#define VOXEL_BUFFER_USE_MEMORY_POOL #ifdef VOXEL_BUFFER_USE_MEMORY_POOL #include "voxel_memory_pool.h" #endif #include "../edition/voxel_tool_buffer.h" #include "../util/funcs.h" #include "../util/profiling.h" #include "voxel_buffer.h" #include #include #include #include #include namespace { inline uint8_t *allocate_channel_data(uint32_t size) { #ifdef VOXEL_BUFFER_USE_MEMORY_POOL return VoxelMemoryPool::get_singleton()->allocate(size); #else return (uint8_t *)memalloc(size * sizeof(uint8_t)); #endif } inline void free_channel_data(uint8_t *data, uint32_t size) { #ifdef VOXEL_BUFFER_USE_MEMORY_POOL VoxelMemoryPool::get_singleton()->recycle(data, size); #else memfree(data); #endif } uint64_t g_depth_max_values[] = { 0xff, // 8 0xffff, // 16 0xffffffff, // 32 0xffffffffffffffff // 64 }; inline uint32_t get_depth_bit_count(VoxelBuffer::Depth d) { CRASH_COND(d < 0 || d >= VoxelBuffer::DEPTH_COUNT); return VoxelBuffer::get_depth_byte_count(d) << 3; } inline uint64_t get_max_value_for_depth(VoxelBuffer::Depth d) { CRASH_COND(d < 0 || d >= VoxelBuffer::DEPTH_COUNT); return g_depth_max_values[d]; } inline uint64_t clamp_value_for_depth(uint64_t value, VoxelBuffer::Depth d) { const uint64_t max_val = get_max_value_for_depth(d); if (value >= max_val) { return max_val; } return value; } static_assert(sizeof(uint32_t) == sizeof(float), "uint32_t and float cannot be marshalled back and forth"); static_assert(sizeof(uint64_t) == sizeof(double), "uint64_t and double cannot be marshalled back and forth"); inline uint64_t real_to_raw_voxel(real_t value, VoxelBuffer::Depth depth) { switch (depth) { case VoxelBuffer::DEPTH_8_BIT: return norm_to_u8(value); case VoxelBuffer::DEPTH_16_BIT: return norm_to_u16(value); case VoxelBuffer::DEPTH_32_BIT: { MarshallFloat m; m.f = value; return m.i; } case VoxelBuffer::DEPTH_64_BIT: { MarshallDouble m; m.d = value; return m.l; } default: CRASH_NOW(); return 0; } } inline real_t raw_voxel_to_real(uint64_t value, VoxelBuffer::Depth depth) { // Depths below 32 are normalized between -1 and 1 switch (depth) { case VoxelBuffer::DEPTH_8_BIT: return u8_to_norm(value); case VoxelBuffer::DEPTH_16_BIT: return u16_to_norm(value); case VoxelBuffer::DEPTH_32_BIT: { MarshallFloat m; m.i = value; return m.f; } case VoxelBuffer::DEPTH_64_BIT: { MarshallDouble m; m.l = value; return m.d; } default: CRASH_NOW(); return 0; } } } // namespace const char *VoxelBuffer::CHANNEL_ID_HINT_STRING = "Type,Sdf,Data2,Data3,Data4,Data5,Data6,Data7"; VoxelBuffer::VoxelBuffer() { // Minecraft uses way more than 255 block types and there is room for eventual metadata such as rotation _channels[CHANNEL_TYPE].depth = VoxelBuffer::DEFAULT_TYPE_CHANNEL_DEPTH; _channels[CHANNEL_TYPE].defval = 0; // 16-bit is better on average to handle large worlds _channels[CHANNEL_SDF].depth = VoxelBuffer::DEFAULT_SDF_CHANNEL_DEPTH; _channels[CHANNEL_SDF].defval = 0xffff; _channels[CHANNEL_INDICES].depth = VoxelBuffer::DEPTH_16_BIT; _channels[CHANNEL_INDICES].defval = encode_indices_to_packed_u16(0, 1, 2, 3); _channels[CHANNEL_WEIGHTS].depth = VoxelBuffer::DEPTH_16_BIT; _channels[CHANNEL_WEIGHTS].defval = encode_weights_to_packed_u16(15, 0, 0, 0); } VoxelBuffer::~VoxelBuffer() { clear(); } void VoxelBuffer::create(unsigned int sx, unsigned int sy, unsigned int sz) { ERR_FAIL_COND(sx > MAX_SIZE || sy > MAX_SIZE || sz > MAX_SIZE); clear_voxel_metadata(); Vector3i new_size(sx, sy, sz); if (new_size != _size) { for (unsigned int i = 0; i < MAX_CHANNELS; ++i) { Channel &channel = _channels[i]; if (channel.data) { // Channel already contained data delete_channel(i); create_channel(i, new_size, channel.defval); } } _size = new_size; } } void VoxelBuffer::create(Vector3i size) { create(size.x, size.y, size.z); } void VoxelBuffer::clear() { for (unsigned int i = 0; i < MAX_CHANNELS; ++i) { Channel &channel = _channels[i]; if (channel.data) { delete_channel(i); } } _size = Vector3i(); clear_voxel_metadata(); } void VoxelBuffer::clear_channel(unsigned int channel_index, uint64_t clear_value) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); Channel &channel = _channels[channel_index]; if (channel.data != nullptr) { delete_channel(channel_index); } channel.defval = clamp_value_for_depth(clear_value, channel.depth); } void VoxelBuffer::clear_channel_f(unsigned int channel_index, real_t clear_value) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); const Channel &channel = _channels[channel_index]; clear_channel(channel_index, real_to_raw_voxel(clear_value, channel.depth)); } void VoxelBuffer::set_default_values(FixedArray values) { for (unsigned int i = 0; i < MAX_CHANNELS; ++i) { _channels[i].defval = clamp_value_for_depth(values[i], _channels[i].depth); } } uint64_t VoxelBuffer::get_voxel(int x, int y, int z, unsigned int channel_index) const { ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, 0); ERR_FAIL_COND_V_MSG(!is_position_valid(x, y, z), 0, String("At position ({0}, {1}, {2})").format(varray(x, y, z))); const Channel &channel = _channels[channel_index]; if (channel.data != nullptr) { const uint32_t i = get_index(x, y, z); switch (channel.depth) { case DEPTH_8_BIT: return channel.data[i]; case DEPTH_16_BIT: return reinterpret_cast(channel.data)[i]; case DEPTH_32_BIT: return reinterpret_cast(channel.data)[i]; case DEPTH_64_BIT: return reinterpret_cast(channel.data)[i]; default: CRASH_NOW(); return 0; } } else { return channel.defval; } } void VoxelBuffer::set_voxel(uint64_t value, int x, int y, int z, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); ERR_FAIL_COND_MSG(!is_position_valid(x, y, z), String("At position ({0}, {1}, {2})").format(varray(x, y, z))); Channel &channel = _channels[channel_index]; value = clamp_value_for_depth(value, channel.depth); bool do_set = true; if (channel.data == nullptr) { if (channel.defval != value) { // Allocate channel with same initial values as defval create_channel(channel_index, _size, channel.defval); } else { do_set = false; } } if (do_set) { const uint32_t i = get_index(x, y, z); switch (channel.depth) { case DEPTH_8_BIT: channel.data[i] = value; break; case DEPTH_16_BIT: reinterpret_cast(channel.data)[i] = value; break; case DEPTH_32_BIT: reinterpret_cast(channel.data)[i] = value; break; case DEPTH_64_BIT: reinterpret_cast(channel.data)[i] = value; break; default: CRASH_NOW(); break; } } } real_t VoxelBuffer::get_voxel_f(int x, int y, int z, unsigned int channel_index) const { ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, 0); return raw_voxel_to_real(get_voxel(x, y, z, channel_index), _channels[channel_index].depth); } void VoxelBuffer::set_voxel_f(real_t value, int x, int y, int z, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); set_voxel(real_to_raw_voxel(value, _channels[channel_index].depth), x, y, z, channel_index); } void VoxelBuffer::fill(uint64_t defval, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); Channel &channel = _channels[channel_index]; defval = clamp_value_for_depth(defval, channel.depth); if (channel.data == nullptr) { // Channel is already optimized and uniform if (channel.defval == defval) { // No change return; } else { // Just change default value channel.defval = defval; return; } } const unsigned int volume = get_volume(); switch (channel.depth) { case DEPTH_8_BIT: memset(channel.data, defval, channel.size_in_bytes); break; case DEPTH_16_BIT: for (uint32_t i = 0; i < volume; ++i) { reinterpret_cast(channel.data)[i] = defval; } break; case DEPTH_32_BIT: for (uint32_t i = 0; i < volume; ++i) { reinterpret_cast(channel.data)[i] = defval; } break; case DEPTH_64_BIT: for (uint32_t i = 0; i < volume; ++i) { reinterpret_cast(channel.data)[i] = defval; } break; default: CRASH_NOW(); break; } } void VoxelBuffer::fill_area(uint64_t defval, Vector3i min, Vector3i max, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); Vector3i::sort_min_max(min, max); min.clamp_to(Vector3i(0, 0, 0), _size + Vector3i(1, 1, 1)); max.clamp_to(Vector3i(0, 0, 0), _size + Vector3i(1, 1, 1)); const Vector3i area_size = max - min; if (area_size.x == 0 || area_size.y == 0 || area_size.z == 0) { return; } Channel &channel = _channels[channel_index]; defval = clamp_value_for_depth(defval, channel.depth); if (channel.data == nullptr) { if (channel.defval == defval) { return; } else { create_channel(channel_index, _size, channel.defval); } } Vector3i pos; const unsigned int volume = get_volume(); for (pos.z = min.z; pos.z < max.z; ++pos.z) { for (pos.x = min.x; pos.x < max.x; ++pos.x) { const unsigned int dst_ri = get_index(pos.x, pos.y + min.y, pos.z); CRASH_COND(dst_ri >= volume); switch (channel.depth) { case DEPTH_8_BIT: // Fill row by row memset(&channel.data[dst_ri], defval, area_size.y * sizeof(uint8_t)); break; case DEPTH_16_BIT: for (int i = 0; i < area_size.y; ++i) { ((uint16_t *)channel.data)[dst_ri + i] = defval; } break; case DEPTH_32_BIT: for (int i = 0; i < area_size.y; ++i) { ((uint32_t *)channel.data)[dst_ri + i] = defval; } break; case DEPTH_64_BIT: for (int i = 0; i < area_size.y; ++i) { ((uint64_t *)channel.data)[dst_ri + i] = defval; } break; default: CRASH_NOW(); break; } } } } void VoxelBuffer::fill_area_f(float fvalue, Vector3i min, Vector3i max, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); const Channel &channel = _channels[channel_index]; fill_area(real_to_raw_voxel(fvalue, channel.depth), min, max, channel_index); } void VoxelBuffer::fill_f(real_t value, unsigned int channel) { ERR_FAIL_INDEX(channel, MAX_CHANNELS); fill(real_to_raw_voxel(value, _channels[channel].depth), channel); } template inline bool is_uniform_b(const uint8_t *data, unsigned int item_count) { return is_uniform(reinterpret_cast(data), item_count); } bool VoxelBuffer::is_uniform(unsigned int channel_index) const { ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, true); const Channel &channel = _channels[channel_index]; if (channel.data == nullptr) { // Channel has been optimized return true; } const unsigned int volume = get_volume(); // Channel isn't optimized, so must look at each voxel switch (channel.depth) { case DEPTH_8_BIT: return ::is_uniform_b(channel.data, volume); case DEPTH_16_BIT: return ::is_uniform_b(channel.data, volume); case DEPTH_32_BIT: return ::is_uniform_b(channel.data, volume); case DEPTH_64_BIT: return ::is_uniform_b(channel.data, volume); default: CRASH_NOW(); break; } return true; } void VoxelBuffer::compress_uniform_channels() { for (unsigned int i = 0; i < MAX_CHANNELS; ++i) { if (_channels[i].data != nullptr && is_uniform(i)) { // TODO More direct way const uint64_t v = get_voxel(0, 0, 0, i); clear_channel(i, v); } } } void VoxelBuffer::decompress_channel(unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); Channel &channel = _channels[channel_index]; if (channel.data == nullptr) { create_channel(channel_index, _size, channel.defval); } } VoxelBuffer::Compression VoxelBuffer::get_channel_compression(unsigned int channel_index) const { ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, VoxelBuffer::COMPRESSION_NONE); const Channel &channel = _channels[channel_index]; if (channel.data == nullptr) { return COMPRESSION_UNIFORM; } return COMPRESSION_NONE; } void VoxelBuffer::copy_format(const VoxelBuffer &other) { for (unsigned int i = 0; i < MAX_CHANNELS; ++i) { set_channel_depth(i, other.get_channel_depth(i)); } } void VoxelBuffer::copy_from(const VoxelBuffer &other) { // Copy all channels, assuming sizes and formats match for (unsigned int i = 0; i < MAX_CHANNELS; ++i) { copy_from(other, i); } } void VoxelBuffer::copy_from(const VoxelBuffer &other, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); ERR_FAIL_COND(other._size != _size); Channel &channel = _channels[channel_index]; const Channel &other_channel = other._channels[channel_index]; ERR_FAIL_COND(other_channel.depth != channel.depth); if (other_channel.data != nullptr) { if (channel.data == nullptr) { create_channel_noinit(channel_index, _size); } CRASH_COND(channel.size_in_bytes != other_channel.size_in_bytes); memcpy(channel.data, other_channel.data, channel.size_in_bytes); } else if (channel.data != nullptr) { delete_channel(channel_index); } channel.defval = other_channel.defval; channel.depth = other_channel.depth; } // TODO Disallow copying from overlapping areas of the same buffer void VoxelBuffer::copy_from(const VoxelBuffer &other, Vector3i src_min, Vector3i src_max, Vector3i dst_min, unsigned int channel_index) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); Channel &channel = _channels[channel_index]; const Channel &other_channel = other._channels[channel_index]; ERR_FAIL_COND(other_channel.depth != channel.depth); if (channel.data == nullptr && other_channel.data == nullptr && channel.defval == other_channel.defval) { // No action needed return; } if (other_channel.data != nullptr) { if (channel.data == nullptr) { // Note, we do this even if the pasted data happens to be all the same value as our current channel. // We assume that this case is not frequent enough to bother, and compression can happen later create_channel(channel_index, _size, channel.defval); } const unsigned int item_size = get_depth_byte_count(channel.depth); ArraySlice src(other_channel.data, other_channel.size_in_bytes); ArraySlice dst(channel.data, channel.size_in_bytes); copy_3d_region_zxy(dst, _size, dst_min, src, other._size, src_min, src_max, item_size); } else if (channel.defval != other_channel.defval) { // This logic is still required due to how source and destination regions can be specified. // The actual size of the destination area must be determined from the source area, after it has been clipped. Vector3i::sort_min_max(src_min, src_max); clip_copy_region(src_min, src_max, other._size, dst_min, _size); const Vector3i area_size = src_max - src_min; if (area_size.x <= 0 || area_size.y <= 0 || area_size.z <= 0) { // Degenerate area, we'll not copy anything. return; } fill_area(other_channel.defval, dst_min, dst_min + area_size, channel_index); } } Ref VoxelBuffer::duplicate(bool include_metadata) const { VoxelBuffer *d = memnew(VoxelBuffer); d->create(_size); for (unsigned int i = 0; i < _channels.size(); ++i) { d->set_channel_depth(i, _channels[i].depth); } d->copy_from(*this); if (include_metadata) { d->copy_voxel_metadata(*this); } return Ref(d); } bool VoxelBuffer::get_channel_raw(unsigned int channel_index, ArraySlice &slice) const { const Channel &channel = _channels[channel_index]; if (channel.data != nullptr) { slice = ArraySlice(channel.data, 0, channel.size_in_bytes); return true; } slice = ArraySlice(); return false; } void VoxelBuffer::create_channel(int i, Vector3i size, uint64_t defval) { create_channel_noinit(i, size); fill(defval, i); } uint32_t VoxelBuffer::get_size_in_bytes_for_volume(Vector3i size, Depth depth) { // Calculate appropriate size based on bit depth const unsigned int volume = size.x * size.y * size.z; const unsigned int bits = volume * ::get_depth_bit_count(depth); const unsigned int size_in_bytes = (bits >> 3); return size_in_bytes; } void VoxelBuffer::create_channel_noinit(int i, Vector3i size) { Channel &channel = _channels[i]; uint32_t size_in_bytes = get_size_in_bytes_for_volume(size, channel.depth); CRASH_COND(channel.data != nullptr); channel.data = allocate_channel_data(size_in_bytes); channel.size_in_bytes = size_in_bytes; } void VoxelBuffer::delete_channel(int i) { Channel &channel = _channels[i]; ERR_FAIL_COND(channel.data == nullptr); free_channel_data(channel.data, channel.size_in_bytes); channel.data = nullptr; channel.size_in_bytes = 0; } void VoxelBuffer::downscale_to(VoxelBuffer &dst, Vector3i src_min, Vector3i src_max, Vector3i dst_min) const { // TODO Align input to multiple of two src_min.clamp_to(Vector3i(), _size); src_max.clamp_to(Vector3i(), _size + Vector3i(1)); Vector3i dst_max = dst_min + ((src_max - src_min) >> 1); // TODO This will be wrong if it overlaps the border? dst_min.clamp_to(Vector3i(), dst._size); dst_max.clamp_to(Vector3i(), dst._size + Vector3i(1)); for (int channel_index = 0; channel_index < MAX_CHANNELS; ++channel_index) { const Channel &src_channel = _channels[channel_index]; const Channel &dst_channel = dst._channels[channel_index]; if (src_channel.data == nullptr && dst_channel.data == nullptr && src_channel.defval == dst_channel.defval) { // No action needed continue; } // Nearest-neighbor downscaling Vector3i pos; for (pos.z = dst_min.z; pos.z < dst_max.z; ++pos.z) { for (pos.x = dst_min.x; pos.x < dst_max.x; ++pos.x) { for (pos.y = dst_min.y; pos.y < dst_max.y; ++pos.y) { const Vector3i src_pos = src_min + ((pos - dst_min) << 1); // TODO Remove check once it works CRASH_COND(!is_position_valid(src_pos.x, src_pos.y, src_pos.z)); uint64_t v; if (src_channel.data) { // TODO Optimized version? v = get_voxel(src_pos, channel_index); } else { v = src_channel.defval; } dst.set_voxel(v, pos, channel_index); } } } } } Ref VoxelBuffer::get_voxel_tool() { // I can't make this function `const`, because `Ref` has no constructor taking a `const T*`. // The compiler would then choose Ref(const Variant&), which fumbles `this` into a null pointer Ref vb(this); return Ref(memnew(VoxelToolBuffer(vb))); } bool VoxelBuffer::equals(const VoxelBuffer &p_other) const { if (p_other._size != _size) { return false; } for (int channel_index = 0; channel_index < MAX_CHANNELS; ++channel_index) { const Channel &channel = _channels[channel_index]; const Channel &other_channel = p_other._channels[channel_index]; if ((channel.data == nullptr) != (other_channel.data == nullptr)) { // Note: they could still logically be equal if one channel contains uniform voxel memory return false; } if (channel.depth != other_channel.depth) { return false; } if (channel.data == nullptr) { if (channel.defval != other_channel.defval) { return false; } } else { ERR_FAIL_COND_V(channel.size_in_bytes != other_channel.size_in_bytes, false); for (unsigned int i = 0; i < channel.size_in_bytes; ++i) { if (channel.data[i] != other_channel.data[i]) { return false; } } } } return true; } void VoxelBuffer::set_channel_depth(unsigned int channel_index, Depth new_depth) { ERR_FAIL_INDEX(channel_index, MAX_CHANNELS); ERR_FAIL_INDEX(new_depth, DEPTH_COUNT); Channel &channel = _channels[channel_index]; if (channel.depth == new_depth) { return; } if (channel.data != nullptr) { // TODO Implement conversion and do it when specified WARN_PRINT("Changing VoxelBuffer depth with present data, this will reset the channel"); delete_channel(channel_index); } channel.defval = clamp_value_for_depth(channel.defval, new_depth); channel.depth = new_depth; } VoxelBuffer::Depth VoxelBuffer::get_channel_depth(unsigned int channel_index) const { ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, DEPTH_8_BIT); return _channels[channel_index].depth; } uint32_t VoxelBuffer::get_depth_bit_count(Depth d) { return ::get_depth_bit_count(d); } float VoxelBuffer::get_sdf_quantization_scale(Depth d) { switch (d) { // Normalized case DEPTH_8_BIT: return VoxelConstants::QUANTIZED_SDF_8_BITS_SCALE; case DEPTH_16_BIT: return VoxelConstants::QUANTIZED_SDF_16_BITS_SCALE; // Direct default: return 1.f; } } void VoxelBuffer::set_block_metadata(Variant meta) { _block_metadata = meta; } Variant VoxelBuffer::get_voxel_metadata(Vector3i pos) const { ERR_FAIL_COND_V(!is_position_valid(pos), Variant()); const Map::Element *elem = _voxel_metadata.find(pos); if (elem != nullptr) { return elem->value(); } else { return Variant(); } } void VoxelBuffer::set_voxel_metadata(Vector3i pos, Variant meta) { ERR_FAIL_COND(!is_position_valid(pos)); if (meta.get_type() == Variant::NIL) { _voxel_metadata.erase(pos); } else { _voxel_metadata[pos] = meta; } } void VoxelBuffer::for_each_voxel_metadata(Ref callback) const { ERR_FAIL_COND(callback.is_null()); const Map::Element *elem = _voxel_metadata.front(); while (elem != nullptr) { const Variant key = elem->key().to_vec3(); const Variant *args[2] = { &key, &elem->value() }; Variant::CallError err; callback->call_func(args, 2, err); ERR_FAIL_COND_MSG(err.error != Variant::CallError::CALL_OK, String("FuncRef call failed at {0}").format(varray(key))); // TODO Can't provide detailed error because FuncRef doesn't give us access to the object // ERR_FAIL_COND_MSG(err.error != Variant::CallError::CALL_OK, false, // Variant::get_call_error_text(callback->get_object(), method_name, nullptr, 0, err)); elem = elem->next(); } } void VoxelBuffer::for_each_voxel_metadata_in_area(Ref callback, Rect3i box) const { ERR_FAIL_COND(callback.is_null()); const Map::Element *elem = _voxel_metadata.front(); while (elem != nullptr) { if (box.contains(elem->key())) { const Variant key = elem->key().to_vec3(); const Variant *args[2] = { &key, &elem->value() }; Variant::CallError err; callback->call_func(args, 2, err); ERR_FAIL_COND_MSG(err.error != Variant::CallError::CALL_OK, String("FuncRef call failed at {0}").format(varray(key))); // TODO Can't provide detailed error because FuncRef doesn't give us access to the object // ERR_FAIL_COND_MSG(err.error != Variant::CallError::CALL_OK, false, // Variant::get_call_error_text(callback->get_object(), method_name, nullptr, 0, err)); } elem = elem->next(); } } void VoxelBuffer::clear_voxel_metadata() { _voxel_metadata.clear(); } void VoxelBuffer::clear_voxel_metadata_in_area(Rect3i box) { Map::Element *elem = _voxel_metadata.front(); while (elem != nullptr) { Map::Element *next_elem = elem->next(); if (box.contains(elem->key())) { _voxel_metadata.erase(elem); } elem = next_elem; } } void VoxelBuffer::copy_voxel_metadata_in_area(Ref src_buffer, Rect3i src_box, Vector3i dst_origin) { ERR_FAIL_COND(src_buffer.is_null()); ERR_FAIL_COND(src_buffer->is_box_valid(src_box)); const Rect3i clipped_src_box = src_box.clipped(Rect3i(src_box.pos - dst_origin, _size)); const Vector3i clipped_dst_offset = dst_origin + clipped_src_box.pos - src_box.pos; const Map::Element *elem = src_buffer->_voxel_metadata.front(); while (elem != nullptr) { const Vector3i src_pos = elem->key(); if (src_box.contains(src_pos)) { const Vector3i dst_pos = src_pos + clipped_dst_offset; CRASH_COND(!is_position_valid(dst_pos)); _voxel_metadata[dst_pos] = elem->value().duplicate(); } elem = elem->next(); } } void VoxelBuffer::copy_voxel_metadata(const VoxelBuffer &src_buffer) { ERR_FAIL_COND(src_buffer.get_size() != _size); const Map::Element *elem = src_buffer._voxel_metadata.front(); while (elem != nullptr) { const Vector3i pos = elem->key(); _voxel_metadata[pos] = elem->value().duplicate(); elem = elem->next(); } _block_metadata = src_buffer._block_metadata.duplicate(); } Ref VoxelBuffer::debug_print_sdf_to_image_top_down() { Image *im = memnew(Image); im->create(_size.x, _size.z, false, Image::FORMAT_RGB8); im->lock(); Vector3i pos; for (pos.z = 0; pos.z < _size.z; ++pos.z) { for (pos.x = 0; pos.x < _size.x; ++pos.x) { for (pos.y = _size.y - 1; pos.y >= 0; --pos.y) { float v = get_voxel_f(pos.x, pos.y, pos.z, CHANNEL_SDF); if (v < 0.0) { break; } } float h = pos.y; float c = h / _size.y; im->set_pixel(pos.x, pos.z, Color(c, c, c)); } } im->unlock(); return Ref(im); } void VoxelBuffer::_bind_methods() { ClassDB::bind_method(D_METHOD("create", "sx", "sy", "sz"), &VoxelBuffer::_b_create); ClassDB::bind_method(D_METHOD("clear"), &VoxelBuffer::clear); ClassDB::bind_method(D_METHOD("get_size"), &VoxelBuffer::_b_get_size); ClassDB::bind_method(D_METHOD("get_size_x"), &VoxelBuffer::get_size_x); ClassDB::bind_method(D_METHOD("get_size_y"), &VoxelBuffer::get_size_y); ClassDB::bind_method(D_METHOD("get_size_z"), &VoxelBuffer::get_size_z); ClassDB::bind_method(D_METHOD("set_voxel", "value", "x", "y", "z", "channel"), &VoxelBuffer::_b_set_voxel, DEFVAL(0)); ClassDB::bind_method(D_METHOD("set_voxel_f", "value", "x", "y", "z", "channel"), &VoxelBuffer::_b_set_voxel_f, DEFVAL(0)); ClassDB::bind_method(D_METHOD("set_voxel_v", "value", "pos", "channel"), &VoxelBuffer::_b_set_voxel_v, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_voxel", "x", "y", "z", "channel"), &VoxelBuffer::_b_get_voxel, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_voxel_f", "x", "y", "z", "channel"), &VoxelBuffer::get_voxel_f, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_voxel_tool"), &VoxelBuffer::get_voxel_tool); ClassDB::bind_method(D_METHOD("get_channel_depth", "channel"), &VoxelBuffer::get_channel_depth); ClassDB::bind_method(D_METHOD("set_channel_depth", "channel", "depth"), &VoxelBuffer::set_channel_depth); ClassDB::bind_method(D_METHOD("fill", "value", "channel"), &VoxelBuffer::fill, DEFVAL(0)); ClassDB::bind_method(D_METHOD("fill_f", "value", "channel"), &VoxelBuffer::fill_f, DEFVAL(0)); ClassDB::bind_method(D_METHOD("fill_area", "value", "min", "max", "channel"), &VoxelBuffer::_b_fill_area, DEFVAL(0)); ClassDB::bind_method(D_METHOD("copy_channel_from", "other", "channel"), &VoxelBuffer::_b_copy_channel_from); ClassDB::bind_method(D_METHOD("copy_channel_from_area", "other", "src_min", "src_max", "dst_min", "channel"), &VoxelBuffer::_b_copy_channel_from_area); ClassDB::bind_method(D_METHOD("downscale_to", "dst", "src_min", "src_max", "dst_min"), &VoxelBuffer::_b_downscale_to); ClassDB::bind_method(D_METHOD("is_uniform", "channel"), &VoxelBuffer::is_uniform); // TODO Rename `compress_uniform_channels` ClassDB::bind_method(D_METHOD("optimize"), &VoxelBuffer::compress_uniform_channels); ClassDB::bind_method(D_METHOD("get_channel_compression", "channel"), &VoxelBuffer::get_channel_compression); ClassDB::bind_method(D_METHOD("get_block_metadata"), &VoxelBuffer::get_block_metadata); ClassDB::bind_method(D_METHOD("set_block_metadata", "meta"), &VoxelBuffer::set_block_metadata); ClassDB::bind_method(D_METHOD("get_voxel_metadata", "pos"), &VoxelBuffer::_b_get_voxel_metadata); ClassDB::bind_method(D_METHOD("set_voxel_metadata", "pos", "value"), &VoxelBuffer::_b_set_voxel_metadata); ClassDB::bind_method(D_METHOD("for_each_voxel_metadata", "callback"), &VoxelBuffer::for_each_voxel_metadata); ClassDB::bind_method(D_METHOD("for_each_voxel_metadata_in_area", "callback", "min_pos", "max_pos"), &VoxelBuffer::_b_for_each_voxel_metadata_in_area); ClassDB::bind_method(D_METHOD("clear_voxel_metadata"), &VoxelBuffer::clear_voxel_metadata); ClassDB::bind_method(D_METHOD("clear_voxel_metadata_in_area", "min_pos", "max_pos"), &VoxelBuffer::_b_clear_voxel_metadata_in_area); ClassDB::bind_method( D_METHOD("copy_voxel_metadata_in_area", "src_buffer", "src_min_pos", "src_max_pos", "dst_min_pos"), &VoxelBuffer::_b_copy_voxel_metadata_in_area); BIND_ENUM_CONSTANT(CHANNEL_TYPE); BIND_ENUM_CONSTANT(CHANNEL_SDF); BIND_ENUM_CONSTANT(CHANNEL_COLOR); BIND_ENUM_CONSTANT(CHANNEL_INDICES); BIND_ENUM_CONSTANT(CHANNEL_WEIGHTS); BIND_ENUM_CONSTANT(CHANNEL_DATA5); BIND_ENUM_CONSTANT(CHANNEL_DATA6); BIND_ENUM_CONSTANT(CHANNEL_DATA7); BIND_ENUM_CONSTANT(MAX_CHANNELS); BIND_ENUM_CONSTANT(DEPTH_8_BIT); BIND_ENUM_CONSTANT(DEPTH_16_BIT); BIND_ENUM_CONSTANT(DEPTH_32_BIT); BIND_ENUM_CONSTANT(DEPTH_64_BIT); BIND_ENUM_CONSTANT(DEPTH_COUNT); BIND_ENUM_CONSTANT(COMPRESSION_NONE); BIND_ENUM_CONSTANT(COMPRESSION_UNIFORM); BIND_ENUM_CONSTANT(COMPRESSION_COUNT); BIND_CONSTANT(MAX_SIZE); } void VoxelBuffer::_b_copy_channel_from(Ref other, unsigned int channel) { ERR_FAIL_COND(other.is_null()); copy_from(**other, channel); } void VoxelBuffer::_b_copy_channel_from_area(Ref other, Vector3 src_min, Vector3 src_max, Vector3 dst_min, unsigned int channel) { ERR_FAIL_COND(other.is_null()); copy_from(**other, Vector3i(src_min), Vector3i(src_max), Vector3i(dst_min), channel); } void VoxelBuffer::_b_downscale_to(Ref dst, Vector3 src_min, Vector3 src_max, Vector3 dst_min) const { ERR_FAIL_COND(dst.is_null()); downscale_to(**dst, Vector3i(src_min), Vector3i(src_max), Vector3i(dst_min)); } void VoxelBuffer::_b_for_each_voxel_metadata_in_area(Ref callback, Vector3 min_pos, Vector3 max_pos) { for_each_voxel_metadata_in_area(callback, Rect3i::from_min_max(Vector3i(min_pos), Vector3i(max_pos))); } void VoxelBuffer::_b_clear_voxel_metadata_in_area(Vector3 min_pos, Vector3 max_pos) { clear_voxel_metadata_in_area(Rect3i::from_min_max(Vector3i(min_pos), Vector3i(max_pos))); } void VoxelBuffer::_b_copy_voxel_metadata_in_area(Ref src_buffer, Vector3 src_min_pos, Vector3 src_max_pos, Vector3 dst_pos) { copy_voxel_metadata_in_area( src_buffer, Rect3i::from_min_max(Vector3i(src_min_pos), Vector3i(src_max_pos)), dst_pos); }