelBlock::MESH_UPDATE_NOT_SENT) { // Regardless of if the updater is updating the block already, // the block was modified again so we schedule another update block->set_mesh_state(VoxelBlock::MESH_UPDATE_NOT_SENT); _blocks_pending_update.push_back(bpos); if (!block->modified) { print_line(String("Marking block {0} as modified").format(varray(bpos.to_vec3()))); block->modified = true; } } //OS::get_singleton()->print("Dirty (%i, %i, %i)", bpos.x, bpos.y, bpos.z); // TODO What if a block is made dirty, goes through threaded update, then gets changed again before it gets updated? // this will make the second change ignored, which is not correct! } namespace { struct ScheduleSaveAction { std::vector &blocks_to_save; bool with_copy; void operator()(VoxelBlock *block) { if (block->modified) { //print_line(String("Scheduling save for block {0}").format(varray(block->position.to_vec3()))); VoxelDataLoader::InputBlock b; b.data.voxels_to_save = with_copy ? block->voxels->duplicate() : block->voxels; b.position = block->position; b.can_be_discarded = false; blocks_to_save.push_back(b); block->modified = false; } } }; } // namespace void VoxelTerrain::immerge_block(Vector3i bpos) { ERR_FAIL_COND(_map.is_null()); // Note: no need to copy the block because it gets removed from the map anyways _map->remove_block(bpos, ScheduleSaveAction{ _blocks_to_save, false }); _loading_blocks.erase(bpos); // Blocks in the update queue will be cancelled in _process, // because it's too expensive to linear-search all blocks for each block } void VoxelTerrain::save_all_modified_blocks(bool with_copy) { ERR_FAIL_COND(_stream_thread == nullptr); // That may cause a stutter, so should be used when the player won't notice _map->for_all_blocks(ScheduleSaveAction{ _blocks_to_save, with_copy }); // And flush immediately send_block_data_requests(); } Dictionary VoxelTerrain::get_statistics() const { Dictionary d; d["stream"] = VoxelDataLoader::Mgr::to_dictionary(_stats.stream); d["updater"] = VoxelMeshUpdater::Mgr::to_dictionary(_stats.updater); // Breakdown of time spent in _process d["time_detect_required_blocks"] = _stats.time_detect_required_blocks; d["time_request_blocks_to_load"] = _stats.time_request_blocks_to_load; d["time_process_load_responses"] = _stats.time_process_load_responses; d["time_request_blocks_to_update"] = _stats.time_request_blocks_to_update; d["time_process_update_responses"] = _stats.time_process_update_responses; d["remaining_main_thread_blocks"] = _blocks_pending_main_thread_update.size(); d["dropped_block_loads"] = _stats.dropped_block_loads; d["dropped_block_meshs"] = _stats.dropped_block_meshs; d["updated_blocks"] = _stats.updated_blocks; return d; } //void VoxelTerrain::make_blocks_dirty(Vector3i min, Vector3i size) { // Vector3i max = min + size; // Vector3i pos; // for (pos.z = min.z; pos.z < max.z; ++pos.z) { // for (pos.y = min.y; pos.y < max.y; ++pos.y) { // for (pos.x = min.x; pos.x < max.x; ++pos.x) { // make_block_dirty(pos); // } // } // } //} void VoxelTerrain::make_all_view_dirty_deferred() { // This trick will regenerate all chunks in view, according to the view distance found during block updates. // The point of doing this instead of immediately scheduling updates is that it will // always use an up-to-date view distance, which is not necessarily loaded yet on initialization. _last_view_distance_blocks = 0; // Vector3i radius(_view_distance_blocks, _view_distance_blocks, _view_distance_blocks); // make_blocks_dirty(-radius, 2*radius); } void VoxelTerrain::start_updater() { ERR_FAIL_COND(_block_updater != nullptr); // TODO Thread-safe way to change those parameters VoxelMeshUpdater::MeshingParams params; params.smooth_surface = _smooth_meshing_enabled; params.library = _library; _block_updater = memnew(VoxelMeshUpdater(1, params)); } void VoxelTerrain::stop_updater() { struct ResetMeshStateAction { void operator()(VoxelBlock *block) { if (block->get_mesh_state() == VoxelBlock::MESH_UPDATE_SENT) { block->set_mesh_state(VoxelBlock::MESH_UPDATE_NOT_SENT); } } }; if (_block_updater) { memdelete(_block_updater); _block_updater = NULL; } _blocks_pending_main_thread_update.clear(); _blocks_pending_update.clear(); ResetMeshStateAction a; _map->for_all_blocks(a); } void VoxelTerrain::start_streamer() { ERR_FAIL_COND(_stream_thread != nullptr); ERR_FAIL_COND(_stream.is_null()); _stream_thread = memnew(VoxelDataLoader(1, _stream, get_block_size_pow2())); } void VoxelTerrain::stop_streamer() { if (_stream_thread) { memdelete(_stream_thread); _stream_thread = nullptr; } _loading_blocks.clear(); _blocks_pending_load.clear(); } void VoxelTerrain::reset_map() { _map->create(get_block_size_pow2(), 0); } inline int get_border_index(int x, int max) { return x == 0 ? 0 : x != max ? 1 : 2; } void VoxelTerrain::make_voxel_dirty(Vector3i pos) { // Update the block in which the voxel is Vector3i bpos = _map->voxel_to_block(pos); make_block_dirty(bpos); //OS::get_singleton()->print("Dirty (%i, %i, %i)\n", bpos.x, bpos.y, bpos.z); // Update neighbor blocks if the voxel is touching a boundary Vector3i rpos = _map->to_local(pos); // TODO Thread-safe way of getting this parameter bool check_corners = true; //_mesher->get_occlusion_enabled(); const int max = _map->get_block_size() - 1; if (rpos.x == 0) make_block_dirty(bpos - Vector3i(1, 0, 0)); else if (rpos.x == max) make_block_dirty(bpos + Vector3i(1, 0, 0)); if (rpos.y == 0) make_block_dirty(bpos - Vector3i(0, 1, 0)); else if (rpos.y == max) make_block_dirty(bpos + Vector3i(0, 1, 0)); if (rpos.z == 0) make_block_dirty(bpos - Vector3i(0, 0, 1)); else if (rpos.z == max) make_block_dirty(bpos + Vector3i(0, 0, 1)); // We might want to update blocks in corners in order to update ambient occlusion if (check_corners) { // 24------25------26 // /| /| // / | / | // 21 | 23 | // / 15 / 17 // / | / | // 18------19------20 | // | | | | // | 6-------7-|-----8 // | / | / // 9 / 11 / // | 3 | 5 // | / | / y z // |/ |/ |/ // 0-------1-------2 o--x // I'm not good at writing piles of ifs static const int normals[27][3] = { { -1, -1, -1 }, { 0, -1, -1 }, { 1, -1, -1 }, { -1, -1, 0 }, { 0, -1, 0 }, { 1, -1, 0 }, { -1, -1, 1 }, { 0, -1, 1 }, { 1, -1, 1 }, { -1, 0, -1 }, { 0, 0, -1 }, { 1, 0, -1 }, { -1, 0, 0 }, { 0, 0, 0 }, { 1, 0, 0 }, { -1, 0, 1 }, { 0, 0, 1 }, { 1, 0, 1 }, { -1, 1, -1 }, { 0, 1, -1 }, { 1, 1, -1 }, { -1, 1, 0 }, { 0, 1, 0 }, { 1, 1, 0 }, { -1, 1, 1 }, { 0, 1, 1 }, { 1, 1, 1 } }; static const int ce_counts[27] = { 4, 1, 4, 1, 0, 1, 4, 1, 4, 1, 0, 1, 0, 0, 0, 1, 0, 1, 4, 1, 4, 1, 0, 1, 4, 1, 4 }; static const int ce_indexes_lut[27][4] = { { 0, 1, 3, 9 }, { 1 }, { 2, 1, 5, 11 }, { 3 }, {}, { 5 }, { 6, 3, 7, 15 }, { 7 }, { 8, 7, 5, 17 }, { 9 }, {}, { 11 }, {}, {}, {}, { 15 }, {}, { 17 }, { 18, 9, 19, 21 }, { 19 }, { 20, 11, 19, 23 }, { 21 }, {}, { 23 }, { 24, 15, 21, 25 }, { 25 }, { 26, 17, 23, 25 } }; int m = get_border_index(rpos.x, max) + 3 * get_border_index(rpos.z, max) + 9 * get_border_index(rpos.y, max); const int *ce_indexes = ce_indexes_lut[m]; int ce_count = ce_counts[m]; //OS::get_singleton()->print("m=%i, rpos=(%i, %i, %i)\n", m, rpos.x, rpos.y, rpos.z); for (int i = 0; i < ce_count; ++i) { // TODO Because it's about ambient occlusion across 1 voxel only, // we could optimize it even more by looking at neighbor voxels, // and discard the update if we know it won't change anything const int *normal = normals[ce_indexes[i]]; Vector3i nbpos(bpos.x + normal[0], bpos.y + normal[1], bpos.z + normal[2]); //OS::get_singleton()->print("Corner dirty (%i, %i, %i)\n", nbpos.x, nbpos.y, nbpos.z); make_block_dirty(nbpos); } } } void VoxelTerrain::make_area_dirty(Rect3i box) { Vector3i min_pos = box.pos; Vector3i max_pos = box.pos + box.size - Vector3(1, 1, 1); // TODO Thread-safe way of getting this parameter bool check_corners = true; //_mesher->get_occlusion_enabled(); if (check_corners) { min_pos -= Vector3i(1, 1, 1); max_pos += Vector3i(1, 1, 1); } else { Vector3i min_rpos = _map->to_local(min_pos); if (min_rpos.x == 0) --min_pos.x; if (min_rpos.y == 0) --min_pos.y; if (min_rpos.z == 0) --min_pos.z; const int max = _map->get_block_size() - 1; Vector3i max_rpos = _map->to_local(max_pos); if (max_rpos.x == max) ++max_pos.x; if (max_rpos.y == max) ++max_pos.y; if (max_rpos.z == max) ++max_pos.z; } Vector3i min_block_pos = _map->voxel_to_block(min_pos); Vector3i max_block_pos = _map->voxel_to_block(max_pos); Vector3i bpos; for (bpos.z = min_block_pos.z; bpos.z <= max_block_pos.z; ++bpos.z) { for (bpos.x = min_block_pos.x; bpos.x <= max_block_pos.x; ++bpos.x) { for (bpos.y = min_block_pos.y; bpos.y <= max_block_pos.y; ++bpos.y) { make_block_dirty(bpos); } } } } void VoxelTerrain::_notification(int p_what) { struct SetWorldAction { World *world; SetWorldAction(World *w) : world(w) {} void operator()(VoxelBlock *block) { block->set_world(world); } }; struct SetVisibilityAction { bool visible; SetVisibilityAction(bool v) : visible(v) {} void operator()(VoxelBlock *block) { block->set_visible(visible); } }; switch (p_what) { case NOTIFICATION_ENTER_TREE: if (_block_updater == nullptr) { start_updater(); } set_process(true); break; case NOTIFICATION_PROCESS: if (!Engine::get_singleton()->is_editor_hint() || _run_in_editor) { _process(); } break; case NOTIFICATION_EXIT_TREE: break; case NOTIFICATION_ENTER_WORLD: { ERR_FAIL_COND(_map.is_null()); _map->for_all_blocks(SetWorldAction(*get_world())); } break; case NOTIFICATION_EXIT_WORLD: ERR_FAIL_COND(_map.is_null()); _map->for_all_blocks(SetWorldAction(nullptr)); break; case NOTIFICATION_VISIBILITY_CHANGED: ERR_FAIL_COND(_map.is_null()); _map->for_all_blocks(SetVisibilityAction(is_visible())); break; // TODO Listen for transform changes default: break; } } static void remove_positions_outside_box( Vector &positions, Rect3i box, Set &loading_set) { for (int i = 0; i < positions.size(); ++i) { const Vector3i bpos = positions[i]; if (!box.contains(bpos)) { int last = positions.size() - 1; positions.write[i] = positions[last]; positions.resize(last); loading_set.erase(bpos); --i; } } } void VoxelTerrain::get_viewer_block_pos_and_direction(Vector3i &out_block_pos, Vector3 &out_direction) { if (Engine::get_singleton()->is_editor_hint()) { // TODO Use editor's camera here out_block_pos = Vector3i(); out_direction = Vector3(0, -1, 0); } else { // TODO Use viewport camera, much easier Spatial *viewer = get_viewer(_viewer_path); if (viewer) { out_block_pos = _map->voxel_to_block(viewer->get_translation()); out_direction = -viewer->get_global_transform().basis.get_axis(Vector3::AXIS_Z); } else { out_block_pos = _last_viewer_block_pos; out_direction = Vector3(0, -1, 0); } } } void VoxelTerrain::send_block_data_requests() { VoxelDataLoader::Input input; get_viewer_block_pos_and_direction(input.priority_position, input.priority_direction); for (int i = 0; i < _blocks_pending_load.size(); ++i) { VoxelDataLoader::InputBlock input_block; input_block.position = _blocks_pending_load[i]; input_block.lod = 0; input.blocks.push_back(input_block); } for (int i = 0; i < _blocks_to_save.size(); ++i) { print_line(String("Requesting save of block {0}").format(varray(_blocks_to_save[i].position.to_vec3()))); input.blocks.push_back(_blocks_to_save[i]); } //print_line(String("Sending {0} block requests").format(varray(input.blocks_to_emerge.size()))); _blocks_pending_load.clear(); _blocks_to_save.clear(); _stream_thread->push(input); } void VoxelTerrain::_process() { // TODO Should be able to run without library, tho! if (_library.is_null()) { return; } OS &os = *OS::get_singleton(); ERR_FAIL_COND(_map.is_null()); ProfilingClock profiling_clock; _stats.dropped_block_loads = 0; _stats.dropped_block_meshs = 0; // Get viewer location // TODO Transform to local (Spatial Transform) Vector3i viewer_block_pos; Vector3 viewer_direction; get_viewer_block_pos_and_direction(viewer_block_pos, viewer_direction); // Find out which blocks need to appear and which need to be unloaded { //Vector3i viewer_block_pos_delta = _last_viewer_block_pos - viewer_block_pos; Rect3i new_box = Rect3i::from_center_extents(viewer_block_pos, Vector3i(_view_distance_blocks)); Rect3i prev_box = Rect3i::from_center_extents(_last_viewer_block_pos, Vector3i(_last_view_distance_blocks)); if (prev_box != new_box) { //print_line(String("Loaded area changed: from ") + prev_box.to_string() + String(" to ") + new_box.to_string()); Rect3i bounds = Rect3i::get_bounding_box(prev_box, new_box); Vector3i max = bounds.pos + bounds.size; // TODO There should be a way to only iterate relevant blocks Vector3i pos; for (pos.z = bounds.pos.z; pos.z < max.z; ++pos.z) { for (pos.y = bounds.pos.y; pos.y < max.y; ++pos.y) { for (pos.x = bounds.pos.x; pos.x < max.x; ++pos.x) { bool prev_contains = prev_box.contains(pos); bool new_contains = new_box.contains(pos); if (prev_contains && !new_contains) { // Unload block immerge_block(pos); } else if (!prev_contains && new_contains) { // Load or update block make_block_dirty(pos); } } } } } // Eliminate pending blocks that aren't needed remove_positions_outside_box(_blocks_pending_load, new_box, _loading_blocks); remove_positions_outside_box(_blocks_pending_update, new_box, _loading_blocks); } _stats.time_detect_required_blocks = profiling_clock.restart(); _last_view_distance_blocks = _view_distance_blocks; _last_viewer_block_pos = viewer_block_pos; send_block_data_requests(); _stats.time_request_blocks_to_load = profiling_clock.restart(); // Get block loading responses // Note: if block loading is too fast, this can cause stutters. It should only happen on first load, though. { const unsigned int bs = _map->get_block_size(); const Vector3i block_size(bs, bs, bs); VoxelDataLoader::Output output; _stream_thread->pop(output); //print_line(String("Receiving {0} blocks").format(varray(output.emerged_blocks.size()))); _stats.stream = output.stats; for (int i = 0; i < output.blocks.size(); ++i) { const VoxelDataLoader::OutputBlock &ob = output.blocks[i]; if (ob.data.type != VoxelDataLoader::TYPE_LOAD) { continue; } Vector3i block_pos = ob.position; { Set::Element *E = _loading_blocks.find(block_pos); if (E == nullptr) { // That block was not requested, drop it ++_stats.dropped_block_loads; continue; } _loading_blocks.erase(E); } if (ob.drop_hint) { // That block was dropped by the data loader thread, but we were still expecting it... // This is not good, because it means the loader is out of sync due to a bug. print_line(String("Received a block loading drop while we were still expecting it: lod{0} ({1}, {2}, {3})") .format(varray(ob.lod, ob.position.x, ob.position.y, ob.position.z))); ++_stats.dropped_block_loads; continue; } if (ob.data.voxels_loaded->get_size() != _map->get_block_size()) { // Voxel block size is incorrect, drop it ERR_PRINT("Block size obtained from stream is different from expected size"); ++_stats.dropped_block_loads; continue; } // TODO Discard blocks out of range // Store buffer VoxelBlock *block = _map->get_block(block_pos); bool update_neighbors = block == nullptr; block = _map->set_block_buffer(block_pos, ob.data.voxels_loaded); // TODO The following code appears to have order-dependency with block loading. // i.e if block loading responses arrive in a different order they were requested in, // some blocks will be stuck in LOAD. For now I made it so no re-ordering happens, // but it needs to be made more robust // Trigger mesh updates if (update_neighbors) { // All neighbors have to be checked. If they are now surrounded, they can be updated Vector3i ndir; for (ndir.z = -1; ndir.z < 2; ++ndir.z) { for (ndir.x = -1; ndir.x < 2; ++ndir.x) { for (ndir.y = -1; ndir.y < 2; ++ndir.y) { Vector3i npos = block_pos + ndir; // TODO What if the map is really composed of empty blocks? if (_map->is_block_surrounded(npos)) { VoxelBlock *nblock = _map->get_block(npos); if (nblock == nullptr || nblock->get_mesh_state() == VoxelBlock::MESH_UPDATE_NOT_SENT) { // Assuming it is scheduled to be updated already. // In case of BLOCK_UPDATE_SENT, we'll have to resend it. continue; } nblock->set_mesh_state(VoxelBlock::MESH_UPDATE_NOT_SENT); _blocks_pending_update.push_back(npos); } } } } } else { // Only update the block, neighbors will probably follow if needed block->set_mesh_state(VoxelBlock::MESH_UPDATE_NOT_SENT); _blocks_pending_update.push_back(block_pos); //OS::get_singleton()->print("Update (%i, %i, %i)\n", block_pos.x, block_pos.y, block_pos.z); } } } _stats.time_process_load_responses = profiling_clock.restart(); // Send mesh updates { VoxelMeshUpdater::Input input; input.priority_position = viewer_block_pos; input.priority_direction = viewer_direction; for (int i = 0; i < _blocks_pending_update.size(); ++i) { Vector3i block_pos = _blocks_pending_update[i]; // Check if the block is worth meshing // Smooth meshing works on more neighbors, so checking a single block isn't enough to ignore it, // but that will slow down meshing a lot. // TODO This is one reason to separate terrain systems between blocky and smooth (other reason is LOD) if (!_smooth_meshing_enabled) { VoxelBlock *block = _map->get_block(block_pos); if (block == nullptr) { continue; } else { CRASH_COND(block->voxels.is_null()); int air_type = 0; if ( block->voxels->is_uniform(Voxel::CHANNEL_TYPE) && block->voxels->is_uniform(Voxel::CHANNEL_ISOLEVEL) && block->voxels->get_voxel(0, 0, 0, Voxel::CHANNEL_TYPE) == air_type) { // If we got here, it must have been because of scheduling an update CRASH_COND(block->get_mesh_state() != VoxelBlock::MESH_UPDATE_NOT_SENT); // The block contains empty voxels block->set_mesh(Ref(), this, _generate_collisions, Array(), get_tree()->is_debugging_collisions_hint()); block->set_mesh_state(VoxelBlock::MESH_UP_TO_DATE); // Optional, but I guess it might spare some memory block->voxels->clear_channel(Voxel::CHANNEL_TYPE, air_type); continue; } } } VoxelBlock *block = _map->get_block(block_pos); // If we got here, it must have been because of scheduling an update CRASH_COND(block == nullptr); CRASH_COND(block->get_mesh_state() != VoxelBlock::MESH_UPDATE_NOT_SENT); // Create buffer padded with neighbor voxels Ref nbuffer; nbuffer.instance(); // TODO Make the buffer re-usable unsigned int block_size = _map->get_block_size(); unsigned int padding = _block_updater->get_required_padding(); nbuffer->create( block_size + 2 * padding, block_size + 2 * padding, block_size + 2 * padding); unsigned int channels_mask = (1 << VoxelBuffer::CHANNEL_TYPE) | (1 << VoxelBuffer::CHANNEL_ISOLEVEL); _map->get_buffer_copy(_map->block_to_voxel(block_pos) - Vector3i(padding), **nbuffer, channels_mask); VoxelMeshUpdater::InputBlock iblock; iblock.data.voxels = nbuffer; iblock.position = block_pos; input.blocks.push_back(iblock); block->set_mesh_state(VoxelBlock::MESH_UPDATE_SENT); } _block_updater->push(input); _blocks_pending_update.clear(); } _stats.time_request_blocks_to_update = profiling_clock.restart(); // Get mesh updates { { VoxelMeshUpdater::Output output; _block_updater->pop(output); _stats.updater = output.stats; _stats.updated_blocks = output.blocks.size(); _blocks_pending_main_thread_update.append_array(output.blocks); } Ref world = get_world(); uint32_t timeout = os.get_ticks_msec() + MAIN_THREAD_MESHING_BUDGET_MS; int queue_index = 0; ProfilingClock profiling_mesh_clock; // The following is done on the main thread because Godot doesn't really support multithreaded Mesh allocation. // This also proved to be very slow compared to the meshing process itself... // hopefully Vulkan will allow us to upload graphical resources without stalling rendering as they upload? for (; queue_index < _blocks_pending_main_thread_update.size() && os.get_ticks_msec() < timeout; ++queue_index) { const VoxelMeshUpdater::OutputBlock &ob = _blocks_pending_main_thread_update[queue_index]; VoxelBlock *block = _map->get_block(ob.position); if (block == NULL) { // That block is no longer loaded, drop the result ++_stats.dropped_block_meshs; continue; } if (ob.drop_hint) { // That block is loaded, but its meshing request was dropped. // TODO Not sure what to do in this case, the code sending update queries has to be tweaked print_line("Received a block mesh drop while we were still expecting it"); ++_stats.dropped_block_meshs; continue; } Ref mesh; mesh.instance(); // TODO Allow multiple collision surfaces Array collidable_surface; int surface_index = 0; const VoxelMeshUpdater::OutputBlockData &data = ob.data; for (int i = 0; i < data.blocky_surfaces.surfaces.size(); ++i) { Array surface = data.blocky_surfaces.surfaces[i]; if (surface.empty()) { continue; } CRASH_COND(surface.size() != Mesh::ARRAY_MAX); if (!is_surface_triangulated(surface)) { continue; } if (collidable_surface.empty()) { collidable_surface = surface; } mesh->add_surface_from_arrays(data.blocky_surfaces.primitive_type, surface); mesh->surface_set_material(surface_index, _materials[i]); ++surface_index; } for (int i = 0; i < data.smooth_surfaces.surfaces.size(); ++i) { Array surface = data.smooth_surfaces.surfaces[i]; if (surface.empty()) { continue; } CRASH_COND(surface.size() != Mesh::ARRAY_MAX); if (!is_surface_triangulated(surface)) { continue; } if (collidable_surface.empty()) { collidable_surface = surface; } mesh->add_surface_from_arrays(data.smooth_surfaces.primitive_type, surface); mesh->surface_set_material(surface_index, _materials[i]); ++surface_index; } if (is_mesh_empty(mesh)) { mesh = Ref(); } block->set_mesh(mesh, this, _generate_collisions, collidable_surface, get_tree()->is_debugging_collisions_hint()); } shift_up(_blocks_pending_main_thread_update, queue_index); } _stats.time_process_update_responses = profiling_clock.restart(); //print_line(String("d:") + String::num(_dirty_blocks.size()) + String(", q:") + String::num(_block_update_queue.size())); } //void VoxelTerrain::block_removed(VoxelBlock & block) { // MeshInstance * mesh_instance = block.get_mesh_instance(*this); // if (mesh_instance) { // mesh_instance->queue_delete(); // } //} struct _VoxelTerrainRaycastContext { VoxelTerrain &terrain; //unsigned int channel_mask; }; static bool _raycast_binding_predicate(Vector3i pos, void *context_ptr) { ERR_FAIL_COND_V(context_ptr == NULL, false); _VoxelTerrainRaycastContext *context = (_VoxelTerrainRaycastContext *)context_ptr; VoxelTerrain &terrain = context->terrain; //unsigned int channel = context->channel; Ref map = terrain.get_map(); int v0 = map->get_voxel(pos, Voxel::CHANNEL_TYPE); Ref lib_ref = terrain.get_voxel_library(); if (lib_ref.is_null()) return false; const VoxelLibrary &lib = **lib_ref; if (lib.has_voxel(v0) == false) return false; const Voxel &voxel = lib.get_voxel_const(v0); if (voxel.is_transparent() == false) return true; float v1 = map->get_voxel_f(pos.x, pos.y, pos.z, Voxel::CHANNEL_ISOLEVEL); return v1 < 0; } void VoxelTerrain::_make_area_dirty_binding(AABB aabb) { make_area_dirty(Rect3i(aabb.position, aabb.size)); } Variant VoxelTerrain::_raycast_binding(Vector3 origin, Vector3 direction, real_t max_distance) { // TODO Transform input if the terrain is rotated (in the future it can be made a Spatial node) Vector3i hit_pos; Vector3i prev_pos; _VoxelTerrainRaycastContext context = { *this }; if (voxel_raycast(origin, direction, _raycast_binding_predicate, &context, max_distance, hit_pos, prev_pos)) { Dictionary hit = Dictionary(); hit["position"] = hit_pos.to_vec3(); hit["prev_position"] = prev_pos.to_vec3(); return hit; } else { return Variant(); // Null dictionary, no alloc } } Vector3 VoxelTerrain::_voxel_to_block_binding(Vector3 pos) { return Vector3i(_map->voxel_to_block(pos)).to_vec3(); } Vector3 VoxelTerrain::_block_to_voxel_binding(Vector3 pos) { return Vector3i(_map->block_to_voxel(pos)).to_vec3(); } void VoxelTerrain::_bind_methods() { ClassDB::bind_method(D_METHOD("set_stream", "stream"), &VoxelTerrain::set_stream); ClassDB::bind_method(D_METHOD("get_stream"), &VoxelTerrain::get_stream); ClassDB::bind_method(D_METHOD("set_voxel_library", "library"), &VoxelTerrain::set_voxel_library); ClassDB::bind_method(D_METHOD("get_voxel_library"), &VoxelTerrain::get_voxel_library); ClassDB::bind_method(D_METHOD("set_material", "id", "material"), &VoxelTerrain::set_material); ClassDB::bind_method(D_METHOD("get_material", "id"), &VoxelTerrain::get_material); ClassDB::bind_method(D_METHOD("set_view_distance", "distance_in_voxels"), &VoxelTerrain::set_view_distance); ClassDB::bind_method(D_METHOD("get_view_distance"), &VoxelTerrain::get_view_distance); ClassDB::bind_method(D_METHOD("get_generate_collisions"), &VoxelTerrain::get_generate_collisions); ClassDB::bind_method(D_METHOD("set_generate_collisions", "enabled"), &VoxelTerrain::set_generate_collisions); ClassDB::bind_method(D_METHOD("get_viewer_path"), &VoxelTerrain::get_viewer_path); ClassDB::bind_method(D_METHOD("set_viewer_path", "path"), &VoxelTerrain::set_viewer_path); ClassDB::bind_method(D_METHOD("is_smooth_meshing_enabled"), &VoxelTerrain::is_smooth_meshing_enabled); ClassDB::bind_method(D_METHOD("set_smooth_meshing_enabled", "enabled"), &VoxelTerrain::set_smooth_meshing_enabled); ClassDB::bind_method(D_METHOD("get_storage"), &VoxelTerrain::get_map); ClassDB::bind_method(D_METHOD("voxel_to_block", "voxel_pos"), &VoxelTerrain::_voxel_to_block_binding); ClassDB::bind_method(D_METHOD("block_to_voxel", "block_pos"), &VoxelTerrain::_block_to_voxel_binding); ClassDB::bind_method(D_METHOD("make_voxel_dirty", "pos"), &VoxelTerrain::_make_voxel_dirty_binding); ClassDB::bind_method(D_METHOD("make_area_dirty", "aabb"), &VoxelTerrain::_make_area_dirty_binding); ClassDB::bind_method(D_METHOD("raycast", "origin", "direction", "max_distance"), &VoxelTerrain::_raycast_binding, DEFVAL(100)); ClassDB::bind_method(D_METHOD("get_statistics"), &VoxelTerrain::get_statistics); ClassDB::bind_method(D_METHOD("_on_stream_params_changed"), &VoxelTerrain::_on_stream_params_changed); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "stream", PROPERTY_HINT_RESOURCE_TYPE, "VoxelStream"), "set_stream", "get_stream"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "voxel_library", PROPERTY_HINT_RESOURCE_TYPE, "VoxelLibrary"), "set_voxel_library", "get_voxel_library"); ADD_PROPERTY(PropertyInfo(Variant::INT, "view_distance"), "set_view_distance", "get_view_distance"); ADD_PROPERTY(PropertyInfo(Variant::NODE_PATH, "viewer_path"), "set_viewer_path", "get_viewer_path"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "generate_collisions"), "set_generate_collisions", "get_generate_collisions"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_meshing_enabled"), "set_smooth_meshing_enabled", "is_smooth_meshing_enabled"); }