#define VOXEL_BUFFER_USE_MEMORY_POOL #ifdef VOXEL_BUFFER_USE_MEMORY_POOL #include "voxel_memory_pool.h" #endif #include "edition/voxel_tool_buffer.h" #include "voxel_buffer.h" #include #include #include namespace { inline uint8_t *allocate_channel_data(uint32_t size) { #ifdef VOXEL_BUFFER_USE_MEMORY_POOL return VoxelMemoryPool::get_singleton()->allocate(size); #else return (uint8_t *)memalloc(size * sizeof(uint8_t)); #endif } inline void free_channel_data(uint8_t *data, uint32_t size) { #ifdef VOXEL_BUFFER_USE_MEMORY_POOL VoxelMemoryPool::get_singleton()->recycle(data, size); #else memfree(data); #endif } uint32_t g_depth_bit_counts[] = { 8, 16, 32, 64 }; uint64_t g_depth_max_values[] = { 0xff, // 8 0xffff, // 16 0xffffffff, // 32 0xffffffffffffffff // 64 }; inline uint32_t get_depth_bit_count(VoxelBuffer::Depth d) { CRASH_COND(d < 0 || d >= VoxelBuffer::DEPTH_COUNT) return g_depth_bit_counts[d]; } inline uint64_t get_max_value_for_depth(VoxelBuffer::Depth d) { CRASH_COND(d < 0 || d >= VoxelBuffer::DEPTH_COUNT) return g_depth_max_values[d]; } inline uint64_t clamp_value_for_depth(uint64_t value, VoxelBuffer::Depth d) { uint64_t max_val = get_max_value_for_depth(d); if (value >= max_val) { return max_val; } return value; } static_assert(sizeof(uint32_t) == sizeof(float), "uint32_t and float cannot be marshalled back and forth"); static_assert(sizeof(uint64_t) == sizeof(double), "uint64_t and double cannot be marshalled back and forth"); inline uint64_t real_to_raw_voxel(real_t value, VoxelBuffer::Depth depth) { switch (depth) { case VoxelBuffer::DEPTH_8_BIT: return clamp(static_cast(128.f * value + 128.f), 0, 0xff); case VoxelBuffer::DEPTH_16_BIT: return clamp(static_cast(0x7fff * value + 0x7fff), 0, 0xffff); case VoxelBuffer::DEPTH_32_BIT: { MarshallFloat m; m.f = value; return m.i; } case VoxelBuffer::DEPTH_64_BIT: { MarshallDouble m; m.d = value; return m.l; } default: CRASH_NOW(); return 0; } } inline real_t raw_voxel_to_real(uint64_t value, VoxelBuffer::Depth depth) { // Depths below 32 are normalized between -1 and 1 switch (depth) { case VoxelBuffer::DEPTH_8_BIT: return (static_cast(value) - 0x7f) / 0x7f; case VoxelBuffer::DEPTH_16_BIT: return (static_cast(value) - 0x7fff) / 0x7fff; case VoxelBuffer::DEPTH_32_BIT: { MarshallFloat m; m.i = value; return m.f; } case VoxelBuffer::DEPTH_64_BIT: { MarshallDouble m; m.l = value; return m.d; } default: CRASH_NOW(); return 0; } } } // namespace const char *VoxelBuffer::CHANNEL_ID_HINT_STRING = "Type,Sdf,Data2,Data3,Data4,Data5,Data6,Data7"; VoxelBuffer::VoxelBuffer() { _channels[CHANNEL_SDF].defval = 255; } VoxelBuffer::~VoxelBuffer() { clear(); } void VoxelBuffer::create(int sx, int sy, int sz) { if (sx <= 0 || sy <= 0 || sz <= 0) { return; } Vector3i new_size(sx, sy, sz); if (new_size != _size) { for (unsigned int i = 0; i < MAX_CHANNELS; ++i) { Channel &channel = _channels[i]; if (channel.data) { // Channel already contained data delete_channel(i); create_channel(i, new_size, channel.defval); } } _size = new_size; } } void VoxelBuffer::create(Vector3i size) { create(size.x, size.y, size.z); } void VoxelBuffer::clear() { for (unsigned int i = 0; i < MAX_CHANNELS; ++i) { Channel &channel = _channels[i]; if (channel.data) { delete_channel(i); } } } void VoxelBuffer::clear_channel(unsigned int channel_index, uint64_t clear_value) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); Channel &channel = _channels[channel_index]; if (channel.data) { delete_channel(channel_index); } channel.defval = clamp_value_for_depth(clear_value, channel.depth); } void VoxelBuffer::clear_channel_f(unsigned int channel_index, real_t clear_value) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); const Channel &channel = _channels[channel_index]; clear_channel(channel_index, real_to_raw_voxel(clear_value, channel.depth)); } void VoxelBuffer::set_default_values(FixedArray values) { for (unsigned int i = 0; i < MAX_CHANNELS; ++i) { _channels[i].defval = clamp_value_for_depth(values[i], _channels[i].depth); } } uint64_t VoxelBuffer::get_voxel(int x, int y, int z, unsigned int channel_index) const { ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, 0); const Channel &channel = _channels[channel_index]; if (validate_pos(x, y, z) && channel.data) { uint32_t i = index(x, y, z); switch (channel.depth) { case DEPTH_8_BIT: return channel.data[i]; case DEPTH_16_BIT: return ((uint16_t *)channel.data)[i]; case DEPTH_32_BIT: return ((uint32_t *)channel.data)[i]; case DEPTH_64_BIT: return ((uint64_t *)channel.data)[i]; default: CRASH_NOW(); return 0; } return channel.data[index(x, y, z)]; } else { return channel.defval; } } void VoxelBuffer::set_voxel(uint64_t value, int x, int y, int z, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); ERR_FAIL_COND(!validate_pos(x, y, z)); Channel &channel = _channels[channel_index]; value = clamp_value_for_depth(value, channel.depth); bool do_set = true; if (channel.data == NULL) { if (channel.defval != value) { // Allocate channel with same initial values as defval create_channel(channel_index, _size, channel.defval); } else { do_set = false; } } if (do_set) { uint32_t i = index(x, y, z); switch (channel.depth) { case DEPTH_8_BIT: channel.data[i] = value; break; case DEPTH_16_BIT: ((uint16_t *)channel.data)[i] = value; break; case DEPTH_32_BIT: ((uint32_t *)channel.data)[i] = value; break; case DEPTH_64_BIT: ((uint64_t *)channel.data)[i] = value; break; default: CRASH_NOW(); break; } } } real_t VoxelBuffer::get_voxel_f(int x, int y, int z, unsigned int channel_index) const { ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, 0); return raw_voxel_to_real(get_voxel(x, y, z, channel_index), _channels[channel_index].depth); } void VoxelBuffer::set_voxel_f(real_t value, int x, int y, int z, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); set_voxel(real_to_raw_voxel(value, _channels[channel_index].depth), x, y, z, channel_index); } // This version does not cause errors if out of bounds. Use only if it's okay to be outside. void VoxelBuffer::try_set_voxel(int x, int y, int z, int value, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); if (!validate_pos(x, y, z)) { return; } set_voxel(x, y, z, value, channel_index); } void VoxelBuffer::fill(uint64_t defval, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); Channel &channel = _channels[channel_index]; defval = clamp_value_for_depth(defval, channel.depth); if (channel.data == NULL) { // Channel is already optimized and uniform if (channel.defval == defval) { // No change return; } else { // Just change default value channel.defval = defval; return; } } unsigned int volume = get_volume(); switch (channel.depth) { case DEPTH_8_BIT: memset(channel.data, defval, channel.size_in_bytes); break; case DEPTH_16_BIT: for (uint32_t i = 0; i < volume; ++i) { ((uint16_t *)channel.data)[i] = defval; } break; case DEPTH_32_BIT: for (uint32_t i = 0; i < volume; ++i) { ((uint32_t *)channel.data)[i] = defval; } break; case DEPTH_64_BIT: for (uint32_t i = 0; i < volume; ++i) { ((uint64_t *)channel.data)[i] = defval; } break; default: CRASH_NOW(); break; } } void VoxelBuffer::fill_area(uint64_t defval, Vector3i min, Vector3i max, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); Vector3i::sort_min_max(min, max); min.clamp_to(Vector3i(0, 0, 0), _size + Vector3i(1, 1, 1)); max.clamp_to(Vector3i(0, 0, 0), _size + Vector3i(1, 1, 1)); Vector3i area_size = max - min; if (area_size.x == 0 || area_size.y == 0 || area_size.z == 0) { return; } Channel &channel = _channels[channel_index]; defval = clamp_value_for_depth(defval, channel.depth); if (channel.data == NULL) { if (channel.defval == defval) { return; } else { create_channel(channel_index, _size, channel.defval); } } Vector3i pos; unsigned int volume = get_volume(); for (pos.z = min.z; pos.z < max.z; ++pos.z) { for (pos.x = min.x; pos.x < max.x; ++pos.x) { unsigned int dst_ri = index(pos.x, pos.y + min.y, pos.z); CRASH_COND(dst_ri >= volume); switch (channel.depth) { case DEPTH_8_BIT: // Fill row by row memset(&channel.data[dst_ri], defval, area_size.y * sizeof(uint8_t)); break; case DEPTH_16_BIT: for (unsigned int i = 0; i < area_size.y; ++i) { ((uint16_t *)channel.data)[dst_ri + i] = defval; } break; case DEPTH_32_BIT: for (unsigned int i = 0; i < area_size.y; ++i) { ((uint32_t *)channel.data)[dst_ri + i] = defval; } break; case DEPTH_64_BIT: for (unsigned int i = 0; i < area_size.y; ++i) { ((uint64_t *)channel.data)[dst_ri + i] = defval; } break; default: CRASH_NOW(); break; } } } } void VoxelBuffer::fill_f(real_t value, unsigned int channel) { ERR_FAIL_INDEX(channel, MAX_CHANNELS); fill(real_to_raw_voxel(value, _channels[channel].depth), channel); } template inline bool is_uniform(const uint8_t *p_data, uint32_t size) { const T *data = (const T *)p_data; T v0 = data[0]; for (unsigned int i = 1; i < size; ++i) { if (data[i] != v0) { return false; } } return true; } bool VoxelBuffer::is_uniform(unsigned int channel_index) const { ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, true); const Channel &channel = _channels[channel_index]; if (channel.data == nullptr) { // Channel has been optimized return true; } unsigned int volume = get_volume(); // Channel isn't optimized, so must look at each voxel switch (channel.depth) { case DEPTH_8_BIT: return ::is_uniform(channel.data, volume); case DEPTH_16_BIT: return ::is_uniform(channel.data, volume); case DEPTH_32_BIT: return ::is_uniform(channel.data, volume); case DEPTH_64_BIT: return ::is_uniform(channel.data, volume); default: CRASH_NOW(); break; } return true; } void VoxelBuffer::compress_uniform_channels() { for (unsigned int i = 0; i < MAX_CHANNELS; ++i) { if (_channels[i].data && is_uniform(i)) { clear_channel(i, _channels[i].data[0]); } } } void VoxelBuffer::decompress_channel(unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); Channel &channel = _channels[channel_index]; if (channel.data == nullptr) { create_channel(channel_index, _size, channel.defval); } } VoxelBuffer::Compression VoxelBuffer::get_channel_compression(unsigned int channel_index) const { ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, VoxelBuffer::COMPRESSION_NONE); const Channel &channel = _channels[channel_index]; if (channel.data == nullptr) { return COMPRESSION_UNIFORM; } return COMPRESSION_NONE; } void VoxelBuffer::copy_from(const VoxelBuffer &other) { // Copy all channels, assuming sizes and formats match for (unsigned int i = 0; i < MAX_CHANNELS; ++i) { copy_from(other, i); } } void VoxelBuffer::copy_from(const VoxelBuffer &other, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); ERR_FAIL_COND(other._size != _size); Channel &channel = _channels[channel_index]; const Channel &other_channel = other._channels[channel_index]; ERR_FAIL_COND(other_channel.depth != channel.depth); if (other_channel.data) { if (channel.data == NULL) { create_channel_noinit(channel_index, _size); } CRASH_COND(channel.size_in_bytes != other_channel.size_in_bytes); memcpy(channel.data, other_channel.data, channel.size_in_bytes); } else if (channel.data) { delete_channel(channel_index); } channel.defval = other_channel.defval; channel.depth = other_channel.depth; } void VoxelBuffer::copy_from(const VoxelBuffer &other, Vector3i src_min, Vector3i src_max, Vector3i dst_min, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); Channel &channel = _channels[channel_index]; const Channel &other_channel = other._channels[channel_index]; ERR_FAIL_COND(other_channel.depth != channel.depth); if (channel.data == nullptr && other_channel.data == nullptr && channel.defval == other_channel.defval) { // No action needed return; } Vector3i::sort_min_max(src_min, src_max); src_min.clamp_to(Vector3i(0, 0, 0), other._size); src_max.clamp_to(Vector3i(0, 0, 0), other._size + Vector3i(1, 1, 1)); dst_min.clamp_to(Vector3i(0, 0, 0), _size); Vector3i area_size = src_max - src_min; //Vector3i dst_max = dst_min + area_size; if (area_size == _size && area_size == other._size) { // Equivalent of full copy between two blocks of same size copy_from(other, channel_index); } else { if (other_channel.data) { if (channel.data == NULL) { create_channel(channel_index, _size, channel.defval); } if (channel.depth == DEPTH_8_BIT) { // Native format // Copy row by row Vector3i pos; for (pos.z = 0; pos.z < area_size.z; ++pos.z) { for (pos.x = 0; pos.x < area_size.x; ++pos.x) { // Row direction is Y unsigned int src_ri = other.index(pos.x + src_min.x, pos.y + src_min.y, pos.z + src_min.z); unsigned int dst_ri = index(pos.x + dst_min.x, pos.y + dst_min.y, pos.z + dst_min.z); memcpy(&channel.data[dst_ri], &other_channel.data[src_ri], area_size.y * sizeof(uint8_t)); } } } else { // TODO Optimized versions Vector3i pos; for (pos.z = 0; pos.z < area_size.z; ++pos.z) { for (pos.x = 0; pos.x < area_size.x; ++pos.x) { for (pos.y = 0; pos.y < area_size.y; ++pos.y) { uint64_t v = other.get_voxel(src_min + pos, channel_index); set_voxel(v, dst_min + pos, channel_index); } } } } } else if (channel.defval != other_channel.defval) { if (channel.data == NULL) { create_channel(channel_index, _size, channel.defval); } fill_area(other_channel.defval, dst_min, dst_min + area_size, channel_index); } } } Ref VoxelBuffer::duplicate() const { VoxelBuffer *d = memnew(VoxelBuffer); d->create(_size); d->copy_from(*this); return Ref(d); } bool VoxelBuffer::get_channel_raw(unsigned int channel_index, ArraySlice &slice) const { const Channel &channel = _channels[channel_index]; if (channel.data != nullptr) { slice = ArraySlice(channel.data, 0, channel.size_in_bytes); return true; } slice = ArraySlice(); return false; } void VoxelBuffer::create_channel(int i, Vector3i size, uint64_t defval) { create_channel_noinit(i, size); fill(defval, i); } uint32_t VoxelBuffer::get_size_in_bytes_for_volume(Vector3i size, Depth depth) { // Calculate appropriate size based on bit depth const unsigned int volume = size.x * size.y * size.z; const unsigned int bits = volume * ::get_depth_bit_count(depth); unsigned int size_in_bytes = (bits >> 3); return size_in_bytes; } void VoxelBuffer::create_channel_noinit(int i, Vector3i size) { Channel &channel = _channels[i]; uint32_t size_in_bytes = get_size_in_bytes_for_volume(size, channel.depth); CRASH_COND(channel.data != nullptr); channel.data = allocate_channel_data(size_in_bytes); channel.size_in_bytes = size_in_bytes; } void VoxelBuffer::delete_channel(int i) { Channel &channel = _channels[i]; ERR_FAIL_COND(channel.data == nullptr); free_channel_data(channel.data, channel.size_in_bytes); channel.data = nullptr; channel.size_in_bytes = 0; } void VoxelBuffer::downscale_to(VoxelBuffer &dst, Vector3i src_min, Vector3i src_max, Vector3i dst_min) const { // TODO Align input to multiple of two src_min.clamp_to(Vector3i(), _size); src_max.clamp_to(Vector3i(), _size + Vector3i(1)); Vector3i dst_max = dst_min + ((src_max - src_min) >> 1); dst_min.clamp_to(Vector3i(), dst._size); dst_max.clamp_to(Vector3i(), dst._size + Vector3i(1)); for (int channel_index = 0; channel_index < MAX_CHANNELS; ++channel_index) { const Channel &src_channel = _channels[channel_index]; const Channel &dst_channel = dst._channels[channel_index]; if (src_channel.data == nullptr && dst_channel.data == nullptr && src_channel.defval == dst_channel.defval) { // No action needed continue; } // Nearest-neighbor downscaling Vector3i pos; for (pos.z = dst_min.z; pos.z < dst_max.z; ++pos.z) { for (pos.x = dst_min.x; pos.x < dst_max.x; ++pos.x) { for (pos.y = dst_min.y; pos.y < dst_max.y; ++pos.y) { const Vector3i src_pos = src_min + ((pos - dst_min) << 1); // TODO Remove check once it works CRASH_COND(!validate_pos(src_pos.x, src_pos.y, src_pos.z)); uint64_t v; if (src_channel.data) { // TODO Optimized version? v = get_voxel(src_pos, channel_index); } else { v = src_channel.defval; } dst.set_voxel(v, pos, channel_index); } } } } } Ref VoxelBuffer::get_voxel_tool() { // I can't make this function `const`, because `Ref` has no constructor taking a `const T*`. // The compiler would then choose Ref(const Variant&), which fumbles `this` into a null pointer Ref vb(this); return Ref(memnew(VoxelToolBuffer(vb))); } bool VoxelBuffer::equals(const VoxelBuffer *p_other) const { CRASH_COND(p_other == nullptr); if (p_other->_size != _size) { return false; } for (int channel_index = 0; channel_index < MAX_CHANNELS; ++channel_index) { const Channel &channel = _channels[channel_index]; const Channel &other_channel = p_other->_channels[channel_index]; if ((channel.data == nullptr) != (other_channel.data == nullptr)) { // Note: they could still logically be equal if one channel contains uniform voxel memory return false; } if (channel.depth != other_channel.depth) { return false; } if (channel.data == nullptr) { if (channel.defval != other_channel.defval) { return false; } } else { CRASH_COND(channel.size_in_bytes != other_channel.size_in_bytes); for (unsigned int i = 0; i < channel.size_in_bytes; ++i) { if (channel.data[i] != other_channel.data[i]) { return false; } } } } return true; } void VoxelBuffer::set_channel_depth(unsigned int channel_index, Depth new_depth) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); ERR_FAIL_INDEX(new_depth, DEPTH_COUNT); Channel &channel = _channels[channel_index]; if (channel.depth == new_depth) { return; } if (channel.data != nullptr) { // TODO Implement conversion WARN_PRINT("Changing VoxelBuffer depth with present data, this will reset the channel"); delete_channel(channel_index); } channel.defval = clamp_value_for_depth(channel.defval, new_depth); } VoxelBuffer::Depth VoxelBuffer::get_channel_depth(unsigned int channel_index) const { ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, DEPTH_8_BIT); return _channels[channel_index].depth; } uint32_t VoxelBuffer::get_depth_bit_count(Depth d) { return ::get_depth_bit_count(d); } #ifdef TOOLS_ENABLED Ref VoxelBuffer::debug_print_sdf_to_image_top_down() { Image *im = memnew(Image); im->create(_size.x, _size.z, false, Image::FORMAT_RGB8); im->lock(); Vector3i pos; for (pos.z = 0; pos.z < _size.z; ++pos.z) { for (pos.x = 0; pos.x < _size.x; ++pos.x) { for (pos.y = _size.y - 1; pos.y >= 0; --pos.y) { float v = get_voxel_f(pos.x, pos.y, pos.z, CHANNEL_SDF); if (v < 0.0) { break; } } float h = pos.y; float c = h / _size.y; im->set_pixel(pos.x, pos.z, Color(c, c, c)); } } im->unlock(); return Ref(im); } #endif void VoxelBuffer::_bind_methods() { ClassDB::bind_method(D_METHOD("create", "sx", "sy", "sz"), &VoxelBuffer::_b_create); ClassDB::bind_method(D_METHOD("clear"), &VoxelBuffer::clear); ClassDB::bind_method(D_METHOD("get_size"), &VoxelBuffer::_b_get_size); ClassDB::bind_method(D_METHOD("get_size_x"), &VoxelBuffer::get_size_x); ClassDB::bind_method(D_METHOD("get_size_y"), &VoxelBuffer::get_size_y); ClassDB::bind_method(D_METHOD("get_size_z"), &VoxelBuffer::get_size_z); ClassDB::bind_method(D_METHOD("set_voxel", "value", "x", "y", "z", "channel"), &VoxelBuffer::_b_set_voxel, DEFVAL(0)); ClassDB::bind_method(D_METHOD("set_voxel_f", "value", "x", "y", "z", "channel"), &VoxelBuffer::_b_set_voxel_f, DEFVAL(0)); ClassDB::bind_method(D_METHOD("set_voxel_v", "value", "pos", "channel"), &VoxelBuffer::_b_set_voxel_v, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_voxel", "x", "y", "z", "channel"), &VoxelBuffer::_b_get_voxel, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_voxel_f", "x", "y", "z", "channel"), &VoxelBuffer::get_voxel_f, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_voxel_tool"), &VoxelBuffer::get_voxel_tool); ClassDB::bind_method(D_METHOD("get_channel_depth", "channel"), &VoxelBuffer::get_channel_depth); ClassDB::bind_method(D_METHOD("set_channel_depth", "channel", "depth"), &VoxelBuffer::set_channel_depth); ClassDB::bind_method(D_METHOD("fill", "value", "channel"), &VoxelBuffer::fill, DEFVAL(0)); ClassDB::bind_method(D_METHOD("fill_f", "value", "channel"), &VoxelBuffer::fill_f, DEFVAL(0)); ClassDB::bind_method(D_METHOD("fill_area", "value", "min", "max", "channel"), &VoxelBuffer::_b_fill_area, DEFVAL(0)); ClassDB::bind_method(D_METHOD("copy_channel_from", "other", "channel"), &VoxelBuffer::_b_copy_channel_from); ClassDB::bind_method(D_METHOD("copy_channel_from_area", "other", "src_min", "src_max", "dst_min", "channel"), &VoxelBuffer::_b_copy_channel_from_area); ClassDB::bind_method(D_METHOD("downscale_to", "dst", "src_min", "src_max", "dst_min"), &VoxelBuffer::_b_downscale_to); ClassDB::bind_method(D_METHOD("is_uniform", "channel"), &VoxelBuffer::is_uniform); ClassDB::bind_method(D_METHOD("optimize"), &VoxelBuffer::compress_uniform_channels); BIND_ENUM_CONSTANT(CHANNEL_TYPE); BIND_ENUM_CONSTANT(CHANNEL_SDF); BIND_ENUM_CONSTANT(CHANNEL_DATA2); BIND_ENUM_CONSTANT(CHANNEL_DATA3); BIND_ENUM_CONSTANT(CHANNEL_DATA4); BIND_ENUM_CONSTANT(CHANNEL_DATA5); BIND_ENUM_CONSTANT(CHANNEL_DATA6); BIND_ENUM_CONSTANT(CHANNEL_DATA7); BIND_ENUM_CONSTANT(MAX_CHANNELS); BIND_ENUM_CONSTANT(DEPTH_8_BIT); BIND_ENUM_CONSTANT(DEPTH_16_BIT); BIND_ENUM_CONSTANT(DEPTH_32_BIT); BIND_ENUM_CONSTANT(DEPTH_64_BIT); BIND_ENUM_CONSTANT(DEPTH_COUNT); } void VoxelBuffer::_b_copy_channel_from(Ref other, unsigned int channel) { ERR_FAIL_COND(other.is_null()); copy_from(**other, channel); } void VoxelBuffer::_b_copy_channel_from_area(Ref other, Vector3 src_min, Vector3 src_max, Vector3 dst_min, unsigned int channel) { ERR_FAIL_COND(other.is_null()); copy_from(**other, Vector3i(src_min), Vector3i(src_max), Vector3i(dst_min), channel); } void VoxelBuffer::_b_downscale_to(Ref dst, Vector3 src_min, Vector3 src_max, Vector3 dst_min) const { ERR_FAIL_COND(dst.is_null()); downscale_to(**dst, Vector3i(src_min), Vector3i(src_max), Vector3i(dst_min)); }