
Midi Time Code to SMPTE conversion (C++ / openframe works)

I've recently needed to work with Midi Time Code (MTC) and could not find any code to parse the midi messages and
construct an SMPTE timecode. Closest I got was finding this documentation (which is pretty good) on how the data is
encoded in the bits of 8 bytes sent over 2 SMPTE frames, each byte sent at quarter frame intervals. From that I wrote the
code below (I've only really tested the 25 fps). The code is from an openframeworks application but should work with any
C/C++ code.

P.S. Some info on bits, bytes and nibbles here.

class ofxMidiEventArgs: public ofEventArgs{
public:
 int port;
 int channel;
 int status;
 int byteOne;
 int byteTwo;
 double timestamp;
};

#define kMTCFrames 0
#define kMTCSeconds 1
#define kMTCMinutes 2
#define kMTCHours 3

// callback for when a midi message is received
void newMidiMessage(ofxMidiEventArgs& eventArgs){

 if(eventArgs.status == 240) { // if this is a MTC message...
 // these static variables could be globals, or class properties etc.
 static int times[4] = {0, 0, 0, 0}; // this static buffer will hold our 4 ti
 static char *szType = ""; // SMPTE type as string (24fps, 25fps, 3
 static int numFrames = 100; // number of frames per second (start of

 int messageIndex = eventArgs.byteOne >> 4; // the high nibble: which quarter messag
 int value = eventArgs.byteOne & 0x0F; // the low nibble: value
 int timeIndex = messageIndex>>1; // which time component (frames, seconds
 bool bNewFrame = messageIndex % 4 == 0;

 // the time encoded in the MTC is 1 frame behind by the time we have received a new frame, so ad
 if(bNewFrame) {
 times[kMTCFrames]++;
 if(times[kMTCFrames] >= numFrames) {
 times[kMTCFrames] %= numFrames;
 times[kMTCSeconds]++;
 if(times[kMTCSeconds] >= 60) {
 times[kMTCSeconds] %= 60;
 times[kMTCMinutes]++;
 if(times[kMTCMinutes] >= 60) {
 times[kMTCMinutes] %= 60;
 times[kMTCHours]++;
 }
 }
 }
 printf("%i:%i:%i:%i | %s\n", times[3], times[2], times[1], times[0], szType);
 }

 if(messageIndex % 2 == 0) { // if this is lower nibble of time compo
 times[timeIndex] = value;
 } else { // ... or higher nibble
 times[timeIndex] |= value<<4;
 }

 if(messageIndex == 7) {
 times[kMTCHours] &= 0x1F; // only use lower 5 bits for hours (
 int smpteType = value >> 1;
 switch(smpteType) {
 case 0: numFrames = 24; szType = "24 fps"; break;
 case 1: numFrames = 25; szType = "25 fps"; break;
 case 2: numFrames = 30; szType = "30 fps (drop-frame)"; break;
 case 3: numFrames = 30; szType = "30 fps"; break;
 default: numFrames = 100; szType = " **** unknown SMPTE type ****";

more

 Search

iPhone apps
Zoetrope for iPhone•

MSA Remote for iPhone•

Meshmerizer for iPhone•

"Jackson Pollock by Miltos Manetas"

for iPhone

•

Gold Dust for iPhone•

Tags
ActionScript 3.0 (12)•

App Store (10)•

Audio (24)•

Cinder (2)•

Cocoa & ObjC (28)•

Computer Vision (36)•

Flash (32)•

GLSL (10)•

Installation (20)•

iPhone (42)•

Lab (112)•

Library (12)•

Maths+Physics (24)•

Multi-touch (30)•

Off-topic (14)•

Open Source (90)•

openFrameworks (76)•

OSC (28)•

PHP & MySQL (18)•

Processing.org (30)•

Quartz Composer (38)•

Tutorial (26)•

VDMX (16)•

Visual (34)•

Wiimote (8)•

Work (138)•

Recent downloads
Vertex Arrays, VBO's and Point
Sprites with C/C++ in
openFrameworks 006

OF006-VA+VBO+PS.zip

•

XCode templates for
openFrameworks on Desktop and
iPhone

•

about contact dates jobs lab open-source work iphone

 }
 }
 }
}

Add New Comment

Type your comment here.

Showing 0 comments

Sort by Popular now Subscribe by email Subscribe by RSS

Trackback URL http://disqus.com/forums/memotv/midi_time_code_to_smpte_conversion_c_openframeworks_10/trackback/

Submitted by memo on 7 February 2010 - 5:42pm.

Tags: Audio Lab Open Source openFrameworks

» Delicious Digg StumbleUpon

openFrameworks XCode
Templates.zip

MSA Remote for iPhone
MSARemote 1.0 Max
Template.zip

•

MSAFluid for processing
MSAFluid_v1.3.zip

•

NSArray vs. C Array performance

comparison Part II -
makeObjectsPerformSelector
Array Speed Test II.zip

•

more

Navigation
abstractshit.com (2003)

Motion Graphics Reel (2007)

Music

Quartz Composer / VDMX Archive

RSS Feed

Twitter updates
@JGL einstein put those ideas to
rest with general theory of
relativity ;) 1 day ago

•

until you learn to master your
rage, your rage will become your
master 2 days ago

•

@secti0n9 "video cannot be
watched in this country!" proxy? 2

days ago

•

to those asking, MSA::Gui (with
midi+OSC+more) is not public yet,
the API is changing every couple
of hours :P but it will be soon 2

days ago

•

follow me on Twitter

Recent Comments

 Stephen Budd
wonderful !! whats the music ?? it isn't
Sabbath is it ??

works really well if you create your
own music using this in the
background

http://www.themagicnumbers.net/2010/07/20
-m...

•

Reincarnation · 7 hours ago

 Joe Any news on if
this would eventually be opensource?
it would be cool to try it out with a full
band reacting to it, and the video feed
could be in the same musical mode
further adding the live...

•

Announcing Webcam Piano 2.0 · 5 days
ago

 new fendi shoes
vibram five fingers UK vibram five fingers

US top quality vibram...

•

Laser tracking visuals for OKGo & Fendi
@ Design Miami 2009 | memo.tv · 6

days ago

 new fendi shoes buy
vibram five fingers shoes authetic vibram

five fingers shoes <a...

•

Post as …

Imogen Heap "Twitdress" for Grammys
2010 · 6 days ago

 new fendi shoes
vibram five fingers shoe cheap vibram
five fingers shoes vibram five...

•

Rehearsal images from Blaze · 6 days
ago

(Memo) Mehmet S. Akten (c) 2009 | powered by drupal

Synchronisation and SMPTE timecode (time code)
This document is a description (mainly technical, but not requiring extensive prior
knowledge) of the SMPTE time-code synchronization system, especially the Bi-
Phase Mark "LTC" timecode sync tone which can be recorded onto the audio
track of a video tape or onto an audio tape. Other time code variants, such as
VITC time-code are also mentioned. Some supporting information on the related
subjects of colour television standards and field sequences is included. There is
also a concise description of the binary coded decimal (BCD) representation as
used in the SMPTE (or EBU) timecode (time code) data word.

My original reason for exploring this subject technically was to develop a low cost MIDI
tape sync unit, which was a frequent customer request, and a logical addition to our
range of electronic music gadgets. Our Time Code tape sync unit, which supported
SMPTE (including Drop Frame format) and MIDI Time Code, was called the TS1 and
was for over a decade a successful and highly-respected product.

Synchronisation systems

When you require pieces of audio, video, or music technology equipment (eg. tape recorder and
sequencer) to work together, you may need some means to make sure that they play in time with
each other. This is called 'synchronisation' or 'synchronization', which gets shortened to 'sync' or
even 'synch'.

A magnetic tape-recorder track is the region of the tape that is scanned by one recording head
element. It can, for example, carry an audio signal, that is an electronic analogue of a stream of
sound. In order to use an audio track to record sync information, the information must be encoded
into an audio-compatible signal, called a sync tone. An audio tape track on which a sync tone has
been recorded is called a 'stripe'. It is desirable that the synchronised devices can join in wherever
you start up the sync tone, even if it is not at the beginning of the stripe; this is called 'chasing'. The
SMPTE/EBU timecode standard defines the predominant internationally accepted standard for a
sync tone and it allows devices to 'chase' or locate to a precise position.

In music technology applications, with equipment which is not timecode compatible,
you may be able to use a tape sync unit by way of a tempo-relative stripe system.
Examples of such systems are traditional FSK (Frequency Shift Key) and the Philip
Rees proprietary FSKplus format.

The SMPTE/EBU timecode standard

Until the advent of video recording, there was mechanical sound to film synchronisation. This mainly
relied on sprockets (a row of neat holes) in the film and in special sprocketed recording tape.
Relative timing adjustments could be made by slipping sprocket holes. The same sprocket holes
were used to maintain synchronisation. Video tape hasn't got any sprocket holes, so when video
arrived an electronic equivalent was needed to take the place of mechanical methods of
synchronisation.

In 1967, The US Society of Motion Picture and Television Engineers introduced that
which we call SMPTE ("simpty") time code. The audio sync tone version of SMPTE is
called linear or longitudinal time code or LTC. By the way, there are also versions of
timecode which can be inserted into a video signal or sent via a MIDI connection.

On the website tvhandbook.com, the interestinq Broadcast History Timeline has this
entry the year of 1969: "SMPTE timecode established to end the chaos of incompatible time codes
for various editing machines".

The original uses of SMPTE timecode include accurate video editing and synchronising film sound-
tracks. The timing data in SMPTE takes the form of an eight digit twenty-four hour clock. The count
consists of 0 to 59 seconds, 0 to 59 minutes and 0 to 23 hours. The second is subdivided into a
number of frames, which may be varied to match the various frame-rates used around the world.
The frame-rate is the number of times a second that the picture is updated so as to give the illusion
of continuous movement.

Frame-rate formats

There are four standard frame-rate formats: The SMPTE frame-rate of thirty frames per
second (fps) is often used for audio in America. It is used with the Sony 1630 format for
CD mastering. It has its origins in the obsolete American mono television standard. The
American colour television standard has a slightly different frame-rate of about 29.97 fps.
This is accommodated by the SMPTE format known as thirty Drop Frame and is required
for video work in America, Japan and generally the 60 Hz (mains frequency), NTSC
(television standard) world. The number of frames in each second is not an integer, so an

approximation is used; it is based on 30 fps, but two frames counts are dropped (skipped) at the
start of every minute, except for every tenth minute. The EBU (European Broadcasting Union)
standard of 25 fps is used throughout Europe, Australia and wherever the mains frequency is 50 Hz
and the colour TV system is PAL or SECAM. The remaining rate of 24 fps is required for film work, it
is rarely used for audio.

In audio post-production, SMPTE has been adopted for machine synchronisation and as a reference
of tape position. Essentially, the choice of frame rate for audio work is usually arbitrary.

The modulation scheme of SMPTE LTC

A bit is a binary digit (which can take only the value 0 or 1). The
value of a bit is often represented by the 'off' and 'on' states of an
electronic switch. When the sequence of binary digits must pass
through a channel designed for analogue audio signals the 'on'
and 'off' states ('phase') cannot be reliably distinguished.
However, audio frequencies are reproduced faithfully; to exploit
this property, SMPTE Longitudinal TimeCode encodes its data
into the rate (frequency) of electronic state transitions. The binary
value 0 is represented by a single transition at the start (or
'boundary') of the bit-period (or bit 'cell'). The binary value 1 is
represented by a two transitions - one at the start and the second
in the middle of the bit period. This scheme is called 'Bi-Phase
Mark' and closely resembles frequency modulation ('FM'); that is, a stream of binary ones is
represented by a burst of audio at double the frequency of a burst of audio which is used to
represent a stream of a binary zeros. This straightforward scheme of modulation is amazingly robust
and compatible with a range of real world audio channels, including tape recorder tracks. To ensure
good performance in audio channels, the rise-time of the waveform is also specified.

The data organisation of the SMPTE LTC frame

The datastream for each video frame of Longitudinal TimeCode consists of eighty bit-periods (bit
cells). At the original American frame-rate of 30 fps, the bit rate would work out to 30 x 80, that is
2400 bits per second. The frequency for a stream of zeros would be 1.2 kHz and for a stream of
ones it would be 2.4 kHz. The corresponding bit rate for the European 25 fps frame-rate is 2000 bits
per second. in this case, the frequency for a stream of zeros would be 1.0 kHz and for a stream of
ones it would be 2.0 kHz. All these frequencies are safely within the audio range, so the SMPTE
LTC sync tone waveform can be recorded easily on any half decent audio track.

In each frame, twenty six of the eighty bits carry the SMPTE time or 'address', in binary coded
decimal. In the diagram above, these Bits are shown as FRAME UNITS, FRAME TENS, SECS

UNITS, SECS TENS, MINS UNITS, MINS TENS, HOURS UNITS and HOURS TENS. The
BCD digits are loaded 'least significant bit first'.

Thirty two bits are assigned as eight groups of four USER BITS, also sometimes called the "Binary
Groups". This capacity is generally used to carry extra info such as reel number and date. The User
Bits may be allocated howsoever one wishes as long as both Binary Group Flag Bits are cleared.
The User Bits do not usually vary in the course of a timecode stream.

The last sixteen Bits make up the SYNC WORD. A timecode reader uses these Bits to find the frame
boundary, the tape direction, and the bit-rate of the sync tone. The values of these Bits are fixed as
0011 1111 1111 1101

The Bi-Phase Mark Phase Correction Bit bPMPC is Bit 27. This bit may be set or cleared in order that
every 80-bit word contains an even number of zeroes. This means that the phase (or logical sense)
of the pulse train in every Sync Word will be the same. As the LTC standard evolved, during the
1980's, timecode was being heavily used in 1" video editing. Many of the early processor systems
used to synchronize the playback and record machines to an editor required that the timecode Sync
Word to be properly timed to the vertical interval (per the spec). However, because of tracking (or
other interchange) problems with some tapes, it was necessary to manually track those tapes for
optimum playback. At the same time, not all VTRs were equipped with timecode boards, and not all
of those that did performed a regeneration of the off-tape timecode (which provides a properly
phased and shaped signal to the outside world). As a consequence, as the tracking was varied, the
timing relationship of the Sync Word varied as well. Much to the dismay of many editors and tape
operators (spoolers), it was learned too late that the timecode readers in the editor could be off by a
frame if the tracking was moved too far away from spec. The Ampex VPR-2/2B, the work-horse of
the industry at the time, had a timecode waveform display. Using it to verify the position of sync
word was complicated by the constant toggling of the polarity of the waveform due to the varying
number of zero's per frame. The Bi-Phase Mark Bit was added to make finding the Sync Word
visibly easier. By the time the standard was fully adopted, most newer machines had already
incorporated the regeneration feature which made the Bi-Phase Mark Bit obsolete. Prior to the
standard being adopted, Sony on the BVH-2000 had implemented a phase correction bit in one of
the User Bits - this machine also had a timecode waveform display. credit

Bit 58 is not required for the BCD count for HOURS TENS (which has a maximum value of two) and
has not been given any other special purpose so remains unassigned. This Bit has been RESERVED
for future assignment.

Bits 43 and 59 are assigned as the Binary Group Flag Bits bGFb. These Bits are used to indicate
when a standard character set is used to format the User Bits data. The Binary Group Flag Bits
should be used only as shown in the truth table below. The Unassigned entries in the table should
not be used, as they may be allocated specific meanings in the future.

 Bit 43 Bit 59
 No User Bits format specified 0 0
 Eight-bit character set 1 0
 Unassigned (Reserved) 0 1
 Unassigned (Reserved) 1 1

If you were designing a timecode reader to be able to read stripes from other writers, you would be
best advised to make the reader ignore (mask out) Bits 27, 43, 58 and 59. If you were designing a
writer to produce portable SMPTE timecode (for good compatibility) you should allocate zero values
to these Bits; this is because some readers may interpret these Bits as part of the SMPTE frame
'address'; the result would appear to be invalid or illegal BCD values.

The Drop Frame flag DF bit is Bit 10; if the Drop Frame format is in use, this bit is set. The
Colour Frame Flag col.frm is Bit 11; if the timecode intentionally synchronized to a colour TV field
sequence, this bit is set.

NTSC and Drop Frame format

Electronic television was invented in the US by Philo T. Farnsworth, and his system had
300 lines per frame. Because of patent litigation in the US, this technology was first
exploited in Britain. The original (now obsolete) British electronic television system used
25 fps and 405 lines. in 1941, the American monochrome television standard was

specified to be somewhat superior, it had a frame rate of 30 fps with 525 lines. The audio signal was
combined with the video signal by modulating a subcarrier wave at a frequency of 4.5 MHz.

In 1953, the American NTSC (National Television System Committee) specified a colour television
standard which would be compatible with the existing black-and-white receivers. The two extra
colour (chrominance) video
components are combined
with the monochrome
(luminance) video signal by
modulating additional
subcarrier waves. They
found that, with only minor
problems, they could get
away with selecting a
frequency for these
subcarriers which lay
within the bandwidth of the main luminance component. This meant that a new colour TV channel
would occupy the same bandwidth as an existing monochrome channel. The frequency for the the
two chrominance components was set to be the same (227.5 times line frequency) but 90 degrees
(quarter of a cycle) out of phase.

It was found however that there was a troublesome interaction between the line frequency and both
subcarrier frequencies. They could probably have put this right by slightly altering the audio
subcarrier frequency (4.5 MHz). Instead, they slightly altered all the other frequencies, increasing
the frame period by 0.1%. This results in: a frame rate of (30 × 1000 / 1001) fps, that is about
29.97 fps; a field rate of twice the frame rate, that is about 59.94 Hz; a line rate of
(525 × 30 × 1000 / 1001) Hz, that is about 15.73 kHz; the colour subcarrier ends up at
(227.5 × 525 × 30 × 1000 / 1001) MHz, that is about 3.579545 MHz. [Please note: × is the symbol for the multiply
operator.]

The dropped frames compensate for the fact that 29.97 is not an integral (whole) number of frames
per second. This is achieved by regularly bumping forward the value of the frame count to make the
slow-running clock catch up with an actual clock. This resembles, in an opposite way, how February
29th compensates for the fact that an astronomical year is not an integral number of days long. It is
not so much frames which are dropped as frame numbers which are skipped. Drop Frame counting
misses out frame numbers 0 and 1 in the first second of every minute. For example, timecode
address 11:41:59:29 is immediately followed by 11:42:00:02. However, skipping two frame numbers
per minute slightly over-compensates, so no frame numbers are dropped when the minute number
is exactly divisible by ten. For example, timecode address 11:49:59:29 is immediately followed by
11:50:00:00. By this technique, a stream of timecode running at about 29.97 fps will repeatedly jump
back into sync with an actual clock.

Here's a general idea of why frames are dropped

If you are working with European video, or are working on your own with audio, you can avoid the
pitfalls of 30 fps SMPTE formats by sticking with the EBU 25 fps standard. If you are working with
American video, you will actually be working with approximately 29.97 fps. If you use this American
TV frame-rate with so-called 30 non-drop timecode the clock will actually run slow by about 1.8
seconds per hour. If you use the American TV frame-rate with the special 30 Drop Frame format the
clock will stay correct to within a theoretical 75ms in 24 hours. If you are working with just audio, you
can use 30 non-drop at a true frame-rate of 30 fps; many people do, especially in America, but this
format is not truly compatible with any non-obsolete video format. Greater timing precision is
sometimes cited as a reason for choosing 30 non-drop for audio work; in practice, however, the
benefit is too small to be significant.

When an American TV frame-rate video production must be edited to actual clock time, Drop Frame
timecode must be used. If staying in time with an actual clock not important, especially on short
video productions like commercials, the bastard 29.97 fps non-Drop Frame timecode is often used.
Some editors prefer this as accurate calculations can readily be made without the aid of a computer

program or special hardware calculator.

SMPTE stripe signal levels

You should make sure that a SMPTE Longitudinal TimeCode stripe is recorded and
played back at suitable levels. It is definitely not the case that higher levels are better.
SMPTE timecode is a pulse or rectangular wave signal, where signal levels do matter.
The most common error is recording at too high a level which causes waveform

distortions leading to errors. Recording at too high a level will also exacerbate audio crosstalk,
breakthrough of the sync tone onto audio signals. Recording at too low a level may make the stripe
replay susceptible to crosstalk, leading to corruption of the signal seen by the timecode reader.
Excessive volume in the stripe replay path may swamp the input circuits of a timecode reader,
impairing its ability to interpret the sync signal.

A SMPTE Longitudinal TimeCode stripe is best recorded at just a few dB above the minimum level
which allows correct reading. the best way to arrive at appropriate working level settings is usually
trial-and-error. Most audio tape tracks and one-inch Video Tape Recorders will work well with the
stripe recorded as low as 10 dB below reference level. Audio tracks with noise reduction and Video
Cassette Recorders may work better with stripes recorded as high as just 3 dB below reference
level.

SMPTE LTC sync tone waveform

Here is a one second snatch of 25 fps LTC sync tone, in case you would like to hear how it sounds.
You may decide to download the 22050Hz 8-bit mono Windows .wav sound file, Sun/Next .au sound file or Apple .aiff sound file: the files are
about 42K bytes each.

The audio-compatible SMPTE Longitudinal TimeCode
signal uses the Bi-Phase Mark modulation scheme.
The data for each frame period is contained in an
eighty bit word format. The modulation scheme, frame-
rate and word length determine the range of pulse
frequencies required by the LTC signal at normal
speed; 960 Hz (zeroes at 24 fps) to 2400 Hz (ones at
30 fps).

The rise time is the
time it takes the step
response to traverse
between ten percent

and ninety percent of the full step amplitude. The time
constant is the time it would take for the variable to
traverse the full step amplitude, if its rate of change
was the same as at the very start of the step response.
The time constant approximately equals the rise time
divided by 2.2. Where tc is the time constant in ms, the
formula for -3 dB cut-off frequency fc in kHz is:

The standard specifies that the LTC signal should have a rise time of 25 µs ± 5 µs. This means that
the pulse waveform must be low pass filtered. If the filter is of the first order (6 dB/octave), the 25 µs
rise time corresponds to a time constant of about 11.5 µs. This also corresponds to a -3 dB cut-off
frequency (channel bandwidth) of about 14 kHz. The resultant waveform does not have excessive
high frequency energy, and is easily accommodated by a standard audio channel. [Please note: µ is the
symbol for 'micro', ± is the symbol for '+/-'.]

In practice, the most common form of degradation to a SMPTE signal is loss of high frequencies:
you may be able to recover such a waveform by passing through a band boost of a few dB at about
2 KHz with a Q of about 1, or a low order shelf filter which boosts 2 kHz with respect to 1 kHz. Other
forms of degradation are crosstalk and noise: you may be able to reduce the effects of these by

passing the signal through a high pass filter with a low frequency roll-off below about 800 Hz. The
other main form of degradation is jitter; the only way that a user might help with this is by the careful
adjustment of levels. The sync tone input of my TS1 design had good jitter tolerance and several
automatic features for waveform restitution.

Generally, the SMPTE sync tone can be handled in the same ways as an ordinary audio signal. The
SMPTE LTC signal can use balanced or single-ended interconnects as required. In professional
installations a balanced signal using screened pair audio cable is usually for timecode distribution.
The SMPTE sync tone is an obtrusive noise and often a fairly high level signal; so it is necessary to
route cables so as to avoid crosstalk. The SMPTE signal should not be subjected to audio
processing (such as expansion, compression, equalization, noise reduction and automatic gain
controls), which can render the waveform unreadable. The Philip Rees TS1 has such a clever sync
tone input that it can even decipher a SMPTE signal that has been recorded and played back
through dbx processing.

SMPTE VITC and special timecode variants

LTC is 'longitudinal' because it is usually recorded along the length of a tape. It is an audio-like
signal, which can only be read while the tape is moving relative to the tape head. In video tape
systems, LTC is used at normal or higher speeds.

In video tape systems, an alternative type of timecode may be inserted
into the vertical sync period of the video frame signal, so it can be read
even while the video tape is paused - this is called Vertical Interval
Time Code or VITC ("vitsy"). Both SMPTE timecode types encode the
time into a frame with a similar data format. SMPTE LTC can be
overdubbed onto an already recorded video tape, whereas SMPTE
VITC usually cannot (it needs to be incorporated into into the video
signal during the initial recording or while copying between tapes).
VITC is part of the video signal and is used at normal or lower speeds.

The VITC word is ninety bits long. The VITC word inserts nine pairs of synchronizing bits, while an
eight bit error-checking "CRC" code replaces LTC's sixteen bit synchronizing word.

Many modern video recording and audio recording formats make special provision to record the
timecode data. This may allow time code to be overdubbed onto an already recorded video tape
without copying; yet it also avoids occupying an audio track. Even when the recorded signal is
different, as with SMPTE VITC, the output datastream is usually presented in SMPTE LTC format.

MIDI Time Code

A supplement to the MIDI specification defines a standard
whereby the timing information (in hours, minutes, seconds,
and, frames) found in SMPTE timecode can carried by a MIDI
connection. In this way, a suitably equipped MIDI sequencer
may be synchronised to an absolute timing reference. This
standard is called MIDI Time Code or MTC.

MTC acts as a bridge between SMPTE and the accepted
standard system for controlling musical equipment, MIDI.
MTC makes it possible to employ a single timing reference
throughout a video, audio and MIDI system. Once MTC is
implemented, a user may avoid the need to convert manually
between absolute SMPTE time and tempo-relative bar and
beat numbers.

Binary Coded Decimal

As with all digital electronic systems, the information in a SMPTE timecode signal is held in binary
(base two) format. Within the SMPTE LTC word the numbers of the SMPTE timecode frame
address are in binary coded decimal representation.

Binary Coded Decimal (often shortened to BCD) is a method of representing base ten (decimal)
numbers using binary (base two) codes. Each decimal digit occupies four binary digits (bits). The
four bits provide 24 (that is sixteen) possible bit patterns. Ten of these patterns are used by the BCD
system to represent the decimal values zero to nine inclusive. The remaining six patterns do not
correspond to legal BCD values. [Please note: 24 above represents two raised to the power of four.

Because some possible bit patterns are not used, a value represented as a BCD number is less
compact (that is it occupies more bit cells) than the same value represented in plain binary. BCD
numbers are also generally more difficult for computers to manipulate than plain binary numbers.
Consequently, BCD is less commonly chosen as a number format nowadays. However, it was often
preferred back when SMPTE timecode was specified, because in those days it was comparatively
complex to convert data between base ten representation and base two representation.

Colour TV field sequences

To reduce the perceived screen flicker on a television, a technique called
'interlacing' is employed. Interlacing divides each video frame into two
fields; the first field consists of the odd scan lines of the image, and the
second field of each frame consists even scan lines.

'Component video' is employed in certain professional video formats;
luminance (brightness), chrominance (colour) and colour burst, blanking
and sync pulse components are kept separate to optimise picture quality.
Each successive frame of black-and-white or component colour video
can be edited at any frame boundary, in a manner similar to cutting and splicing film.

A 'composite video' signal is one in which the luminance, chrominance and other components have
been combined into a single signal. In the various world colour TV standards (NTSC, PAL or
SECAM) the schemes of component combination are somewhat different.

In the established systems, the colour subcarrier frequency (used to superimpose the chrominance
component on the luminance component) is not an integer multiple of the frame-rate. Significant
phase discontinuities in the colour subcarrier cannot be tolerated. Consequently, the overall pattern
of the composite signal repeats over a period longer than a single frame. The accepted repetition
period is four frames in PAL, and the pattern is called the eight field sequence. The repetition period
is two frames in NTSC or SECAM, and the pattern is called the four field sequence. In order to avoid
picture degradation, an edit should not disrupt these sequences. To maintain the sequences across
edits, the timecode (used to synchronise the video sources) must be able to keep track of the
sequence position of each frame.

With a four field (two frame) sequence at 30 fps Drop Frame, the field sequence synchronisation just
consists of odd and even frames. In timecode, the pattern is not broken by the Dropped Frames (as
these come in pairs) nor by the resetting of the frame count when the seconds count is incremented

BINARY CODE DECIMAL BINARY CODE DECIMAL

0000 0 1000 8

0001 1 1001 9

0010 2 1010 not legal BCD

0011 3 1011 not legal BCD

0100 4 1100 not legal BCD

0101 5 1101 not legal BCD

0110 6 1110 not legal BCD

0111 7 1111 not legal BCD

(there are always an even number of frames in each second). The sequence position of each frame
is simply indicated by the state of the least significant bit of the frame units count, that is Bit 0 of
each SMPTE word.

With a four field (two frame) sequence at 25 fps, field sequence position can be indicated via
timecode from the 'exclusive or' (XOR) of the least significant bits of the FRAMES UNITS and
SECONDS UNITS.

With an eight field (four frame) sequence at 25 fps (as in regular PAL), field sequence position can
be indicated in timecode by the first taking the SUM of the two least significant bits of the FRAMES
UNITS and two least significant bits of the SECS UNITS, ignoring the carry-out. The more significant
bit of the two-bit result of the SUM should be XOR'ed in turn with the next-to-least significant bits of
both the FRAMES TENS and SECS TENS; this corrects for the effect of resetting of the UNITS
digits when the TENS digits are incremented. Fortunately, at 25 fps, there are no Dropped Frames
to complicate matters, and the pattern is not broken by the resetting of the seconds count when the
minute count is incremented (sixty is divisible by four). The two least significant bits of the frame
units count are Bits 0 and 1 of each SMPTE word. The two least significant bits of the seconds units
count are Bits 16 and 17 of each SMPTE word. The next-to-least significant bit of FRAMES TENS is
Bit 9, and the next-to-least significant bit of SECS TENS is Bit 25.

The 'exclusive or' (XOR) is a Boolean operator, its basic form has two binary inputs and one binary
output. When the inputs are equal the output is zero. When the inputs are non-equal the output is
one. In the computer language 'C' this operator is shown by the character '^'. The XOR truth table is
shown below:

 0 ^ 0 = 0
 0 ^ 1 = 1
 1 ^ 0 = 1
 1 ^ 1 = 0

Binary addition is very similar to ordinary decimal addition, except that all the digits can only take the
value 0 or 1. The '+' sign here indicates addition.

 0 + 0 = 00
 0 + 1 = 01
 1 + 0 = 01
 1 + 1 = 10

Along with a couple of XOR operations, a SUM function is needed to derive the eight field sequence
position as described above. This two-bit (binary digit) addition has the carry-out discarded, so the
results are as follows:

 00 + 00 = 00 00 + 01 = 01 00 + 10 = 10 00 + 11 = 11
 01 + 00 = 01 01 + 01 = 10 01 + 10 = 11 01 + 11 = 00
 10 + 00 = 10 10 + 01 = 11 10 + 10 = 00 10 + 11 = 01
 11 + 00 = 11 11 + 01 = 00 11 + 10 = 01 11 + 11 = 10

The acronym PAL stands for 'Phase Alternation by Line', or words to that effect. This
is the colour television standard widely used in Europe (including the UK), invariably
with 625 lines and 25 fps. PAL is a derivative of the American NTSC system, but the
carrier phase of the one of the colour components is inverted on alternate lines; this
compensates for hue shifts which can otherwise be caused by phase distortion. The
acronym SECAM stands for 'Système Electronique Couleur Avec Memoire'. This is the colour
television standard used in France, many former communist bloc countries, and a sprinkling of other
territories that De Gaulle was able to lean on. This standard is nowadays also associated with 625
lines and 25 fps. In SECAM the two colour components are each carried alternately on alternate
lines. Video production for SECAM is often performed in PAL, the signal being converted to SECAM
for transmission.

Credit: for his contribution of the expert information about the Bi-Phase Mark Bit, I am indebted to Jim DeLuca, Senior Video
Engineer, Crest National Digital Media Complex, Hollywood CA.

to Phil Rees Music Tech home page

Audio interfaces product directory

Website for Andy Franks a guitarist and singer from Worthing.

Website for Neptune Sky an original rock band from Worthing.

subscribe to the Phil Rees Music Tech email newsletter

© 1997, 2001 Philip Rees
This document is not to be reproduced without permission of the author.

No liability can be accepted for errors and omissions.
All trademarks acknowledged as the property of their owners.

to top of this page

