// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "IrrCompileConfig.h" #include "CSoftwareDriver2.h" #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ #include "SoftwareDriver2_helper.h" #include "CSoftwareTexture.h" #include "CSoftwareTexture2.h" #include "CSoftware2MaterialRenderer.h" #include "S3DVertex.h" #include "S4DVertex.h" #include "CBlit.h" // Matrix now here template bool mat44_transposed_inverse(irr::core::CMatrix4& out, const irr::core::CMatrix4& M) { const T* burning_restrict m = M.pointer(); double d = (m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) - (m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) + (m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) + (m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) - (m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) + (m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]); if (fabs(d) < DBL_MIN) { out.makeIdentity(); return false; } d = 1.0 / d; T* burning_restrict o = out.pointer(); o[0] = (T)(d * (m[5] * (m[10] * m[15] - m[11] * m[14]) + m[6] * (m[11] * m[13] - m[9] * m[15]) + m[7] * (m[9] * m[14] - m[10] * m[13]))); o[4] = (T)(d * (m[9] * (m[2] * m[15] - m[3] * m[14]) + m[10] * (m[3] * m[13] - m[1] * m[15]) + m[11] * (m[1] * m[14] - m[2] * m[13]))); o[8] = (T)(d * (m[13] * (m[2] * m[7] - m[3] * m[6]) + m[14] * (m[3] * m[5] - m[1] * m[7]) + m[15] * (m[1] * m[6] - m[2] * m[5]))); o[12] = (T)(d * (m[1] * (m[7] * m[10] - m[6] * m[11]) + m[2] * (m[5] * m[11] - m[7] * m[9]) + m[3] * (m[6] * m[9] - m[5] * m[10]))); o[1] = (T)(d * (m[6] * (m[8] * m[15] - m[11] * m[12]) + m[7] * (m[10] * m[12] - m[8] * m[14]) + m[4] * (m[11] * m[14] - m[10] * m[15]))); o[5] = (T)(d * (m[10] * (m[0] * m[15] - m[3] * m[12]) + m[11] * (m[2] * m[12] - m[0] * m[14]) + m[8] * (m[3] * m[14] - m[2] * m[15]))); o[9] = (T)(d * (m[14] * (m[0] * m[7] - m[3] * m[4]) + m[15] * (m[2] * m[4] - m[0] * m[6]) + m[12] * (m[3] * m[6] - m[2] * m[7]))); o[13] = (T)(d * (m[2] * (m[7] * m[8] - m[4] * m[11]) + m[3] * (m[4] * m[10] - m[6] * m[8]) + m[0] * (m[6] * m[11] - m[7] * m[10]))); o[2] = (T)(d * (m[7] * (m[8] * m[13] - m[9] * m[12]) + m[4] * (m[9] * m[15] - m[11] * m[13]) + m[5] * (m[11] * m[12] - m[8] * m[15]))); o[6] = (T)(d * (m[11] * (m[0] * m[13] - m[1] * m[12]) + m[8] * (m[1] * m[15] - m[3] * m[13]) + m[9] * (m[3] * m[12] - m[0] * m[15]))); o[10] = (T)(d * (m[15] * (m[0] * m[5] - m[1] * m[4]) + m[12] * (m[1] * m[7] - m[3] * m[5]) + m[13] * (m[3] * m[4] - m[0] * m[7]))); o[14] = (T)(d * (m[3] * (m[5] * m[8] - m[4] * m[9]) + m[0] * (m[7] * m[9] - m[5] * m[11]) + m[1] * (m[4] * m[11] - m[7] * m[8]))); o[3] = (T)(d * (m[4] * (m[10] * m[13] - m[9] * m[14]) + m[5] * (m[8] * m[14] - m[10] * m[12]) + m[6] * (m[9] * m[12] - m[8] * m[13]))); o[7] = (T)(d * (m[8] * (m[2] * m[13] - m[1] * m[14]) + m[9] * (m[0] * m[14] - m[2] * m[12]) + m[10] * (m[1] * m[12] - m[0] * m[13]))); o[11] = (T)(d * (m[12] * (m[2] * m[5] - m[1] * m[6]) + m[13] * (m[0] * m[6] - m[2] * m[4]) + m[14] * (m[1] * m[4] - m[0] * m[5]))); o[15] = (T)(d * (m[0] * (m[5] * m[10] - m[6] * m[9]) + m[1] * (m[6] * m[8] - m[4] * m[10]) + m[2] * (m[4] * m[9] - m[5] * m[8]))); return true; } #if 0 // difference to CMatrix4::getInverse . higher precision in determinant. return identity on failure template bool mat44_inverse(CMatrix4& out, const CMatrix4& M) { const T* m = M.pointer(); double d = (m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) - (m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) + (m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) + (m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) - (m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) + (m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]); if (fabs(d) < DBL_MIN) { out.makeIdentity(); return false; } d = 1.0 / d; T* o = out.pointer(); o[0] = (T)(d * (m[5] * (m[10] * m[15] - m[11] * m[14]) + m[6] * (m[11] * m[13] - m[9] * m[15]) + m[7] * (m[9] * m[14] - m[10] * m[13]))); o[1] = (T)(d * (m[9] * (m[2] * m[15] - m[3] * m[14]) + m[10] * (m[3] * m[13] - m[1] * m[15]) + m[11] * (m[1] * m[14] - m[2] * m[13]))); o[2] = (T)(d * (m[13] * (m[2] * m[7] - m[3] * m[6]) + m[14] * (m[3] * m[5] - m[1] * m[7]) + m[15] * (m[1] * m[6] - m[2] * m[5]))); o[3] = (T)(d * (m[1] * (m[7] * m[10] - m[6] * m[11]) + m[2] * (m[5] * m[11] - m[7] * m[9]) + m[3] * (m[6] * m[9] - m[5] * m[10]))); o[4] = (T)(d * (m[6] * (m[8] * m[15] - m[11] * m[12]) + m[7] * (m[10] * m[12] - m[8] * m[14]) + m[4] * (m[11] * m[14] - m[10] * m[15]))); o[5] = (T)(d * (m[10] * (m[0] * m[15] - m[3] * m[12]) + m[11] * (m[2] * m[12] - m[0] * m[14]) + m[8] * (m[3] * m[14] - m[2] * m[15]))); o[6] = (T)(d * (m[14] * (m[0] * m[7] - m[3] * m[4]) + m[15] * (m[2] * m[4] - m[0] * m[6]) + m[12] * (m[3] * m[6] - m[2] * m[7]))); o[7] = (T)(d * (m[2] * (m[7] * m[8] - m[4] * m[11]) + m[3] * (m[4] * m[10] - m[6] * m[8]) + m[0] * (m[6] * m[11] - m[7] * m[10]))); o[8] = (T)(d * (m[7] * (m[8] * m[13] - m[9] * m[12]) + m[4] * (m[9] * m[15] - m[11] * m[13]) + m[5] * (m[11] * m[12] - m[8] * m[15]))); o[9] = (T)(d * (m[11] * (m[0] * m[13] - m[1] * m[12]) + m[8] * (m[1] * m[15] - m[3] * m[13]) + m[9] * (m[3] * m[12] - m[0] * m[15]))); o[10] = (T)(d * (m[15] * (m[0] * m[5] - m[1] * m[4]) + m[12] * (m[1] * m[7] - m[3] * m[5]) + m[13] * (m[3] * m[4] - m[0] * m[7]))); o[11] = (T)(d * (m[3] * (m[5] * m[8] - m[4] * m[9]) + m[0] * (m[7] * m[9] - m[5] * m[11]) + m[1] * (m[4] * m[11] - m[7] * m[8]))); o[12] = (T)(d * (m[4] * (m[10] * m[13] - m[9] * m[14]) + m[5] * (m[8] * m[14] - m[10] * m[12]) + m[6] * (m[9] * m[12] - m[8] * m[13]))); o[13] = (T)(d * (m[8] * (m[2] * m[13] - m[1] * m[14]) + m[9] * (m[0] * m[14] - m[2] * m[12]) + m[10] * (m[1] * m[12] - m[0] * m[13]))); o[14] = (T)(d * (m[12] * (m[2] * m[5] - m[1] * m[6]) + m[13] * (m[0] * m[6] - m[2] * m[4]) + m[14] * (m[1] * m[4] - m[0] * m[5]))); o[15] = (T)(d * (m[0] * (m[5] * m[10] - m[6] * m[9]) + m[1] * (m[6] * m[8] - m[4] * m[10]) + m[2] * (m[4] * m[9] - m[5] * m[8]))); return true; } #endif // void CMatrix4::transformVec4(T *out, const T * in) const template inline void transformVec4Vec4(const irr::core::CMatrix4& m, T* burning_restrict out, const T* burning_restrict in) { const T* burning_restrict M = m.pointer(); out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + in[3] * M[12]; out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + in[3] * M[13]; out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + in[3] * M[14]; out[3] = in[0] * M[3] + in[1] * M[7] + in[2] * M[11] + in[3] * M[15]; } #if 0 // void CMatrix4::transformVect(T *out, const core::vector3df &in) const template inline void transformVec3Vec4(const irr::core::CMatrix4& m, T* burning_restrict out, const core::vector3df& in) { const T* burning_restrict M = m.pointer(); out[0] = in.X * M[0] + in.Y * M[4] + in.Z * M[8] + M[12]; out[1] = in.X * M[1] + in.Y * M[5] + in.Z * M[9] + M[13]; out[2] = in.X * M[2] + in.Y * M[6] + in.Z * M[10] + M[14]; out[3] = in.X * M[3] + in.Y * M[7] + in.Z * M[11] + M[15]; } #endif template inline void rotateVec3Vec4(const irr::core::CMatrix4& m, T* burning_restrict out, const T* burning_restrict in) { const T* burning_restrict M = m.pointer(); out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8]; out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9]; out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10]; out[3] = 0.f; } //based on https://github.com/ekmett/approximate/blob/master/cbits/fast.c powf_fast_precise static inline float powf_limit(const float a, const float b) { if (a <= 0.0000001f) return 0.f; else if (a >= 1.f) return 1.f; /* calculate approximation with fraction of the exponent */ int e = (int)b; union { float f; int x; } u = { a }; u.x = (int)((b - e) * (u.x - 1065353216) + 1065353216); float r = 1.0f; float ua = a; while (e) { if (e & 1) { r *= ua; } if (ua < 0.00000001f) break; ua *= ua; e >>= 1; } r *= u.f; return r; } //! clamp(value,0,1) static inline float clampf01(const float v) { return v < 0.f ? 0.f : v > 1.f ? 1.f : v; } // IImage::fill static void image_fill(irr::video::IImage* image, const irr::video::SColor& color, const interlaced_control interlaced) { if (0 == image) return; unsigned int c = color.color; switch (image->getColorFormat()) { case irr::video::ECF_A1R5G5B5: c = color.toA1R5G5B5(); c |= c << 16; break; default: break; } irr::memset32_interlaced(image->getData(), c, image->getPitch(), image->getDimension().Height, interlaced); } union scale_setup { struct { unsigned char x : 3; unsigned char y : 3; unsigned char i : 2; }; unsigned char v; }; //setup Antialias. v0.52 uses as Interlaced void get_scale(scale_setup& s, const irr::SIrrlichtCreationParameters& params) { s.x = 1; s.y = 1; s.i = 0; if (params.AntiAlias && params.WindowSize.Width <= 160 && params.WindowSize.Height <= 120) { return; } switch (params.AntiAlias) { case 2: s.x = 1; s.y = 1; s.i = 1; break; case 4: s.x = 2; s.y = 2; s.i = 0; break; case 8: s.x = 2; s.y = 2; s.i = 1; break; case 16:s.x = 4; s.y = 4; s.i = 0; break; case 32:s.x = 4; s.y = 4; s.i = 1; break; case 3: s.x = 3; s.y = 3; s.i = 0; break; case 5: s.x = 3; s.y = 3; s.i = 1; break; } } //turn on/off fpu exception void fpu_exception(int on) { return; #if defined(_WIN32) _clearfp(); _controlfp(on ? _EM_INEXACT : -1, _MCW_EM); #endif } namespace irr { namespace video { //! constructor CBurningVideoDriver::CBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter) : CNullDriver(io, params.WindowSize), BackBuffer(0), Presenter(presenter), WindowId(0), SceneSourceRect(0), RenderTargetTexture(0), RenderTargetSurface(0), CurrentShader(0), DepthBuffer(0), StencilBuffer(0) { //enable fpu exception fpu_exception(1); #ifdef _DEBUG setDebugName("CBurningVideoDriver"); #endif VertexCache_map_source_format(); //Use AntiAlias(hack) to shrink BackBuffer Size and keep ScreenSize the same as Input scale_setup scale; get_scale(scale, params); //Control Interlaced BackBuffer Interlaced.enable = scale.i; Interlaced.bypass = !Interlaced.enable; Interlaced.nr = 0; // create backbuffer. core::dimension2du use(params.WindowSize.Width / scale.x, params.WindowSize.Height / scale.y); BackBuffer = new CImage(SOFTWARE_DRIVER_2_RENDERTARGET_COLOR_FORMAT, use); if (BackBuffer) { //BackBuffer->fill(SColor(0)); image_fill(BackBuffer, SColor(0), interlace_disabled()); // create z buffer if (params.ZBufferBits) DepthBuffer = video::createDepthBuffer(BackBuffer->getDimension()); // create stencil buffer if (params.Stencilbuffer) StencilBuffer = video::createStencilBuffer(BackBuffer->getDimension(), 8); } DriverAttributes->setAttribute("MaxIndices", 1 << 16); DriverAttributes->setAttribute("MaxTextures", BURNING_MATERIAL_MAX_TEXTURES); DriverAttributes->setAttribute("MaxTextureSize", SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE); DriverAttributes->setAttribute("MaxLights", 1024); //glsl::gl_MaxLights); DriverAttributes->setAttribute("MaxTextureLODBias", 16.f); DriverAttributes->setAttribute("Version", 50); // create triangle renderers memset(BurningShader, 0, sizeof(BurningShader)); //BurningShader[ETR_FLAT] = createTRFlat2(DepthBuffer); //BurningShader[ETR_FLAT_WIRE] = createTRFlatWire2(DepthBuffer); BurningShader[ETR_GOURAUD] = createTriangleRendererGouraud2(this); BurningShader[ETR_GOURAUD_NOZ] = createTriangleRendererGouraudNoZ2(this); //BurningShader[ETR_GOURAUD_ALPHA] = createTriangleRendererGouraudAlpha2(this ); BurningShader[ETR_GOURAUD_ALPHA_NOZ] = createTRGouraudAlphaNoZ2(this); // 2D //BurningShader[ETR_GOURAUD_WIRE] = createTriangleRendererGouraudWire2(DepthBuffer); //BurningShader[ETR_TEXTURE_FLAT] = createTriangleRendererTextureFlat2(DepthBuffer); //BurningShader[ETR_TEXTURE_FLAT_WIRE] = createTriangleRendererTextureFlatWire2(DepthBuffer); BurningShader[ETR_TEXTURE_GOURAUD] = createTriangleRendererTextureGouraud2(this); BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M1] = createTriangleRendererTextureLightMap2_M1(this); BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M2] = createTriangleRendererTextureLightMap2_M2(this); BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M4] = createTriangleRendererGTextureLightMap2_M4(this); BurningShader[ETR_TEXTURE_LIGHTMAP_M4] = createTriangleRendererTextureLightMap2_M4(this); BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD] = createTriangleRendererTextureLightMap2_Add(this); BurningShader[ETR_TEXTURE_GOURAUD_DETAIL_MAP] = createTriangleRendererTextureDetailMap2(this); BurningShader[ETR_TEXTURE_GOURAUD_WIRE] = createTriangleRendererTextureGouraudWire2(this); BurningShader[ETR_TEXTURE_GOURAUD_NOZ] = createTRTextureGouraudNoZ2(this); BurningShader[ETR_TEXTURE_GOURAUD_ADD] = createTRTextureGouraudAdd2(this); BurningShader[ETR_TEXTURE_GOURAUD_ADD_NO_Z] = createTRTextureGouraudAddNoZ2(this); BurningShader[ETR_TEXTURE_GOURAUD_VERTEX_ALPHA] = createTriangleRendererTextureVertexAlpha2(this); BurningShader[ETR_TEXTURE_GOURAUD_ALPHA] = createTRTextureGouraudAlpha(this); BurningShader[ETR_TEXTURE_GOURAUD_ALPHA_NOZ] = createTRTextureGouraudAlphaNoZ(this); BurningShader[ETR_NORMAL_MAP_SOLID] = createTRNormalMap(this); BurningShader[ETR_STENCIL_SHADOW] = createTRStencilShadow(this); BurningShader[ETR_TEXTURE_BLEND] = createTRTextureBlend(this); BurningShader[ETR_TRANSPARENT_REFLECTION_2_LAYER] = createTriangleRendererTexture_transparent_reflection_2_layer(this); //BurningShader[ETR_REFERENCE] = createTriangleRendererReference ( this ); BurningShader[ETR_COLOR] = create_burning_shader_color(this); // add the same renderer for all solid types CSoftware2MaterialRenderer_SOLID* smr = new CSoftware2MaterialRenderer_SOLID(this); CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR* tmr = new CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR(this); //CSoftware2MaterialRenderer_UNSUPPORTED * umr = new CSoftware2MaterialRenderer_UNSUPPORTED ( this ); //!TODO: addMaterialRenderer depends on pushing order.... addMaterialRenderer(smr); // EMT_SOLID addMaterialRenderer(smr); // EMT_SOLID_2_LAYER, addMaterialRenderer(smr); // EMT_LIGHTMAP, addMaterialRenderer(tmr); // EMT_LIGHTMAP_ADD, addMaterialRenderer(smr); // EMT_LIGHTMAP_M2, addMaterialRenderer(smr); // EMT_LIGHTMAP_M4, addMaterialRenderer(smr); // EMT_LIGHTMAP_LIGHTING, addMaterialRenderer(smr); // EMT_LIGHTMAP_LIGHTING_M2, addMaterialRenderer(smr); // EMT_LIGHTMAP_LIGHTING_M4, addMaterialRenderer(smr); // EMT_DETAIL_MAP, addMaterialRenderer(smr); // EMT_SPHERE_MAP, addMaterialRenderer(smr); // EMT_REFLECTION_2_LAYER, addMaterialRenderer(tmr); // EMT_TRANSPARENT_ADD_COLOR, addMaterialRenderer(tmr); // EMT_TRANSPARENT_ALPHA_CHANNEL, addMaterialRenderer(tmr); // EMT_TRANSPARENT_ALPHA_CHANNEL_REF, addMaterialRenderer(tmr); // EMT_TRANSPARENT_VERTEX_ALPHA, addMaterialRenderer(tmr); // EMT_TRANSPARENT_REFLECTION_2_LAYER, addMaterialRenderer(smr); // EMT_NORMAL_MAP_SOLID, addMaterialRenderer(tmr); // EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR, addMaterialRenderer(tmr); // EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA, addMaterialRenderer(smr); // EMT_PARALLAX_MAP_SOLID, addMaterialRenderer(tmr); // EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR, addMaterialRenderer(tmr); // EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA, addMaterialRenderer(tmr); // EMT_ONETEXTURE_BLEND smr->drop(); tmr->drop(); //umr->drop (); // select render target setRenderTargetImage2(BackBuffer,0, 0); //reset Lightspace EyeSpace.reset(); EyeSpace.resetFog(); // select the right renderer setMaterial(Material.org); } //! destructor CBurningVideoDriver::~CBurningVideoDriver() { // delete Backbuffer if (BackBuffer) { BackBuffer->drop(); BackBuffer = 0; } // delete triangle renderers for (s32 i = 0; i < ETR2_COUNT; ++i) { if (BurningShader[i]) { BurningShader[i]->drop(); BurningShader[i] = 0; } } // delete Additional buffer if (StencilBuffer) { StencilBuffer->drop(); StencilBuffer = 0; } if (DepthBuffer) { DepthBuffer->drop(); DepthBuffer = 0; } if (RenderTargetTexture) { RenderTargetTexture->drop(); RenderTargetTexture = 0; } if (RenderTargetSurface) { RenderTargetSurface->drop(); RenderTargetSurface = 0; } fpu_exception(0); } //! queries the features of the driver, returns true if feature is available bool CBurningVideoDriver::queryFeature(E_VIDEO_DRIVER_FEATURE feature) const { int on = 0; switch (feature) { #ifdef SOFTWARE_DRIVER_2_BILINEAR case EVDF_BILINEAR_FILTER: on = 1; break; #endif #if SOFTWARE_DRIVER_2_MIPMAPPING_MAX > 1 case EVDF_MIP_MAP: on = 1; break; #endif case EVDF_STENCIL_BUFFER: on = StencilBuffer != 0; break; case EVDF_RENDER_TO_TARGET: case EVDF_MULTITEXTURE: case EVDF_HARDWARE_TL: case EVDF_TEXTURE_NSQUARE: case EVDF_TEXTURE_MATRIX: on = 1; break; case EVDF_DEPTH_CLAMP: // shadow on = 1; break; case EVDF_ARB_FRAGMENT_PROGRAM_1: case EVDF_ARB_VERTEX_PROGRAM_1: on = 1; break; #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) case EVDF_TEXTURE_NPOT: case EVDF_ARB_GLSL: on = 1; break; #else case EVDF_TEXTURE_NPOT: // for 2D on = 0; break; #endif #if defined(SOFTWARE_DRIVER_2_2D_AS_3D) #if defined(IRRLICHT_FREE_CANVAS) case EVDF_VIEWPORT_SCALE_GUI: on = 1; break; #endif #endif default: on = 0; break; } return on && FeatureEnabled[feature]; } //matrix multiplication void CBurningVideoDriver::transform_calc(E_TRANSFORMATION_STATE_BURNING_VIDEO state) { size_t* flag = TransformationFlag[TransformationStack]; if (flag[state] & ETF_VALID) return; //check size_t ok = 0; switch (state) { case ETS_PROJ_MODEL_VIEW: if (0 == (flag[ETS_VIEW_PROJECTION] & ETF_VALID)) transform_calc(ETS_VIEW_PROJECTION); ok = flag[ETS_WORLD] & flag[ETS_VIEW] & flag[ETS_PROJECTION] & flag[ETS_VIEW_PROJECTION] & ETF_VALID; break; case ETS_VIEW_PROJECTION: ok = flag[ETS_VIEW] & flag[ETS_PROJECTION] & ETF_VALID; break; case ETS_MODEL_VIEW: ok = flag[ETS_WORLD] & flag[ETS_VIEW] & ETF_VALID; break; case ETS_NORMAL: ok = flag[ETS_MODEL_VIEW] & ETF_VALID; break; default: break; } if (!ok) { char buf[256]; sprintf(buf, "transform_calc not valid for %d\n", state); os::Printer::log(buf, ELL_WARNING); } core::matrix4* matrix = Transformation[TransformationStack]; switch (state) { case ETS_PROJ_MODEL_VIEW: if (flag[ETS_WORLD] & ETF_IDENTITY) { matrix[state] = matrix[ETS_VIEW_PROJECTION]; } else { matrix[state].setbyproduct_nocheck(matrix[ETS_VIEW_PROJECTION], matrix[ETS_WORLD]); } break; case ETS_VIEW_PROJECTION: matrix[state].setbyproduct_nocheck(matrix[ETS_PROJECTION], matrix[ETS_VIEW]); break; case ETS_MODEL_VIEW: if (flag[ETS_WORLD] & ETF_IDENTITY) { matrix[state] = matrix[ETS_VIEW]; } else { matrix[state].setbyproduct_nocheck(matrix[ETS_VIEW], matrix[ETS_WORLD]); } break; case ETS_NORMAL: mat44_transposed_inverse(matrix[state], matrix[ETS_MODEL_VIEW]); break; default: break; } flag[state] |= ETF_VALID; } //! sets transformation void CBurningVideoDriver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) { size_t* flag = TransformationFlag[TransformationStack]; core::matrix4* matrix = Transformation[TransformationStack]; #if 0 int changed = 1; if (flag[state] & ETF_VALID) { changed = memcmp(mat.pointer(), matrix[state].pointer(), sizeof(mat)); } if (changed) #endif { matrix[state] = mat; flag[state] |= ETF_VALID; } //maybe identity (mostly for texturematrix to avoid costly multiplication) #if defined ( USE_MATRIX_TEST ) burning_setbit(TransformationFlag[state], mat.getDefinitelyIdentityMatrix(), ETF_IDENTITY); #else burning_setbit(flag[state], !memcmp(mat.pointer(), core::IdentityMatrix.pointer(), sizeof(mat)), ETF_IDENTITY ); #endif #if 0 if (changed) #endif switch (state) { case ETS_PROJECTION: flag[ETS_PROJ_MODEL_VIEW] &= ~ETF_VALID; flag[ETS_VIEW_PROJECTION] &= ~ETF_VALID; break; case ETS_VIEW: flag[ETS_PROJ_MODEL_VIEW] &= ~ETF_VALID; flag[ETS_VIEW_PROJECTION] &= ~ETF_VALID; flag[ETS_MODEL_VIEW] &= ~ETF_VALID; flag[ETS_NORMAL] &= ~ETF_VALID; break; case ETS_WORLD: flag[ETS_PROJ_MODEL_VIEW] &= ~ETF_VALID; flag[ETS_MODEL_VIEW] &= ~ETF_VALID; flag[ETS_NORMAL] &= ~ETF_VALID; break; case ETS_TEXTURE_0: case ETS_TEXTURE_1: case ETS_TEXTURE_2: case ETS_TEXTURE_3: #if _IRR_MATERIAL_MAX_TEXTURES_>4 case ETS_TEXTURE_4: #endif #if _IRR_MATERIAL_MAX_TEXTURES_>5 case ETS_TEXTURE_5: #endif #if _IRR_MATERIAL_MAX_TEXTURES_>6 case ETS_TEXTURE_6: #endif #if _IRR_MATERIAL_MAX_TEXTURES_>7 case ETS_TEXTURE_7: #endif if (0 == (flag[state] & ETF_IDENTITY)) { EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM; } break; default: break; } } //! Returns the transformation set by setTransform const core::matrix4& CBurningVideoDriver::getTransform(E_TRANSFORMATION_STATE state) const { return Transformation[TransformationStack][state]; } bool CBurningVideoDriver::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData& videoData, core::rect* sourceRect) { #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) CNullDriver::beginScene(clearFlag & ECBF_COLOR, clearFlag & ECBF_DEPTH, clearColor, videoData, sourceRect); #else CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect); #endif Interlaced.nr = (Interlaced.nr + 1) & interlace_control_mask; WindowId = videoData.D3D9.HWnd; SceneSourceRect = sourceRect; clearBuffers(clearFlag, clearColor, clearDepth, clearStencil); //memset ( TransformationFlag, 0, sizeof ( TransformationFlag ) ); return true; } bool CBurningVideoDriver::endScene() { CNullDriver::endScene(); return Presenter->present(BackBuffer, WindowId, SceneSourceRect); } //! Create render target. IRenderTarget* CBurningVideoDriver::addRenderTarget() { CSoftwareRenderTarget2* renderTarget = new CSoftwareRenderTarget2(this); RenderTargets.push_back(renderTarget); return renderTarget; } #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) bool CBurningVideoDriver::setRenderTarget(video::ITexture* texture, bool clearBackBuffer, bool clearZBuffer, SColor color) { CSoftwareRenderTarget2 target(this); target.RenderTexture = texture; target.TargetType = ERT_RENDER_TEXTURE; target.Texture[0] = texture; if (texture) texture->grab(); u16 flag = 0; if (clearBackBuffer) flag |= ECBF_COLOR; if (clearZBuffer) flag |= ECBF_DEPTH; return setRenderTargetEx(texture ? &target : 0, flag, color, 1.f, true); } #endif bool CBurningVideoDriver::setRenderTargetEx(IRenderTarget* target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil) { #if !defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) if (target && target->getDriverType() != EDT_BURNINGSVIDEO) { os::Printer::log("Fatal Error: Tried to set a render target not owned by this driver.", ELL_ERROR); return false; } #endif if (RenderTargetTexture) { //switching from texture to backbuffer if (target == 0) { RenderTargetTexture->regenerateMipMapLevels(); } RenderTargetTexture->drop(); } #if !defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) RenderTargetTexture = target ? target->getTexture()[0] : 0; #else RenderTargetTexture = target ? ((CSoftwareRenderTarget2*)target)->Texture[0] : 0; #endif if (RenderTargetTexture) { RenderTargetTexture->grab(); Interlaced.bypass = 1; setRenderTargetImage2(((CSoftwareTexture2*)RenderTargetTexture)->getImage()); } else { Interlaced.bypass = !Interlaced.enable; setRenderTargetImage2(BackBuffer); } clearBuffers(clearFlag, clearColor, clearDepth, clearStencil); return true; } /* static inline f32 map_value(f32 x, f32 in_min, f32 in_max, f32 out_min, f32 out_max) { return (x - in_min) * (out_max - out_min) / (f32)(in_max - in_min) + out_min; } */ //! sets a render target void CBurningVideoDriver::setRenderTargetImage2(video::IImage* color, video::IImage* depth, video::IImage* stencil) { if (RenderTargetSurface) RenderTargetSurface->drop(); core::dimension2d current = RenderTargetSize; RenderTargetSurface = color; RenderTargetSize.Width = 0; RenderTargetSize.Height = 0; if (RenderTargetSurface) { RenderTargetSurface->grab(); RenderTargetSize = RenderTargetSurface->getDimension(); } RatioRenderTargetScreen.x = ScreenSize.Width ? (f32)RenderTargetSize.Width / ScreenSize.Width : 1.f; RatioRenderTargetScreen.y = ScreenSize.Height ? (f32)RenderTargetSize.Height / ScreenSize.Height : 1.f; int not_changed = current == RenderTargetSize; burning_setbit(TransformationFlag[0][ETS_PROJECTION], not_changed, ETF_VALID); burning_setbit(TransformationFlag[1][ETS_PROJECTION], not_changed, ETF_VALID); setViewPort(core::recti(RenderTargetSize)); if (DepthBuffer) DepthBuffer->setSize(RenderTargetSize); if (StencilBuffer) StencilBuffer->setSize(RenderTargetSize); } //--------- Transform from NDC to DC, transform TexCoo ---------------------------------------------- //! Blur 2D Image with PixelOffset. (default 0.375f for OpenGL and Burning) /** SideEffects: * if IRRLICHT_2D_TEXEL_OFFSET > 0 is applied to OpenGL/Burning, Pixel-exact Texture Coordinates do not match. * Currently Version 1.8,1.9 has that in the Irrlicht 2D Examples where you get a Magenta Border on the Sprites * and in the draw2DImage4cFilter Tests */ #define IRRLICHT_2D_TEXEL_OFFSET 0.f //--------- Transform from NDC to DC ---------------------------------------------- // used to scale <-1,-1><1,1> to viewport [center,scale] // controls subtexel and fill convention. // Don't tweak SOFTWARE_DRIVER_2_SUBTEXEL (-0.5f in m[1]) anymore to control texture blur effect, it's used for viewport scaling. // naming is misleading. it will write outside memory location.. void buildNDCToDCMatrix(f32* m, const core::rect& viewport, f32 tx) { m[0] = (viewport.LowerRightCorner.X - viewport.UpperLeftCorner.X + tx) * 0.5f; m[1] = (viewport.UpperLeftCorner.X + viewport.LowerRightCorner.X-1) * 0.5f; m[2] = (viewport.LowerRightCorner.Y - viewport.UpperLeftCorner.Y + tx) * -0.5f; m[3] = (viewport.UpperLeftCorner.Y + viewport.LowerRightCorner.Y-1) * 0.5f; } //! sets a viewport void CBurningVideoDriver::setViewPort(const core::rect& area) { ViewPort = area; core::rect rendert(0, 0, RenderTargetSize.Width, RenderTargetSize.Height); ViewPort.clipAgainst(rendert); buildNDCToDCMatrix(Transformation_ETS_CLIPSCALE[0], ViewPort, 1.f/2048.f); //SkyBox,Billboard 90° problem buildNDCToDCMatrix(Transformation_ETS_CLIPSCALE[1], ViewPort, 0.f); // OverrideMaterial2DEnabled ? -IRRLICHT_2D_TEXEL_OFFSET : 0.f); if (CurrentShader) CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort, Interlaced); } void CBurningVideoDriver::setScissor(int x, int y, int width, int height) { //openGL //y = rt.Height - y - height; //coming from GUI AbsRectangle v0; v0.x0 = core::floor32(x * RatioRenderTargetScreen.x); v0.y0 = core::floor32(y * RatioRenderTargetScreen.y); v0.x1 = core::floor32((x + width) * RatioRenderTargetScreen.x); v0.y1 = core::floor32((y + height) * RatioRenderTargetScreen.y); AbsRectangle v1; v1.x0 = 0; v1.y0 = 0; v1.x1 = RenderTargetSize.Width; v1.y1 = RenderTargetSize.Height; intersect(Scissor, v0, v1); } /* generic plane clipping in homogenous coordinates special case ndc frustum <-w,w>,<-w,w>,<-w,w> can be rewritten with compares e.q near plane, a.z < -a.w and b.z < -b.w cam is (0,0,-1) */ const sVec4 CBurningVideoDriver::NDCPlane[6 + 2] = { sVec4(0.f, 0.f, -1.f, -1.f), // near sVec4(0.f, 0.f, 1.f, -1.f), // far sVec4(1.f, 0.f, 0.f, -1.f), // left sVec4(-1.f, 0.f, 0.f, -1.f), // right sVec4(0.f, 1.f, 0.f, -1.f), // bottom sVec4(0.f, -1.f, 0.f, -1.f) // top }; /* test a vertex if it's inside the standard frustum this is the generic one.. f32 dotPlane; for ( u32 i = 0; i!= 6; ++i ) { dotPlane = v->Pos.dotProduct ( NDCPlane[i] ); burning_setbit32( flag, dotPlane <= 0.f, 1 << i ); } // this is the base for ndc frustum <-w,w>,<-w,w>,<-w,w> burning_setbit32( flag, ( v->Pos.z - v->Pos.w ) <= 0.f, 1 ); burning_setbit32( flag, (-v->Pos.z - v->Pos.w ) <= 0.f, 2 ); burning_setbit32( flag, ( v->Pos.x - v->Pos.w ) <= 0.f, 4 ); burning_setbit32( flag, (-v->Pos.x - v->Pos.w ) <= 0.f, 8 ); burning_setbit32( flag, ( v->Pos.y - v->Pos.w ) <= 0.f, 16 ); burning_setbit32( flag, (-v->Pos.y - v->Pos.w ) <= 0.f, 32 ); */ #ifdef IRRLICHT_FAST_MATH REALINLINE size_t CBurningVideoDriver::clipToFrustumTest(const s4DVertex* v) const { size_t flag; f32 test[8]; const f32 w = -v->Pos.w; // a conditional move is needed....FCOMI ( but we don't have it ) // so let the fpu calculate and write it back. // cpu makes the compare, interleaving test[0] = v->Pos.z + w; test[1] = -v->Pos.z + w; test[2] = v->Pos.x + w; test[3] = -v->Pos.x + w; test[4] = v->Pos.y + w; test[5] = -v->Pos.y + w; const u32* a = F32_AS_U32_POINTER(test); flag = (a[0]) >> 31; flag |= (a[1] & 0x80000000) >> 30; flag |= (a[2] & 0x80000000) >> 29; flag |= (a[3] & 0x80000000) >> 28; flag |= (a[4] & 0x80000000) >> 27; flag |= (a[5] & 0x80000000) >> 26; /* flag = (IR ( test[0] ) ) >> 31; flag |= (IR ( test[1] ) & 0x80000000 ) >> 30; flag |= (IR ( test[2] ) & 0x80000000 ) >> 29; flag |= (IR ( test[3] ) & 0x80000000 ) >> 28; flag |= (IR ( test[4] ) & 0x80000000 ) >> 27; flag |= (IR ( test[5] ) & 0x80000000 ) >> 26; */ /* flag = F32_LOWER_EQUAL_0 ( test[0] ); flag |= F32_LOWER_EQUAL_0 ( test[1] ) << 1; flag |= F32_LOWER_EQUAL_0 ( test[2] ) << 2; flag |= F32_LOWER_EQUAL_0 ( test[3] ) << 3; flag |= F32_LOWER_EQUAL_0 ( test[4] ) << 4; flag |= F32_LOWER_EQUAL_0 ( test[5] ) << 5; */ return flag; } #else REALINLINE size_t clipToFrustumTest(const s4DVertex* v) { size_t flag = 0; flag |= v->Pos.z <= v->Pos.w ? VERTEX4D_CLIP_NEAR : 0; flag |= -v->Pos.z <= v->Pos.w ? VERTEX4D_CLIP_FAR : 0; flag |= v->Pos.x <= v->Pos.w ? VERTEX4D_CLIP_LEFT : 0; flag |= -v->Pos.x <= v->Pos.w ? VERTEX4D_CLIP_RIGHT : 0; flag |= v->Pos.y <= v->Pos.w ? VERTEX4D_CLIP_BOTTOM : 0; flag |= -v->Pos.y <= v->Pos.w ? VERTEX4D_CLIP_TOP : 0; /* for ( u32 i = 0; i <= 6; ++i ) { if (v->Pos.dot_xyzw(NDCPlane[i]) <= 0.f) flag |= ((size_t)1) << i; } */ return flag; } #endif // _MSC_VER size_t clipToHyperPlane( s4DVertexPair* burning_restrict dest, const s4DVertexPair* burning_restrict source, const size_t inCount, const sVec4& plane ) { size_t outCount = 0; s4DVertexPair* out = dest; const s4DVertex* a; const s4DVertex* b = source; ipoltype bDotPlane; bDotPlane = b->Pos.dot_xyzw(plane); /* for( u32 i = 1; i < inCount + 1; ++i) { #if 0 a = source + (i%inCount)*2; #else const s32 condition = i - inCount; const s32 index = (( ( condition >> 31 ) & ( i ^ condition ) ) ^ condition ) << 1; a = source + index; #endif */ //Sutherland–Hodgman for (size_t i = 0; i < inCount; ++i) { a = source + (i == inCount - 1 ? 0 : s4DVertex_ofs(i + 1)); // current point inside if (ipol_lower_equal_0(a->Pos.dot_xyzw(plane))) { // last point outside if (ipol_greater_0(bDotPlane)) { // intersect line segment with plane out->interpolate(*b, *a, bDotPlane / (b->Pos - a->Pos).dot_xyzw(plane)); out += sizeof_s4DVertexPairRel; outCount += 1; } // copy current to out //*out = *a; memcpy_s4DVertexPair(out, a); b = out; out += sizeof_s4DVertexPairRel; outCount += 1; } else { // current point outside if (ipol_lower_equal_0(bDotPlane)) { // previous was inside // intersect line segment with plane out->interpolate(*b, *a, bDotPlane / (b->Pos - a->Pos).dot_xyzw(plane)); out += sizeof_s4DVertexPairRel; outCount += 1; } // pointer b = a; } bDotPlane = b->Pos.dot_xyzw(plane); } return outCount; } /* Clip on all planes. Clipper.data clipmask per face */ size_t CBurningVideoDriver::clipToFrustum(const size_t vIn /*, const size_t clipmask_for_face*/) { s4DVertexPair* v0 = Clipper.data; s4DVertexPair* v1 = Clipper_temp.data; size_t vOut = vIn; //clear all clipping & projected flags const u32 flag = v0[0].flag & VERTEX4D_FORMAT_MASK; for (size_t g = 0; g != Clipper.ElementSize; ++g) { v0[g].flag = flag; v1[g].flag = flag; } #if 0 for (size_t i = 0; i < 6; ++i) { v0 = i & 1 ? Clipper_temp.data : Clipper.data; v1 = i & 1 ? Clipper.data : Clipper_temp.data; //clipMask checked outside - always clip all planes #if 0 if (0 == (clipMask & ((size_t)1 << i))) { vOut = vIn; memcpy_s4DVertexPair(v1, v0); } else #endif { vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[i]); if (vOut < vIn) return vOut; } } #endif vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[0]); if (vOut < vIn) return vOut; vOut = clipToHyperPlane(v0, v1, vOut, NDCPlane[1]); if (vOut < vIn) return vOut; vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[2]); if (vOut < vIn) return vOut; vOut = clipToHyperPlane(v0, v1, vOut, NDCPlane[3]); if (vOut < vIn) return vOut; vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[4]); if (vOut < vIn) return vOut; vOut = clipToHyperPlane(v0, v1, vOut, NDCPlane[5]); return vOut; } /*! Part I: apply Clip Scale matrix From Normalized Device Coordiante ( NDC ) Space to Device Coordinate ( DC ) Space Part II: Project homogeneous vector homogeneous to non-homogenous coordinates ( dividebyW ) Incoming: ( xw, yw, zw, w, u, v, 1, R, G, B, A ) Outgoing: ( xw/w, yw/w, zw/w, w/w, u/w, v/w, 1/w, R/w, G/w, B/w, A/w ) replace w/w by 1/w */ //aliasing problems! [dest = source + 1] inline void CBurningVideoDriver::ndc_2_dc_and_project(s4DVertexPair* dest, const s4DVertexPair* source, const size_t vIn) const { const f32* dc = Transformation_ETS_CLIPSCALE[TransformationStack]; for (size_t g = 0; g != vIn; g += sizeof_s4DVertexPairRel) { //cache doesn't work anymore? //if ( dest[g].flag & VERTEX4D_PROJECTED ) // continue; //dest[g].flag = source[g].flag | VERTEX4D_PROJECTED; const f32 iw = reciprocal_zero(source[g].Pos.w); // to device coordinates dest[g].Pos.x = iw * source[g].Pos.x * dc[0] + dc[1]; dest[g].Pos.y = iw * source[g].Pos.y * dc[2] + dc[3]; //burning uses direct Z. for OpenGL it should be -Z,[-1;1] and texture flip #if !defined(SOFTWARE_DRIVER_2_USE_WBUFFER) || 1 dest[g].Pos.z = -iw * source[g].Pos.z * 0.5f + 0.5f; #endif dest[g].Pos.w = iw; // Texture Coordinates will be projected after mipmap selection // satisfy write-combiner #if 1 #if BURNING_MATERIAL_MAX_TEXTURES > 0 dest[g].Tex[0] = source[g].Tex[0]; #endif #if BURNING_MATERIAL_MAX_TEXTURES > 1 dest[g].Tex[1] = source[g].Tex[1]; #endif #if BURNING_MATERIAL_MAX_TEXTURES > 2 dest[g].Tex[2] = source[g].Tex[2]; #endif #if BURNING_MATERIAL_MAX_TEXTURES > 3 dest[g].Tex[3] = source[g].Tex[3]; #endif #endif #if BURNING_MATERIAL_MAX_COLORS > 0 #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT dest[g].Color[0] = source[g].Color[0] * iw; // alpha? #else dest[g].Color[0] = source[g].Color[0]; #endif #endif #if BURNING_MATERIAL_MAX_COLORS > 1 #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT dest[g].Color[1] = source[g].Color[1] * iw; // alpha? #else dest[g].Color[1] = source[g].Color[1]; #endif #endif #if BURNING_MATERIAL_MAX_COLORS > 2 #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT dest[g].Color[2] = source[g].Color[2] * iw; // alpha? #else dest[g].Color[2] = source[g].Color[2]; #endif #endif #if BURNING_MATERIAL_MAX_COLORS > 3 #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT dest[g].Color[3] = source[g].Color[3] * iw; // alpha? #else dest[g].Color[3] = source[g].Color[3]; #endif #endif #if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0 dest[g].LightTangent[0] = source[g].LightTangent[0] * iw; #endif } } #if 0 /*! crossproduct in projected 2D, face */ REALINLINE f32 CBurningVideoDriver::screenarea_inside(const s4DVertexPair* burning_restrict const face[]) const { return (((face[1] + 1)->Pos.x - (face[0] + 1)->Pos.x) * ((face[2] + 1)->Pos.y - (face[0] + 1)->Pos.y)) - (((face[2] + 1)->Pos.x - (face[0] + 1)->Pos.x) * ((face[1] + 1)->Pos.y - (face[0] + 1)->Pos.y)); /* float signedArea = 0; for (int k = 1; k < output->count; k++) { signedArea += (output->vertices[k - 1].values[0] * output->vertices[k - 0].values[1]); signedArea -= (output->vertices[k - 0].values[0] * output->vertices[k - 1].values[1]); } */ } static inline f32 dot(const sVec2& a, const sVec2& b) { return a.x * b.x + a.y * b.y; } sVec2 dFdx(const sVec2& v) { return v; } sVec2 dFdy(const sVec2& v) { return v; } f32 MipmapLevel(const sVec2& uv, const sVec2& textureSize) { sVec2 dx = dFdx(uv * textureSize.x); sVec2 dy = dFdy(uv * textureSize.y); f32 d = core::max_(dot(dx, dx), dot(dy, dy)); return log2f(sqrtf(d)); } #endif //#define MAT_TEXTURE(tex) ( (video::CSoftwareTexture2*) Material.org.getTexture ( (u32)tex ) ) #define MAT_TEXTURE(tex) ( (video::CSoftwareTexture2*) Material.org.TextureLayer[tex].Texture ) /*! calculate from unprojected. attribute need not to follow winding rule from position. Edge-walking problem Texture Wrapping problem Atlas problem */ REALINLINE s32 CBurningVideoDriver::lodFactor_inside(const s4DVertexPair* burning_restrict const face[], const size_t m, const f32 dc_area, const f32 lod_bias) const { /* sVec2 a(v[1]->Tex[tex].x - v[0]->Tex[tex].x,v[1]->Tex[tex].y - v[0]->Tex[tex].y); sVec2 b(v[2]->Tex[tex].x - v[0]->Tex[tex].x,v[2]->Tex[tex].y - v[0]->Tex[tex].y); f32 area = a.x * b.y - b.x * a.y; */ /* degenerate(A, B, C, minarea) = ((B - A).cross(C - A)).lengthSquared() < (4.0f * minarea * minarea); check for collapsed or "long thin triangles" */ ieee754 signedArea; ieee754 t[4]; t[0].f = face[1]->Tex[m].x - face[0]->Tex[m].x; t[1].f = face[1]->Tex[m].y - face[0]->Tex[m].y; t[2].f = face[2]->Tex[m].x - face[0]->Tex[m].x; t[3].f = face[2]->Tex[m].y - face[0]->Tex[m].y; //crossproduct in projected 2D -> screen area triangle signedArea.f = t[0].f * t[3].f - t[2].f * t[1].f; //signedArea = // ((face[1]->Tex[m].x - face[0]->Tex[m].x) * (face[2]->Tex[m].y - face[0]->Tex[m].y)) // - ((face[2]->Tex[m].x - face[0]->Tex[m].x) * (face[1]->Tex[m].y - face[0]->Tex[m].y)); //if (signedArea*signedArea <= 0.00000000001f) if (signedArea.fields.exp == 0) { ieee754 _max; _max.u = t[0].abs.frac_exp; if (t[1].abs.frac_exp > _max.u) _max.u = t[1].abs.frac_exp; if (t[2].abs.frac_exp > _max.u) _max.u = t[2].abs.frac_exp; if (t[3].abs.frac_exp > _max.u) _max.u = t[3].abs.frac_exp; signedArea.u = _max.fields.exp ? _max.u : ieee754_one; /* //dot,length ieee754 v[2]; v[0].f = t[0] * t[2]; v[1].f = t[1] * t[3]; //signedArea.f = t[4] > t[5] ? t[4] : t[5]; signedArea.u = v[0].fields.frac > v[1].fields.frac ? v[0].u : v[1].u; if (signedArea.fields.exp == 0) { return -1; } */ } //only guessing: take more detail (lower mipmap) in light+bump textures //assume transparent add is ~50% transparent -> more detail // 2.f from dc_area, 2.f from tex triangle ( parallelogram area) const u32* d = MAT_TEXTURE(m)->getMipMap0_Area(); f32 texelspace = d[0] * d[1] * lod_bias; //(m ? 0.5f : 0.5f); ieee754 ratio; ratio.f = (signedArea.f * texelspace) * dc_area; ratio.fields.sign = 0; //log2(0)==denormal [ use high lod] [ only if dc_area == 0 checked outside ] return (ratio.fields.exp & 0x80) ? ratio.fields.exp - 127 : 0; /*denormal very high lod*/ } /*! texcoo in current mipmap dimension (face, already clipped) -> want to help fixpoint */ inline void CBurningVideoDriver::select_polygon_mipmap_inside(s4DVertex* burning_restrict face[], const size_t tex, const CSoftwareTexture2_Bound& b) const { #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT (face[0] + 1)->Tex[tex].x = face[0]->Tex[tex].x * (face[0] + 1)->Pos.w * b.w + b.cx; (face[0] + 1)->Tex[tex].y = face[0]->Tex[tex].y * (face[0] + 1)->Pos.w * b.h + b.cy; (face[1] + 1)->Tex[tex].x = face[1]->Tex[tex].x * (face[1] + 1)->Pos.w * b.w + b.cx; (face[1] + 1)->Tex[tex].y = face[1]->Tex[tex].y * (face[1] + 1)->Pos.w * b.h + b.cy; (face[2] + 1)->Tex[tex].x = face[2]->Tex[tex].x * (face[2] + 1)->Pos.w * b.w + b.cx; (face[2] + 1)->Tex[tex].y = face[2]->Tex[tex].y * (face[2] + 1)->Pos.w * b.h + b.cy; #else (face[0] + 1)->Tex[tex].x = face[0]->Tex[tex].x * b.w; (face[0] + 1)->Tex[tex].y = face[0]->Tex[tex].y * b.h; (face[1] + 1)->Tex[tex].x = face[1]->Tex[tex].x * b.w; (face[1] + 1)->Tex[tex].y = face[1]->Tex[tex].y * b.h; (face[2] + 1)->Tex[tex].x = face[2]->Tex[tex].x * b.w; (face[2] + 1)->Tex[tex].y = face[2]->Tex[tex].y * b.h; #endif } // Vertex Cache //! setup Vertex Format void CBurningVideoDriver::VertexCache_map_source_format() { u32 s0 = sizeof(s4DVertex); u32 s1 = sizeof(s4DVertex_proxy); if (s1 <= sizeof_s4DVertex / 2) { os::Printer::log("BurningVideo vertex format unnecessary to large", ELL_WARNING); } //memcpy_vertex if (s0 != sizeof_s4DVertex || ((sizeof_s4DVertex * sizeof_s4DVertexPairRel) & 31)) { os::Printer::log("BurningVideo vertex format compile problem", ELL_ERROR); _IRR_DEBUG_BREAK_IF(1); } #if defined(ENV64BIT) if (sizeof(void*) != 8) { os::Printer::log("BurningVideo pointer should be 8 bytes", ELL_ERROR); _IRR_DEBUG_BREAK_IF(1); } if (((unsigned long long)Transformation&15) || ((unsigned long long)TransformationFlag & 15)) { os::Printer::log("BurningVideo Matrix Stack not 16 byte aligned", ELL_ERROR); _IRR_DEBUG_BREAK_IF(1); } #endif SVSize* vSize = VertexCache.vSize; //vSize[E4VT_STANDARD].Format = VERTEX4D_FORMAT_TEXTURE_1 | VERTEX4D_FORMAT_COLOR_1 | VERTEX4D_FORMAT_LIGHT_1 | VERTEX4D_FORMAT_SPECULAR; vSize[E4VT_STANDARD].Format = VERTEX4D_FORMAT_TEXTURE_1 | VERTEX4D_FORMAT_COLOR_2_FOG; vSize[E4VT_STANDARD].Pitch = sizeof(S3DVertex); vSize[E4VT_STANDARD].TexSize = 1; vSize[E4VT_STANDARD].TexCooSize = 1; vSize[E4VT_2TCOORDS].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_1; vSize[E4VT_2TCOORDS].Pitch = sizeof(S3DVertex2TCoords); vSize[E4VT_2TCOORDS].TexSize = 2; vSize[E4VT_2TCOORDS].TexCooSize = 2; //vSize[E4VT_TANGENTS].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_1 | VERTEX4D_FORMAT_LIGHT_1 | VERTEX4D_FORMAT_BUMP_DOT3; vSize[E4VT_TANGENTS].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_2_FOG | VERTEX4D_FORMAT_LIGHT_1 | VERTEX4D_FORMAT_BUMP_DOT3; vSize[E4VT_TANGENTS].Pitch = sizeof(S3DVertexTangents); vSize[E4VT_TANGENTS].TexSize = 2; vSize[E4VT_TANGENTS].TexCooSize = 2; // reflection map vSize[E4VT_REFLECTION_MAP].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_1; vSize[E4VT_REFLECTION_MAP].Pitch = sizeof(S3DVertex); vSize[E4VT_REFLECTION_MAP].TexSize = 2; vSize[E4VT_REFLECTION_MAP].TexCooSize = 1; //TexCoo2 generated // shadow vSize[E4VT_SHADOW].Format = 0; vSize[E4VT_SHADOW].Pitch = sizeof(f32) * 3; // core::vector3df* vSize[E4VT_SHADOW].TexSize = 0; vSize[E4VT_SHADOW].TexCooSize = 0; // color shading only (no texture) vSize[E4VT_NO_TEXTURE].Format = VERTEX4D_FORMAT_COLOR_1 | VERTEX4D_FORMAT_LIGHT_1 | VERTEX4D_FORMAT_SPECULAR; vSize[E4VT_NO_TEXTURE].Pitch = sizeof(S3DVertex); vSize[E4VT_NO_TEXTURE].TexSize = 0; vSize[E4VT_NO_TEXTURE].TexCooSize = 0; //Line vSize[E4VT_LINE].Format = VERTEX4D_FORMAT_COLOR_1; vSize[E4VT_LINE].Pitch = sizeof(S3DVertex); vSize[E4VT_LINE].TexSize = 0; vSize[E4VT_LINE].TexCooSize = 0; size_t size; for (size_t i = 0; i < E4VT_COUNT; ++i) { size_t& flag = vSize[i].Format; #if !defined(SOFTWARE_DRIVER_2_USE_SEPARATE_SPECULAR_COLOR) flag &= ~VERTEX4D_FORMAT_SPECULAR; #endif if (vSize[i].TexSize > BURNING_MATERIAL_MAX_TEXTURES) vSize[i].TexSize = BURNING_MATERIAL_MAX_TEXTURES; size = (flag & VERTEX4D_FORMAT_MASK_TEXTURE) >> 16; if (size > BURNING_MATERIAL_MAX_TEXTURES) { flag = (flag & ~VERTEX4D_FORMAT_MASK_TEXTURE) | (BURNING_MATERIAL_MAX_TEXTURES << 16); } size = (flag & VERTEX4D_FORMAT_MASK_COLOR) >> 20; if (size > BURNING_MATERIAL_MAX_COLORS) { flag = (flag & ~VERTEX4D_FORMAT_MASK_COLOR) | (BURNING_MATERIAL_MAX_COLORS << 20); } size = (flag & VERTEX4D_FORMAT_MASK_LIGHT) >> 24; if (size > BURNING_MATERIAL_MAX_LIGHT_TANGENT) { flag = (flag & ~VERTEX4D_FORMAT_MASK_LIGHT) | (BURNING_MATERIAL_MAX_LIGHT_TANGENT << 24); } } VertexCache.mem.resize(VERTEXCACHE_ELEMENT * 2); VertexCache.vType = E4VT_STANDARD; Clipper.resize(VERTEXCACHE_ELEMENT * 2); Clipper_temp.resize(VERTEXCACHE_ELEMENT * 2); TransformationStack = 0; memset(TransformationFlag, 0, sizeof(TransformationFlag)); memset(Transformation_ETS_CLIPSCALE, 0, sizeof(Transformation_ETS_CLIPSCALE)); Material.resetRenderStates = true; Material.Fallback_MaterialType = EMT_SOLID; } /*! fill a cache line with transformed, light and clip test triangles overhead - if primitive is outside or culled, vertexLighting and TextureTransform is still done */ void CBurningVideoDriver::VertexCache_fill(const u32 sourceIndex, const u32 destIndex) { u8* burning_restrict source; s4DVertex* burning_restrict dest; source = (u8*)VertexCache.vertices + (sourceIndex * VertexCache.vSize[VertexCache.vType].Pitch); // it's a look ahead so we never hit it.. // but give priority... //VertexCache.info[ destIndex ].hit = hitCount; // store info VertexCache.info[destIndex].index = sourceIndex; VertexCache.info[destIndex].hit = 0; // destination Vertex dest = VertexCache.mem.data + s4DVertex_ofs(destIndex); //Irrlicht S3DVertex,S3DVertex2TCoords,S3DVertexTangents const S3DVertex* base = ((S3DVertex*)source); // transform Model * World * Camera * Projection * NDCSpace matrix const core::matrix4* matrix = Transformation[TransformationStack]; matrix[ETS_PROJ_MODEL_VIEW].transformVect(&dest->Pos.x, base->Pos); //mhm ... maybe no goto if (VertexCache.vType == E4VT_SHADOW) { //core::vector3df i = base->Pos; //i.Z -= 0.5f; //matrix[ETS_PROJ_MODEL_VIEW].transformVect(&dest->Pos.x, i); //GL_DEPTH_CLAMP,EVDF_DEPTH_CLAMP //if ( dest->Pos.z < dest->Pos.w) // dest->Pos.z = dest->Pos.w*0.99f; //glPolygonOffset // self shadow wanted or not? dest->Pos.w *= 1.005f; //flag |= v->Pos.z <= v->Pos.w ? VERTEX4D_CLIP_NEAR : 0; //flag |= -v->Pos.z <= v->Pos.w ? VERTEX4D_CLIP_FAR : 0; goto clipandproject; } #if defined (SOFTWARE_DRIVER_2_LIGHTING) || defined ( SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM ) // vertex, normal in light(eye) space if (Material.org.Lighting || (EyeSpace.TL_Flag & (TL_TEXTURE_TRANSFORM | TL_FOG))) { sVec4 vertex4; //eye coordinate position of vertex matrix[ETS_MODEL_VIEW].transformVect(&vertex4.x, base->Pos); const f32 iw = reciprocal_zero(vertex4.w); EyeSpace.vertex.x = vertex4.x * iw; EyeSpace.vertex.y = vertex4.y * iw; EyeSpace.vertex.z = vertex4.z * iw; EyeSpace.vertex.w = iw; //EyeSpace.cam_distance = EyeSpace.vertex.length_xyz(); EyeSpace.cam_dir = EyeSpace.vertex; EyeSpace.cam_dir.normalize_dir_xyz(); matrix[ETS_NORMAL].rotateVect(&EyeSpace.normal.x, base->Normal); if (EyeSpace.TL_Flag & TL_NORMALIZE_NORMALS) EyeSpace.normal.normalize_dir_xyz(); } #endif #if BURNING_MATERIAL_MAX_COLORS > 1 dest->Color[1].a = 1.f; dest->Color[1].r = 0.f; dest->Color[1].g = 0.f; dest->Color[1].b = 0.f; #endif #if BURNING_MATERIAL_MAX_COLORS > 2 dest->Color[2].a = 1.f; dest->Color[2].r = 0.f; dest->Color[2].g = 0.f; dest->Color[2].b = 0.f; #endif #if BURNING_MATERIAL_MAX_COLORS > 3 dest->Color[3].a = 1.f; dest->Color[3].r = 0.f; dest->Color[3].g = 0.f; dest->Color[3].b = 0.f; #endif #if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0 dest->LightTangent[0].x = 0.f; dest->LightTangent[0].y = 0.f; dest->LightTangent[0].z = 0.f; #endif #if BURNING_MATERIAL_MAX_COLORS > 0 // apply lighting model #if defined (SOFTWARE_DRIVER_2_LIGHTING) if (Material.org.Lighting) { lightVertex_eye(dest, base->Color.color); } else { dest->Color[0].setA8R8G8B8(base->Color.color); } #else dest->Color[0].setA8R8G8B8(base->Color.color); #endif #endif //vertex fog if (EyeSpace.TL_Flag & TL_FOG) //Material.org.FogEnable { f32 fog_factor = 1.f; // GL_FRAGMENT_DEPTH -> abs(EyeSpace.vertex.z) ieee754 fog_frag_coord; fog_frag_coord.f = EyeSpace.vertex.z; fog_frag_coord.fields.sign = 0; switch (FogType) { case EFT_FOG_LINEAR: fog_factor = (FogEnd - fog_frag_coord.f) * EyeSpace.fog_scale; break; case EFT_FOG_EXP: fog_factor = (f32)exp(-FogDensity * fog_frag_coord.f); break; case EFT_FOG_EXP2: fog_factor = (f32)exp(-FogDensity * FogDensity * fog_frag_coord.f * fog_frag_coord.f); break; } sVec4* a = dest->Color + ((VertexCache.vSize[VertexCache.vType].Format & VERTEX4D_FORMAT_COLOR_2_FOG) ? 1 : 0); a->a = clampf01(fog_factor); } // Texture Coo Transform // Always set all internal uv (v1.9 SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM always on) for (size_t t = 0; t < BURNING_MATERIAL_MAX_TEXTURES; ++t) { sVec4 r; f32 tx, ty; // texgen const size_t flag = TransformationFlag[TransformationStack][ETS_TEXTURE_0 + t]; if (flag & ETF_TEXGEN_CAMERA_SPHERE) { //reflect(u,N) u - 2.0 * dot(N, u) * N // cam is (0,0,-1), tex flipped const sVec4& u = EyeSpace.cam_dir; // EyeSpace.vertex.normalized const sVec4& n = EyeSpace.normal; f32 dot = -2.f * n.dot_xyz(u); r.x = u.x + dot * n.x; r.y = u.y + dot * n.y; r.z = u.z + dot * n.z; //openGL f32 m = 2.f * sqrtf(r.x * r.x + r.y * r.y + (r.z + 1.f) * (r.z + 1.f)); tx = r.x / m + 0.5f; ty = -r.y / m + 0.5f; /* //~d3d with spheremap scale f32 m = 0.25f / (0.00001f + sqrtf(r.x*r.x+r.y*r.y+r.z*r.z)); dest[0].Tex[t].x = r.x * m + 0.5f; dest[0].Tex[t].y = -r.y * m + 0.5f; */ } else if (flag & ETF_TEXGEN_CAMERA_REFLECTION) { //reflect(u,N) u - 2.0 * dot(N, u) * N // cam is (0,0,-1), tex flipped const sVec4& u = EyeSpace.cam_dir; // EyeSpace.vertex.normalized const sVec4& n = EyeSpace.normal; f32 dot = -2.f * n.dot_xyz(u); r.x = u.x + dot * n.x; r.y = u.y + dot * n.y; r.z = u.z + dot * n.z; //openGL tx = r.x; ty = -r.y; /* //~d3d with spheremap scale dest[0].Tex[t].x = r.x; dest[0].Tex[t].y = r.y; */ } else if (t < VertexCache.vSize[VertexCache.vType].TexCooSize) { // Irrlicht TCoords and TCoords2 must be contiguous memory. baseTCoord has no 4 byte aligned start address! const sVec2Pack* baseTCoord = (const sVec2Pack*)&base->TCoords.X; tx = baseTCoord[t].x; ty = baseTCoord[t].y; } else { tx = 0.f; ty = 0.f; } //transform if (!(flag & ETF_IDENTITY)) { /* Generate texture coordinates as linear functions so that: u = Ux*x + Uy*y + Uz*z + Uw v = Vx*x + Vy*y + Vz*z + Vw The matrix M for this case is: Ux Vx 0 0 Uy Vy 0 0 Uz Vz 0 0 Uw Vw 0 0 */ const f32* M = matrix[ETS_TEXTURE_0 + t].pointer(); f32 _tx = tx; f32 _ty = ty; tx = M[0] * _tx + M[4] * _ty + M[8]; ty = M[1] * _tx + M[5] * _ty + M[9]; } switch (Material.org.TextureLayer[t].TextureWrapU) { case ETC_CLAMP: case ETC_CLAMP_TO_EDGE: case ETC_CLAMP_TO_BORDER: tx = clampf01(tx); break; case ETC_MIRROR: if (core::fract(tx) > 0.5f) tx = 1.f - tx; break; case ETC_MIRROR_CLAMP: case ETC_MIRROR_CLAMP_TO_EDGE: case ETC_MIRROR_CLAMP_TO_BORDER: tx = clampf01(tx); if (core::fract(tx) > 0.5f) tx = 1.f - tx; break; case ETC_REPEAT: // texel access is always modulo default: break; } switch (Material.org.TextureLayer[t].TextureWrapV) { case ETC_CLAMP: case ETC_CLAMP_TO_EDGE: case ETC_CLAMP_TO_BORDER: ty = clampf01(ty); break; case ETC_MIRROR: if (core::fract(ty) > 0.5f) ty = 1.f - ty; break; case ETC_MIRROR_CLAMP: case ETC_MIRROR_CLAMP_TO_EDGE: case ETC_MIRROR_CLAMP_TO_BORDER: ty = clampf01(ty); if (core::fract(ty) > 0.5f) ty = 1.f - ty; break; case ETC_REPEAT: // texel access is always modulo default: break; } dest->Tex[t].x = tx; dest->Tex[t].y = ty; } #if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0 if ((EyeSpace.TL_Flag & TL_LIGHT0_IS_NORMAL_MAP) && ((VertexCache.vSize[VertexCache.vType].Format & VERTEX4D_FORMAT_MASK_TANGENT) == VERTEX4D_FORMAT_BUMP_DOT3) ) { const S3DVertexTangents* tangent = ((S3DVertexTangents*)source); sVec4 vp; sVec4 light_accu; light_accu.x = 0.f; light_accu.y = 0.f; light_accu.z = 0.f; light_accu.w = 0.f; for (u32 i = 0; i < 2 && i < EyeSpace.Light.size(); ++i) { const SBurningShaderLight& light = EyeSpace.Light[i]; if (!light.LightIsOn) continue; // lightcolor with standard model // but shader is different. treating light and vertex in same space #if 1 vp.x = light.pos.x - base->Pos.X; vp.y = light.pos.y - base->Pos.Y; vp.z = light.pos.z - base->Pos.Z; #else vp.x = light.pos4.x - EyeSpace.vertex.x; vp.y = light.pos4.y - EyeSpace.vertex.y; vp.z = light.pos4.z - EyeSpace.vertex.z; #endif // transform by tangent matrix light_accu.x += (vp.x * tangent->Tangent.X + vp.y * tangent->Tangent.Y + vp.z * tangent->Tangent.Z); light_accu.y += (vp.x * tangent->Binormal.X + vp.y * tangent->Binormal.Y + vp.z * tangent->Binormal.Z); light_accu.z += (vp.x * tangent->Normal.X + vp.y * tangent->Normal.Y + vp.z * tangent->Normal.Z); } //normalize [-1,+1] to [0,1] -> obsolete light_accu.normalize_pack_xyz(dest->LightTangent[0], 1.f, 0.f); dest->Tex[1].x = dest->Tex[0].x; dest->Tex[1].y = dest->Tex[0].y; } else if (Material.org.Lighting) { //dest->LightTangent[0].x = 0.f; //dest->LightTangent[0].y = 0.f; //dest->LightTangent[0].z = 0.f; } #endif //if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0 //#endif // SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM clipandproject: // test vertex visible dest[0].flag = (u32)(clipToFrustumTest(dest) | VertexCache.vSize[VertexCache.vType].Format); dest[1].flag = dest[0].flag; // to DC Space, project homogenous vertex if ((dest[0].flag & VERTEX4D_CLIPMASK) == VERTEX4D_INSIDE) { ndc_2_dc_and_project(dest + s4DVertex_proj(0), dest + s4DVertex_ofs(0), s4DVertex_ofs(1)); } } //todo: this should return only index s4DVertexPair* CBurningVideoDriver::VertexCache_getVertex(const u32 sourceIndex) const { for (size_t i = 0; i < VERTEXCACHE_ELEMENT; ++i) { if (VertexCache.info[i].index == sourceIndex) { return VertexCache.mem.data + s4DVertex_ofs(i); } } return VertexCache.mem.data; //error } /* Cache based on linear walk indices fill blockwise on the next 16(Cache_Size) unique vertices in indexlist merge the next 16 vertices with the current */ void CBurningVideoDriver::VertexCache_get(s4DVertexPair* face[4]) { // next primitive must be complete in cache if (VertexCache.indicesIndex - VertexCache.indicesRun < VertexCache.primitiveHasVertex && VertexCache.indicesIndex < VertexCache.indexCount ) { size_t i; //memset(info, VERTEXCACHE_MISS, sizeof(info)); for (i = 0; i != VERTEXCACHE_ELEMENT; ++i) { VertexCache.info_temp[i].hit = VERTEXCACHE_MISS; VertexCache.info_temp[i].index = VERTEXCACHE_MISS; } // rewind to start of primitive VertexCache.indicesIndex = VertexCache.indicesRun; // get the next unique vertices cache line u32 fillIndex = 0; u32 dIndex = 0; u32 sourceIndex = 0; while (VertexCache.indicesIndex < VertexCache.indexCount && fillIndex < VERTEXCACHE_ELEMENT ) { switch (VertexCache.iType) { case E4IT_16BIT: sourceIndex = ((u16*)VertexCache.indices)[VertexCache.indicesIndex]; break; case E4IT_32BIT: sourceIndex = ((u32*)VertexCache.indices)[VertexCache.indicesIndex]; break; default: case E4IT_NONE: sourceIndex = VertexCache.indicesIndex; break; } VertexCache.indicesIndex += 1; // if not exist, push back s32 exist = 0; for (dIndex = 0; dIndex < fillIndex; ++dIndex) { if (VertexCache.info_temp[dIndex].index == sourceIndex) { exist = 1; break; } } if (0 == exist) { VertexCache.info_temp[fillIndex++].index = sourceIndex; } } // clear marks for (i = 0; i != VERTEXCACHE_ELEMENT; ++i) { VertexCache.info[i].hit = 0; } // mark all existing for (i = 0; i != fillIndex; ++i) { for (dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex) { if (VertexCache.info[dIndex].index == VertexCache.info_temp[i].index) { VertexCache.info_temp[i].hit = dIndex; VertexCache.info[dIndex].hit = 1; break; } } } // fill new for (i = 0; i != fillIndex; ++i) { if (VertexCache.info_temp[i].hit != VERTEXCACHE_MISS) continue; for (dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex) { if (0 == VertexCache.info[dIndex].hit) { VertexCache_fill(VertexCache.info_temp[i].index, dIndex); VertexCache.info[dIndex].hit += 1; VertexCache.info_temp[i].hit = dIndex; break; } } } } //const u32 i0 = core::if_c_a_else_0 ( VertexCache.pType != scene::EPT_TRIANGLE_FAN, VertexCache.indicesRun ); const u32 i0 = VertexCache.pType != scene::EPT_TRIANGLE_FAN ? VertexCache.indicesRun : 0; switch (VertexCache.iType) { case E4IT_16BIT: { const u16* p = (const u16*)VertexCache.indices; face[0] = VertexCache_getVertex(p[i0]); face[1] = VertexCache_getVertex(p[VertexCache.indicesRun + 1]); face[2] = VertexCache_getVertex(p[VertexCache.indicesRun + 2]); } break; case E4IT_32BIT: { const u32* p = (const u32*)VertexCache.indices; face[0] = VertexCache_getVertex(p[i0]); face[1] = VertexCache_getVertex(p[VertexCache.indicesRun + 1]); face[2] = VertexCache_getVertex(p[VertexCache.indicesRun + 2]); } break; case E4IT_NONE: face[0] = VertexCache_getVertex(VertexCache.indicesRun + 0); face[1] = VertexCache_getVertex(VertexCache.indicesRun + 1); face[2] = VertexCache_getVertex(VertexCache.indicesRun + 2); break; default: face[0] = face[1] = face[2] = VertexCache_getVertex(VertexCache.indicesRun + 0); break; } face[3] = face[0]; // quad unsupported VertexCache.indicesRun += VertexCache.indicesPitch; } /*! */ int CBurningVideoDriver::VertexCache_reset(const void* vertices, u32 vertexCount, const void* indices, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { // These calls would lead to crashes due to wrong index usage. // The vertex cache needs to be rewritten for these primitives. if (0 == CurrentShader || pType == scene::EPT_POINTS || pType == scene::EPT_LINE_STRIP || pType == scene::EPT_LINE_LOOP || pType == scene::EPT_LINES || pType == scene::EPT_POLYGON || pType == scene::EPT_POINT_SPRITES) { return 1; } VertexCache.vertices = vertices; VertexCache.vertexCount = vertexCount; switch (Material.org.MaterialType) // (Material.Fallback_MaterialType) { case EMT_REFLECTION_2_LAYER: case EMT_TRANSPARENT_REFLECTION_2_LAYER: VertexCache.vType = E4VT_REFLECTION_MAP; break; default: VertexCache.vType = (e4DVertexType)vType; break; } //check material SVSize* vSize = VertexCache.vSize; for (int m = (int)vSize[VertexCache.vType].TexSize - 1; m >= 0; --m) { ITexture* tex = MAT_TEXTURE(m); if (!tex) { vSize[E4VT_NO_TEXTURE] = vSize[VertexCache.vType]; vSize[E4VT_NO_TEXTURE].TexSize = m; vSize[E4VT_NO_TEXTURE].TexCooSize = m; VertexCache.vType = E4VT_NO_TEXTURE; //flags downconvert? } } VertexCache.indices = indices; VertexCache.indicesIndex = 0; VertexCache.indicesRun = 0; switch (iType) { case EIT_16BIT: VertexCache.iType = E4IT_16BIT; break; case EIT_32BIT: VertexCache.iType = E4IT_32BIT; break; default: VertexCache.iType = (e4DIndexType)iType; break; } if (!VertexCache.indices) VertexCache.iType = E4IT_NONE; VertexCache.pType = pType; VertexCache.primitiveHasVertex = 3; VertexCache.indicesPitch = 1; switch (VertexCache.pType) { // most types here will not work as expected, only triangles/triangle_fan // is known to work. case scene::EPT_POINTS: VertexCache.indexCount = primitiveCount; VertexCache.indicesPitch = 1; VertexCache.primitiveHasVertex = 1; break; case scene::EPT_LINE_STRIP: VertexCache.indexCount = primitiveCount + 1; VertexCache.indicesPitch = 1; VertexCache.primitiveHasVertex = 2; break; case scene::EPT_LINE_LOOP: VertexCache.indexCount = primitiveCount + 1; VertexCache.indicesPitch = 1; VertexCache.primitiveHasVertex = 2; break; case scene::EPT_LINES: VertexCache.indexCount = 2 * primitiveCount; VertexCache.indicesPitch = 2; VertexCache.primitiveHasVertex = 2; break; case scene::EPT_TRIANGLE_STRIP: VertexCache.indexCount = primitiveCount + 2; VertexCache.indicesPitch = 1; VertexCache.primitiveHasVertex = 3; break; case scene::EPT_TRIANGLES: VertexCache.indexCount = primitiveCount + primitiveCount + primitiveCount; VertexCache.indicesPitch = 3; VertexCache.primitiveHasVertex = 3; break; case scene::EPT_TRIANGLE_FAN: VertexCache.indexCount = primitiveCount + 2; VertexCache.indicesPitch = 1; VertexCache.primitiveHasVertex = 3; break; case scene::EPT_QUAD_STRIP: VertexCache.indexCount = 2 * primitiveCount + 2; VertexCache.indicesPitch = 2; VertexCache.primitiveHasVertex = 4; break; case scene::EPT_QUADS: VertexCache.indexCount = 4 * primitiveCount; VertexCache.indicesPitch = 4; VertexCache.primitiveHasVertex = 4; break; case scene::EPT_POLYGON: VertexCache.indexCount = primitiveCount + 1; VertexCache.indicesPitch = 1; VertexCache.primitiveHasVertex = primitiveCount; break; case scene::EPT_POINT_SPRITES: VertexCache.indexCount = primitiveCount; VertexCache.indicesPitch = 1; VertexCache.primitiveHasVertex = 1; break; } //memset( VertexCache.info, VERTEXCACHE_MISS, sizeof ( VertexCache.info ) ); for (size_t i = 0; i != VERTEXCACHE_ELEMENT; ++i) { VertexCache.info[i].hit = VERTEXCACHE_MISS; VertexCache.info[i].index = VERTEXCACHE_MISS; } return 0; } //! draws a vertex primitive list void CBurningVideoDriver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); if (VertexCache_reset(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType)) return; if ((u32)Material.org.MaterialType < MaterialRenderers.size()) { MaterialRenderers[Material.org.MaterialType].Renderer->OnRender(this, vType); } //Matrices needed for this primitive transform_calc(ETS_PROJ_MODEL_VIEW); if (Material.org.Lighting || (EyeSpace.TL_Flag & (TL_TEXTURE_TRANSFORM | TL_FOG))) { transform_calc(ETS_MODEL_VIEW); transform_calc(ETS_NORMAL); } s4DVertexPair* face[4]; size_t vOut; size_t vertex_from_clipper; // from VertexCache or CurrentOut size_t has_vertex_run; for (size_t primitive_run = 0; primitive_run < primitiveCount; ++primitive_run) { //collect pointer to face vertices VertexCache_get(face); size_t clipMask_i; size_t clipMask_o; clipMask_i = face[0]->flag; clipMask_o = face[0]->flag; for (has_vertex_run = 1; has_vertex_run < VertexCache.primitiveHasVertex; ++has_vertex_run) { clipMask_i |= face[has_vertex_run]->flag; // if fully outside or outside on same side clipMask_o &= face[has_vertex_run]->flag; // if fully inside } clipMask_i &= VERTEX4D_CLIPMASK; clipMask_o &= VERTEX4D_CLIPMASK; if (clipMask_i != VERTEX4D_INSIDE) { // if primitive fully outside or outside on same side continue; //vOut = 0; //vertex_from_clipper = 0; } else if (clipMask_o == VERTEX4D_INSIDE) { // if primitive fully inside vOut = VertexCache.primitiveHasVertex; vertex_from_clipper = 0; } else #if defined(SOFTWARE_DRIVER_2_CLIPPING) { // else if not complete inside clipping necessary // check: clipping should reuse vertexcache (try to minimize clipping) for (has_vertex_run = 0; has_vertex_run < VertexCache.primitiveHasVertex; ++has_vertex_run) { memcpy_s4DVertexPair(Clipper.data + s4DVertex_ofs(has_vertex_run), face[has_vertex_run]); } vOut = clipToFrustum(VertexCache.primitiveHasVertex); vertex_from_clipper = 1; // to DC Space, project homogenous vertex ndc_2_dc_and_project(Clipper.data + s4DVertex_proj(0), Clipper.data + s4DVertex_ofs(0), s4DVertex_ofs(vOut)); } #else { continue; vOut = 0; vertex_from_clipper = 0; } #endif // re-tesselate ( triangle-fan, 0-1-2,0-2-3.. ) for (has_vertex_run = 0; (has_vertex_run + VertexCache.primitiveHasVertex) <= vOut; has_vertex_run += 1) { // set from clipped geometry if (vertex_from_clipper) { face[0] = Clipper.data + s4DVertex_ofs(0); face[1] = Clipper.data + s4DVertex_ofs(has_vertex_run + 1); face[2] = Clipper.data + s4DVertex_ofs(has_vertex_run + 2); } //area of primitive in device space // projected triangle screen area is used for culling ( sign of normal ) and mipmap selection //f32 dc_area = screenarea_inside(face); // crossproduct (area of parallelogram * 0.5 = triangle screen size) f32 dc_area; { const sVec4& v0 = (face[0] + s4DVertex_proj(0))->Pos; const sVec4& v1 = (face[1] + s4DVertex_proj(0))->Pos; const sVec4& v2 = (face[2] + s4DVertex_proj(0))->Pos; //dc_area = a.x * b.y - b.x * a.y; dc_area = ((v1.x - v0.x) * (v2.y - v0.y) - (v2.x - v0.x) * (v1.y - v0.y)) * 0.5f; } //geometric clipping has problem with invisible or very small Triangles //size_t sign = dc_area < 0.001f ? CULL_BACK : dc_area > 0.001f ? CULL_FRONT : CULL_INVISIBLE; ieee754 t; t.f = dc_area; size_t sign = t.fields.sign ? CULL_BACK : CULL_FRONT; sign |= t.abs.frac_exp < 981668463 /*0.01f*/ ? CULL_INVISIBLE : 0; if (Material.CullFlag & sign) break; //continue; //select mipmap ratio between drawing space and texture space (for multiply divide here) dc_area = reciprocal_zero(dc_area); // select mipmap for (size_t m = 0; m < VertexCache.vSize[VertexCache.vType].TexSize; ++m) { video::CSoftwareTexture2* tex = MAT_TEXTURE(m); //only guessing: take more detail (lower mipmap) in light+bump textures f32 lod_bias = 0.100f;// core::clamp(map_value((f32)ScreenSize.Width * ScreenSize.Height, 160 * 120, 640 * 480, 1.f / 8.f, 1.f / 8.f), 0.01f, 1.f); //assume transparent add is ~50% transparent -> more detail switch (Material.org.MaterialType) { case EMT_TRANSPARENT_ADD_COLOR: case EMT_TRANSPARENT_ALPHA_CHANNEL: lod_bias *= 0.5f; break; default: break; } lod_bias *= tex->get_lod_bias(); //lod_bias += Material.org.TextureLayer[m].LODBias * 0.125f; s32 lodFactor = lodFactor_inside(face, m, dc_area, lod_bias); CurrentShader->setTextureParam(m, tex, lodFactor); //currently shader receives texture coordinate as Pixelcoo of 1 Texture select_polygon_mipmap_inside(face, m, tex->getTexBound()); } CurrentShader->drawWireFrameTriangle(face[0] + s4DVertex_proj(0), face[1] + s4DVertex_proj(0), face[2] + s4DVertex_proj(0)); vertex_from_clipper = 1; } } //release texture for (size_t m = 0; m < VertexCache.vSize[VertexCache.vType].TexSize; ++m) { CurrentShader->setTextureParam(m, 0, 0); } } //! Sets the dynamic ambient light color. The default color is //! (0,0,0,0) which means it is dark. //! \param color: New color of the ambient light. void CBurningVideoDriver::setAmbientLight(const SColorf& color) { EyeSpace.Global_AmbientLight.setColorf(color); } //! adds a dynamic light s32 CBurningVideoDriver::addDynamicLight(const SLight& dl) { (void)CNullDriver::addDynamicLight(dl); SBurningShaderLight l; // l.org = dl; l.Type = dl.Type; l.LightIsOn = true; l.AmbientColor.setColorf(dl.AmbientColor); l.DiffuseColor.setColorf(dl.DiffuseColor); l.SpecularColor.setColorf(dl.SpecularColor); //should always be valid? sVec4 nDirection; nDirection.x = dl.Direction.X; nDirection.y = dl.Direction.Y; nDirection.z = dl.Direction.Z; nDirection.normalize_dir_xyz(); switch (dl.Type) { case ELT_DIRECTIONAL: l.pos.x = dl.Position.X; l.pos.y = dl.Position.Y; l.pos.z = dl.Position.Z; l.pos.w = 0.f; l.constantAttenuation = 1.f; l.linearAttenuation = 0.f; l.quadraticAttenuation = 0.f; l.spotDirection.x = -nDirection.x; l.spotDirection.y = -nDirection.y; l.spotDirection.z = -nDirection.z; l.spotDirection.w = 0.f; l.spotCosCutoff = -1.f; l.spotCosInnerCutoff = 1.f; l.spotExponent = 0.f; break; case ELT_POINT: l.pos.x = dl.Position.X; l.pos.y = dl.Position.Y; l.pos.z = dl.Position.Z; l.pos.w = 1.f; l.constantAttenuation = dl.Attenuation.X; l.linearAttenuation = dl.Attenuation.Y; l.quadraticAttenuation = dl.Attenuation.Z; l.spotDirection.x = -nDirection.x; l.spotDirection.y = -nDirection.y; l.spotDirection.z = -nDirection.z; l.spotDirection.w = 0.f; l.spotCosCutoff = -1.f; l.spotCosInnerCutoff = 1.f; l.spotExponent = 0.f; break; case ELT_SPOT: l.pos.x = dl.Position.X; l.pos.y = dl.Position.Y; l.pos.z = dl.Position.Z; l.pos.w = 1.f; l.constantAttenuation = dl.Attenuation.X; l.linearAttenuation = dl.Attenuation.Y; l.quadraticAttenuation = dl.Attenuation.Z; l.spotDirection.x = nDirection.x; l.spotDirection.y = nDirection.y; l.spotDirection.z = nDirection.z; l.spotDirection.w = 0.0f; l.spotCosCutoff = cosf(dl.OuterCone * 2.0f * core::DEGTORAD * 0.5f); l.spotCosInnerCutoff = cosf(dl.InnerCone * 2.0f * core::DEGTORAD * 0.5f); l.spotExponent = dl.Falloff; break; default: break; } //which means ETS_VIEW setTransform(ETS_WORLD, irr::core::IdentityMatrix); transform_calc(ETS_MODEL_VIEW); const core::matrix4* matrix = Transformation[TransformationStack]; transformVec4Vec4(matrix[ETS_MODEL_VIEW], &l.pos4.x, &l.pos.x); rotateVec3Vec4(matrix[ETS_MODEL_VIEW], &l.spotDirection4.x, &l.spotDirection.x); EyeSpace.Light.push_back(l); return EyeSpace.Light.size() - 1; } //! Turns a dynamic light on or off void CBurningVideoDriver::turnLightOn(s32 lightIndex, bool turnOn) { if ((u32)lightIndex < EyeSpace.Light.size()) { EyeSpace.Light[lightIndex].LightIsOn = turnOn; } } //! deletes all dynamic lights there are void CBurningVideoDriver::deleteAllDynamicLights() { EyeSpace.reset(); CNullDriver::deleteAllDynamicLights(); } //! returns the maximal amount of dynamic lights the device can handle u32 CBurningVideoDriver::getMaximalDynamicLightAmount() const { return 8; //no limit 8 only for convenience } //! sets a material void CBurningVideoDriver::setMaterial(const SMaterial& material) { // ---------- Override Material.org = material; OverrideMaterial.apply(Material.org); const SMaterial& in = Material.org; // ---------- Notify Shader // unset old material u32 mi; mi = (u32)Material.lastMaterial.MaterialType; if (mi != material.MaterialType && mi < MaterialRenderers.size()) MaterialRenderers[mi].Renderer->OnUnsetMaterial(); // set new material. mi = (u32)in.MaterialType; if (mi < MaterialRenderers.size()) MaterialRenderers[mi].Renderer->OnSetMaterial( in, Material.lastMaterial, Material.resetRenderStates, this); Material.lastMaterial = in; Material.resetRenderStates = false; //CSoftware2MaterialRenderer sets Material.Fallback_MaterialType //Material.Fallback_MaterialType = material.MaterialType; //----------------- //Material.org = material; Material.CullFlag = CULL_INVISIBLE | (in.BackfaceCulling ? CULL_BACK : 0) | (in.FrontfaceCulling ? CULL_FRONT : 0); size_t* flag = TransformationFlag[TransformationStack]; #ifdef SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM for (u32 m = 0; m < BURNING_MATERIAL_MAX_TEXTURES /*&& m < vSize[VertexCache.vType].TexSize*/; ++m) { setTransform((E_TRANSFORMATION_STATE)(ETS_TEXTURE_0 + m), in.getTextureMatrix(m)); flag[ETS_TEXTURE_0 + m] &= ~ETF_TEXGEN_MASK; } #endif #ifdef SOFTWARE_DRIVER_2_LIGHTING Material.AmbientColor.setA8R8G8B8(in.AmbientColor.color); Material.DiffuseColor.setA8R8G8B8(in.ColorMaterial ? 0xFFFFFFFF : in.DiffuseColor.color); Material.EmissiveColor.setA8R8G8B8(in.EmissiveColor.color); Material.SpecularColor.setA8R8G8B8(in.SpecularColor.color); burning_setbit(EyeSpace.TL_Flag, in.Lighting, TL_LIGHT); burning_setbit(EyeSpace.TL_Flag, (in.Shininess != 0.f) && (in.SpecularColor.color & 0x00ffffff), TL_SPECULAR); burning_setbit(EyeSpace.TL_Flag, in.FogEnable, TL_FOG); burning_setbit(EyeSpace.TL_Flag, in.NormalizeNormals, TL_NORMALIZE_NORMALS); //if (EyeSpace.Flags & SPECULAR ) EyeSpace.Flags |= NORMALIZE_NORMALS; #endif //--------------- setCurrentShader ITexture* texture0 = in.getTexture(0); ITexture* texture1 = in.getTexture(1); //ITexture* texture2 = in.getTexture(2); //ITexture* texture3 = in.getTexture(3); //visual studio code analysis u32 maxTex = BURNING_MATERIAL_MAX_TEXTURES; if (maxTex < 1) texture0 = 0; if (maxTex < 2) texture1 = 0; //if (maxTex < 3) texture2 = 0; //if (maxTex < 4) texture3 = 0; EyeSpace.TL_Flag &= ~(TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP); //todo: seperate depth test from depth write Material.depth_write = getWriteZBuffer(in); Material.depth_test = in.ZBuffer != ECFN_DISABLED && Material.depth_write; EBurningFFShader shader = Material.depth_test ? ETR_TEXTURE_GOURAUD : ETR_TEXTURE_GOURAUD_NOZ; switch (Material.Fallback_MaterialType) //(Material.org.MaterialType) { case EMT_ONETEXTURE_BLEND: shader = ETR_TEXTURE_BLEND; break; case EMT_TRANSPARENT_ALPHA_CHANNEL_REF: Material.org.MaterialTypeParam = 0.5f; //fallthrough case EMT_TRANSPARENT_ALPHA_CHANNEL: if (texture0 && texture0->hasAlpha()) { shader = Material.depth_test ? ETR_TEXTURE_GOURAUD_ALPHA : ETR_TEXTURE_GOURAUD_ALPHA_NOZ; } else { //fall back to EMT_TRANSPARENT_VERTEX_ALPHA shader = ETR_TEXTURE_GOURAUD_VERTEX_ALPHA; } break; case EMT_TRANSPARENT_ADD_COLOR: shader = Material.depth_test ? ETR_TEXTURE_GOURAUD_ADD : ETR_TEXTURE_GOURAUD_ADD_NO_Z; break; case EMT_TRANSPARENT_VERTEX_ALPHA: shader = ETR_TEXTURE_GOURAUD_VERTEX_ALPHA; break; case EMT_LIGHTMAP: case EMT_LIGHTMAP_LIGHTING: if (texture1) shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M1; break; case EMT_LIGHTMAP_M2: case EMT_LIGHTMAP_LIGHTING_M2: if (texture1) shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M2; break; case EMT_LIGHTMAP_LIGHTING_M4: if (texture1) shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M4; break; case EMT_LIGHTMAP_M4: if (texture1) shader = ETR_TEXTURE_LIGHTMAP_M4; break; case EMT_LIGHTMAP_ADD: if (texture1) shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD; break; case EMT_DETAIL_MAP: if (texture1) shader = ETR_TEXTURE_GOURAUD_DETAIL_MAP; break; case EMT_SPHERE_MAP: flag[ETS_TEXTURE_0] |= ETF_TEXGEN_CAMERA_SPHERE; EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM; break; case EMT_REFLECTION_2_LAYER: case EMT_TRANSPARENT_REFLECTION_2_LAYER: if (texture1) { shader = ETR_TRANSPARENT_REFLECTION_2_LAYER; flag[ETS_TEXTURE_1] |= ETF_TEXGEN_CAMERA_REFLECTION; EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM; } break; case EMT_NORMAL_MAP_SOLID: case EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR: case EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA: if (texture1) { shader = ETR_NORMAL_MAP_SOLID; EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP; } break; case EMT_PARALLAX_MAP_SOLID: case EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR: case EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA: if (texture1) { shader = ETR_NORMAL_MAP_SOLID; EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP; } break; default: break; } if (!texture0) { shader = Material.depth_test ? ETR_GOURAUD : shader == ETR_TEXTURE_GOURAUD_VERTEX_ALPHA ? ETR_GOURAUD_ALPHA_NOZ : // 2D Gradient ETR_GOURAUD_NOZ; shader = ETR_COLOR; } if (in.Wireframe) { IBurningShader* candidate = BurningShader[shader]; if (!candidate || (candidate && !candidate->canWireFrame())) { shader = ETR_TEXTURE_GOURAUD_WIRE; } } if (in.PointCloud) { IBurningShader* candidate = BurningShader[shader]; if (!candidate || (candidate && !candidate->canPointCloud())) { shader = ETR_TEXTURE_GOURAUD_WIRE; } } //shader = ETR_REFERENCE; // switchToTriangleRenderer CurrentShader = BurningShader[shader]; if (CurrentShader) { CurrentShader->setTLFlag(EyeSpace.TL_Flag); if (EyeSpace.TL_Flag & TL_FOG) CurrentShader->setFog(FogColor); if (EyeSpace.TL_Flag & TL_SCISSOR) CurrentShader->setScissor(Scissor); CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort, Interlaced); CurrentShader->OnSetMaterial(Material); CurrentShader->pushEdgeTest(in.Wireframe, in.PointCloud, 0); } /* mi = (u32)Material.org.MaterialType; if (mi < MaterialRenderers.size()) MaterialRenderers[mi].Renderer->OnRender(this, (video::E_VERTEX_TYPE)VertexCache.vType); */ } //! Sets the fog mode. void CBurningVideoDriver::setFog(SColor color, E_FOG_TYPE fogType, f32 start, f32 end, f32 density, bool pixelFog, bool rangeFog) { CNullDriver::setFog(color, fogType, start, end, density, pixelFog, rangeFog); EyeSpace.fog_scale = reciprocal_zero(FogEnd - FogStart); } #if defined(SOFTWARE_DRIVER_2_LIGHTING) && BURNING_MATERIAL_MAX_COLORS > 0 /*! applies lighting model */ void CBurningVideoDriver::lightVertex_eye(s4DVertex* dest, u32 vertexargb) { //gl_FrontLightModelProduct.sceneColor = gl_FrontMaterial.emission + gl_FrontMaterial.ambient * gl_LightModel.ambient sVec3Color ambient; sVec3Color diffuse; sVec3Color specular; // the universe started in darkness.. ambient = EyeSpace.Global_AmbientLight; diffuse.set(0.f); specular.set(0.f); u32 i; f32 dot; f32 distance; f32 attenuation; sVec4 vp; // unit vector vertex to light sVec4 lightHalf; // blinn-phong reflection f32 spotDot; // cos of angle between spotlight and point on surface for (i = 0; i < EyeSpace.Light.size(); ++i) { const SBurningShaderLight& light = EyeSpace.Light[i]; if (!light.LightIsOn) continue; switch (light.Type) { case ELT_DIRECTIONAL: //angle between normal and light vector dot = EyeSpace.normal.dot_xyz(light.spotDirection4); // accumulate ambient ambient.add_rgb(light.AmbientColor); // diffuse component if (dot > 0.f) diffuse.mad_rgb(light.DiffuseColor, dot); break; case ELT_POINT: // surface to light vp.x = light.pos4.x - EyeSpace.vertex.x; vp.y = light.pos4.y - EyeSpace.vertex.y; vp.z = light.pos4.z - EyeSpace.vertex.z; distance = vp.length_xyz(); attenuation = light.constantAttenuation + light.linearAttenuation * distance + light.quadraticAttenuation * (distance * distance); attenuation = reciprocal_one(attenuation); //att = clamp(1.0 - dist/radius, 0.0, 1.0); att *= att // accumulate ambient ambient.mad_rgb(light.AmbientColor, attenuation); // build diffuse reflection //angle between normal and light vector vp.mul_xyz(reciprocal_zero(distance)); //normalize dot = EyeSpace.normal.dot_xyz(vp); if (dot <= 0.f) continue; // diffuse component diffuse.mad_rgb(light.DiffuseColor, dot * attenuation); if (!(EyeSpace.TL_Flag & TL_SPECULAR)) continue; lightHalf.x = vp.x + 0.f; // EyeSpace.cam_eye_pos.x; lightHalf.y = vp.y + 0.f; // EyeSpace.cam_eye_pos.y; lightHalf.z = vp.z - 1.f; // EyeSpace.cam_eye_pos.z; lightHalf.normalize_dir_xyz(); //specular += light.SpecularColor * pow(max(dot(Eyespace.normal,lighthalf),0,Material.org.Shininess)*attenuation specular.mad_rgb(light.SpecularColor, powf_limit(EyeSpace.normal.dot_xyz(lightHalf), Material.org.Shininess) * attenuation ); break; case ELT_SPOT: // surface to light vp.x = light.pos4.x - EyeSpace.vertex.x; vp.y = light.pos4.y - EyeSpace.vertex.y; vp.z = light.pos4.z - EyeSpace.vertex.z; distance = vp.length_xyz(); //normalize vp.mul_xyz(reciprocal_zero(distance)); // point on surface inside cone of illumination spotDot = vp.dot_minus_xyz(light.spotDirection4); if (spotDot < light.spotCosCutoff) continue; attenuation = light.constantAttenuation + light.linearAttenuation * distance + light.quadraticAttenuation * distance * distance; attenuation = reciprocal_one(attenuation); attenuation *= powf_limit(spotDot, light.spotExponent); // accumulate ambient ambient.mad_rgb(light.AmbientColor, attenuation); // build diffuse reflection //angle between normal and light vector dot = EyeSpace.normal.dot_xyz(vp); if (dot < 0.f) continue; // diffuse component diffuse.mad_rgb(light.DiffuseColor, dot * attenuation); if (!(EyeSpace.TL_Flag & TL_SPECULAR)) continue; lightHalf.x = vp.x + 0.f; // EyeSpace.cam_eye_pos.x; lightHalf.y = vp.y + 0.f; // EyeSpace.cam_eye_pos.y; lightHalf.z = vp.z - 1.f; // EyeSpace.cam_eye_pos.z; lightHalf.normalize_dir_xyz(); //specular += light.SpecularColor * pow(max(dot(Eyespace.normal,lighthalf),0,Material.org.Shininess)*attenuation specular.mad_rgb(light.SpecularColor, powf_limit(EyeSpace.normal.dot_xyz(lightHalf), Material.org.Shininess) * attenuation ); break; default: break; } } // sum up lights sVec3Color dColor; dColor.set(0.f); dColor.mad_rgbv(diffuse, Material.DiffuseColor); //diffuse * vertex color. //has to move to shader (for vertex color only this will fit [except clamping]) sVec3Color c; c.setA8R8G8B8(vertexargb); dColor.r *= c.r; dColor.g *= c.g; dColor.b *= c.b; //separate specular #if defined(SOFTWARE_DRIVER_2_USE_SEPARATE_SPECULAR_COLOR) if ((VertexCache.vSize[VertexCache.vType].Format & VERTEX4D_FORMAT_COLOR_2_FOG)) { specular.sat_xyz(dest->Color[1], Material.SpecularColor); } else if (!(EyeSpace.TL_Flag & TL_LIGHT0_IS_NORMAL_MAP) && (VertexCache.vSize[VertexCache.vType].Format & VERTEX4D_FORMAT_MASK_LIGHT) ) { specular.sat_xyz(dest->LightTangent[0], Material.SpecularColor); } else #endif { dColor.mad_rgbv(specular, Material.SpecularColor); } dColor.mad_rgbv(ambient, Material.AmbientColor); dColor.add_rgb(Material.EmissiveColor); dColor.sat(dest->Color[0], vertexargb); } #endif /* CImage* getImage(const video::ITexture* texture) { if (!texture) return 0; CImage* img = 0; switch (texture->getDriverType()) { case EDT_BURNINGSVIDEO: img = ((CSoftwareTexture2*)texture)->getImage(); break; case EDT_SOFTWARE: img = ((CSoftwareTexture*)texture)->getImage(); break; default: os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR); break; } return img; } */ /* draw2DImage with single color scales into destination quad & cliprect(more like viewport) draw2DImage with 4 color scales on destination and cliprect is scissor */ static const u16 quad_triangle_indexList[6] = { 0,1,2,0,2,3 }; #if defined(SOFTWARE_DRIVER_2_2D_AS_2D) //! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted. void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::position2d& destPos, const core::rect& sourceRect, const core::rect* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (texture) { if (texture->getOriginalSize() != texture->getSize()) { core::rect destRect(destPos, sourceRect.getSize()); SColor c4[4] = { color,color,color,color }; draw2DImage(texture, destRect, sourceRect, clipRect, c4, useAlphaChannelOfTexture); return; } if (texture->getDriverType() != EDT_BURNINGSVIDEO) { os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR); return; } if (useAlphaChannelOfTexture) ((CSoftwareTexture2*)texture)->getImage()->copyToWithAlpha( RenderTargetSurface, destPos, sourceRect, color, clipRect); else ((CSoftwareTexture2*)texture)->getImage()->copyTo( RenderTargetSurface, destPos, sourceRect, clipRect); } } //! Draws a part of the texture into the rectangle. void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::rect& destRect, const core::rect& sourceRect, const core::rect* clipRect, const video::SColor* const colors, bool useAlphaChannelOfTexture) { if (texture) { if (texture->getDriverType() != EDT_BURNINGSVIDEO) { os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR); return; } u32 argb = (colors ? colors[0].color : 0xFFFFFFFF); eBlitter op = useAlphaChannelOfTexture ? (argb == 0xFFFFFFFF ? BLITTER_TEXTURE_ALPHA_BLEND : BLITTER_TEXTURE_ALPHA_COLOR_BLEND) : BLITTER_TEXTURE; StretchBlit(op, RenderTargetSurface, clipRect, &destRect, ((CSoftwareTexture2*)texture)->getImage(), &sourceRect, &texture->getOriginalSize(), argb); } } //!Draws an 2d rectangle with a gradient. void CBurningVideoDriver::draw2DRectangle(const core::rect& position, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect* clip) { core::rect p(position); if (clip) p.clipAgainst(*clip); if (p.isValid()) drawRectangle(RenderTargetSurface, p, colorLeftUp); } #endif //defined(SOFTWARE_DRIVER_2_2D_AS_2D) //! Enable the 2d override material void CBurningVideoDriver::enableMaterial2D(bool enable) { CNullDriver::enableMaterial2D(enable); burning_setbit(TransformationFlag[1][ETS_PROJECTION], 0, ETF_VALID); } size_t compare_2d_material(const SMaterial& a, const SMaterial& b) { size_t flag = 0; flag |= a.MaterialType == b.MaterialType ? 0 : 1; flag |= a.ZBuffer == b.ZBuffer ? 0 : 2; flag |= a.TextureLayer[0].Texture == b.TextureLayer[0].Texture ? 0 : 4; flag |= a.TextureLayer[0].BilinearFilter == b.TextureLayer[0].BilinearFilter ? 0 : 8; flag |= a.MaterialTypeParam == b.MaterialTypeParam ? 0 : 16; if (flag) return flag; flag |= a.TextureLayer[1].Texture == b.TextureLayer[1].Texture ? 0 : 32; flag |= a.ZWriteEnable == b.ZWriteEnable ? 0 : 64; return flag; } void CBurningVideoDriver::setRenderStates2DMode(const video::SColor& color, const video::ITexture* texture, bool useAlphaChannelOfTexture) { //save current 3D Material //Material.save3D = Material.org; //build new 2D Material bool vertexAlpha = color.getAlpha() < 255; //2D uses textureAlpa*vertexAlpha 3D not.. if (useAlphaChannelOfTexture && texture && texture->hasAlpha()) { Material.mat2D.MaterialType = EMT_TRANSPARENT_ALPHA_CHANNEL; } else if (vertexAlpha) { Material.mat2D.MaterialType = EMT_TRANSPARENT_VERTEX_ALPHA; } else { Material.mat2D.MaterialType = EMT_SOLID; } Material.mat2D.ZBuffer = ECFN_DISABLED; Material.mat2D.ZWriteEnable = EZW_OFF; Material.mat2D.Lighting = false; Material.mat2D.setTexture(0, (video::ITexture*)texture); //used for text. so stay as sharp as possible (like HW Driver) bool mip = false; const SMaterial& currentMaterial = (!OverrideMaterial2DEnabled) ? InitMaterial2D : OverrideMaterial2D; mip = currentMaterial.TextureLayer[0].Texture && currentMaterial.TextureLayer[0].BilinearFilter; Material.mat2D.setFlag(video::EMF_BILINEAR_FILTER, mip); //switch to 2D Matrix Stack [ Material set Texture Matrix ] TransformationStack = 1; //2D GUI Matrix if (!(TransformationFlag[TransformationStack][ETS_PROJECTION] & ETF_VALID)) { const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); core::matrix4 m(core::matrix4::EM4CONST_NOTHING); m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0f, 1.0f); m.setTranslation(core::vector3df(-1.f, 1.f, 0)); setTransform(ETS_PROJECTION, m); m.makeIdentity(); setTransform(ETS_WORLD, m); if (mip) m.setTranslation(core::vector3df(IRRLICHT_2D_TEXEL_OFFSET, IRRLICHT_2D_TEXEL_OFFSET, 0.0f)); setTransform(ETS_VIEW, m); //Tweak 2D Pixel Center for openGL compatibility (guessing) //buildNDCToDCMatrix(Transformation_ETS_CLIPSCALE[TransformationStack], ViewPort, mip ? (IRRLICHT_2D_TEXEL_OFFSET) * 0.5f : 0.f); } //compare if (compare_2d_material(Material.org, Material.mat2D)) { setMaterial(Material.mat2D); } if (CurrentShader) { CurrentShader->setPrimitiveColor(color.color); CurrentShader->setTLFlag(EyeSpace.TL_Flag); if (EyeSpace.TL_Flag & TL_SCISSOR) CurrentShader->setScissor(Scissor); } } void CBurningVideoDriver::setRenderStates3DMode() { //restoreRenderStates3DMode //setMaterial(Material.save3D); //switch to 3D Matrix Stack TransformationStack = 0; } //! draws a vertex primitive list in 2d void CBurningVideoDriver::draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::draw2DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); bool useAlphaChannelOfTexture = false; video::SColor color(0xFFFFFFFF); switch (Material.org.MaterialType) { case EMT_TRANSPARENT_ALPHA_CHANNEL: useAlphaChannelOfTexture = true; break; case EMT_TRANSPARENT_VERTEX_ALPHA: color.setAlpha(127); break; default: break; } setRenderStates2DMode(color, Material.org.getTexture(0), useAlphaChannelOfTexture); drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); setRenderStates3DMode(); } //setup a quad #if defined(SOFTWARE_DRIVER_2_2D_AS_3D) //! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted. void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::position2d& destPos, const core::rect& sourceRect, const core::rect* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; if (!sourceRect.isValid()) return; // clip these coordinates core::rect targetRect(destPos, sourceRect.getSize()); if (clipRect) { targetRect.clipAgainst(*clipRect); if (targetRect.getWidth() < 0 || targetRect.getHeight() < 0) return; } const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); targetRect.clipAgainst(core::rect(0, 0, (s32)renderTargetSize.Width, (s32)renderTargetSize.Height)); if (targetRect.getWidth() < 0 || targetRect.getHeight() < 0) return; // ok, we've clipped everything. // now draw it. const core::dimension2d sourceSize(targetRect.getSize()); const core::position2d sourcePos(sourceRect.UpperLeftCorner + (targetRect.UpperLeftCorner - destPos)); const core::dimension2d& tex_orgsize = texture->getOriginalSize(); const f32 invW = 1.f / static_cast(tex_orgsize.Width); const f32 invH = 1.f / static_cast(tex_orgsize.Height); const core::rect tcoords( sourcePos.X * invW, sourcePos.Y * invH, (sourcePos.X + sourceSize.Width) * invW, (sourcePos.Y + sourceSize.Height) * invH); Quad2DVertices[0].Color = color; Quad2DVertices[1].Color = color; Quad2DVertices[2].Color = color; Quad2DVertices[3].Color = color; Quad2DVertices[0].Pos = core::vector3df((f32)targetRect.UpperLeftCorner.X, (f32)targetRect.UpperLeftCorner.Y, 0.0f); Quad2DVertices[1].Pos = core::vector3df((f32)targetRect.LowerRightCorner.X, (f32)targetRect.UpperLeftCorner.Y, 0.0f); Quad2DVertices[2].Pos = core::vector3df((f32)targetRect.LowerRightCorner.X, (f32)targetRect.LowerRightCorner.Y, 0.0f); Quad2DVertices[3].Pos = core::vector3df((f32)targetRect.UpperLeftCorner.X, (f32)targetRect.LowerRightCorner.Y, 0.0f); Quad2DVertices[0].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[1].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[2].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); Quad2DVertices[3].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); setRenderStates2DMode(color, texture, useAlphaChannelOfTexture); drawVertexPrimitiveList(Quad2DVertices, 4, quad_triangle_indexList, 2, EVT_STANDARD, scene::EPT_TRIANGLES, EIT_16BIT); setRenderStates3DMode(); } //! Draws a part of the texture into the rectangle. void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::rect& destRect, const core::rect& sourceRect, const core::rect* clipRect, const video::SColor* const colors, bool useAlphaChannelOfTexture) { const core::dimension2d& st = texture->getOriginalSize(); const f32 invW = 1.f / static_cast(st.Width); const f32 invH = 1.f / static_cast(st.Height); const core::rect tcoords( sourceRect.UpperLeftCorner.X * invW, sourceRect.UpperLeftCorner.Y * invH, sourceRect.LowerRightCorner.X * invW, sourceRect.LowerRightCorner.Y * invH); const video::SColor temp[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; const video::SColor* const useColor = colors ? colors : temp; Quad2DVertices[0].Color = useColor[0]; Quad2DVertices[1].Color = useColor[3]; Quad2DVertices[2].Color = useColor[2]; Quad2DVertices[3].Color = useColor[1]; Quad2DVertices[0].Pos = core::vector3df((f32)destRect.UpperLeftCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f); Quad2DVertices[1].Pos = core::vector3df((f32)destRect.LowerRightCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f); Quad2DVertices[2].Pos = core::vector3df((f32)destRect.LowerRightCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f); Quad2DVertices[3].Pos = core::vector3df((f32)destRect.UpperLeftCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f); Quad2DVertices[0].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[1].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[2].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); Quad2DVertices[3].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); if (clipRect) { if (!clipRect->isValid()) return; //glEnable(GL_SCISSOR_TEST); EyeSpace.TL_Flag |= TL_SCISSOR; setScissor(clipRect->UpperLeftCorner.X, clipRect->UpperLeftCorner.Y,//renderTargetSize.Height - clipRect->LowerRightCorner.Y clipRect->getWidth(), clipRect->getHeight()); } video::SColor alphaTest; alphaTest.color = useColor[0].color & useColor[0].color & useColor[0].color & useColor[0].color; setRenderStates2DMode(alphaTest,texture, useAlphaChannelOfTexture); drawVertexPrimitiveList(Quad2DVertices, 4, quad_triangle_indexList, 2, EVT_STANDARD, scene::EPT_TRIANGLES, EIT_16BIT); if (clipRect) EyeSpace.TL_Flag &= ~TL_SCISSOR; setRenderStates3DMode(); } //!Draws an 2d rectangle with a gradient. void CBurningVideoDriver::draw2DRectangle(const core::rect& position, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect* clip) { core::rect pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; Quad2DVertices[0].Color = colorLeftUp; Quad2DVertices[1].Color = colorRightUp; Quad2DVertices[2].Color = colorRightDown; Quad2DVertices[3].Color = colorLeftDown; Quad2DVertices[0].Pos = core::vector3df((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f); Quad2DVertices[1].Pos = core::vector3df((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f); Quad2DVertices[2].Pos = core::vector3df((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f); Quad2DVertices[3].Pos = core::vector3df((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f); Quad2DVertices[0].TCoords.X = 0.f; Quad2DVertices[0].TCoords.Y = 0.f; Quad2DVertices[1].TCoords.X = 0.f; Quad2DVertices[1].TCoords.Y = 0.f; Quad2DVertices[2].TCoords.X = 0.f; Quad2DVertices[3].TCoords.Y = 0.f; Quad2DVertices[3].TCoords.X = 0.f; Quad2DVertices[3].TCoords.Y = 0.f; video::SColor alphaTest; alphaTest.color = colorLeftUp.color & colorRightUp.color & colorRightDown.color & colorLeftDown.color; setRenderStates2DMode(alphaTest, 0, 0); drawVertexPrimitiveList(Quad2DVertices, 4, quad_triangle_indexList, 2, EVT_STANDARD, scene::EPT_TRIANGLES, EIT_16BIT); setRenderStates3DMode(); } #endif // SOFTWARE_DRIVER_2_2D_AS_3D //! Draws a 2d line. void CBurningVideoDriver::draw2DLine(const core::position2d& start, const core::position2d& end, SColor color) { drawLine(RenderTargetSurface, start, end, color); } //! Draws a pixel void CBurningVideoDriver::drawPixel(u32 x, u32 y, const SColor& color) { RenderTargetSurface->setPixel(x, y, color, true); } //! Only used by the internal engine. Used to notify the driver that //! the window was resized. void CBurningVideoDriver::OnResize(const core::dimension2d& size) { // make sure width and height are multiples of 2 core::dimension2d realSize(size); /* if (realSize.Width % 2) realSize.Width += 1; if (realSize.Height % 2) realSize.Height += 1; */ if (ScreenSize != realSize) { if (ViewPort.getWidth() == (s32)ScreenSize.Width && ViewPort.getHeight() == (s32)ScreenSize.Height) { ViewPort.UpperLeftCorner.X = 0; ViewPort.UpperLeftCorner.Y = 0; ViewPort.LowerRightCorner.X = realSize.Width; ViewPort.LowerRightCorner.X = realSize.Height; } ScreenSize = realSize; bool resetRT = (RenderTargetSurface == BackBuffer); if (BackBuffer) BackBuffer->drop(); BackBuffer = new CImage(SOFTWARE_DRIVER_2_RENDERTARGET_COLOR_FORMAT, realSize); if (resetRT) setRenderTargetImage2(BackBuffer); } } //! returns the current render target size const core::dimension2d& CBurningVideoDriver::getCurrentRenderTargetSize() const { return (RenderTargetSurface == BackBuffer) ? ScreenSize : RenderTargetSize; } //! Draws a 3d line. void CBurningVideoDriver::draw3DLine(const core::vector3df& start, const core::vector3df& end, SColor color_start) { SColor color_end = color_start; VertexCache.primitiveHasVertex = 2; VertexCache.vType = E4VT_LINE; s4DVertex* v = Clipper.data; transform_calc(ETS_PROJ_MODEL_VIEW); const core::matrix4* matrix = Transformation[TransformationStack]; matrix[ETS_PROJ_MODEL_VIEW].transformVect(&v[s4DVertex_ofs(0)].Pos.x, start); matrix[ETS_PROJ_MODEL_VIEW].transformVect(&v[s4DVertex_ofs(1)].Pos.x, end); #if BURNING_MATERIAL_MAX_COLORS > 0 v[s4DVertex_ofs(0)].Color[0].setA8R8G8B8(color_start.color); v[s4DVertex_ofs(1)].Color[0].setA8R8G8B8(color_end.color); #endif size_t has_vertex_run; for (has_vertex_run = 0; has_vertex_run < VertexCache.primitiveHasVertex; has_vertex_run += 1) { v[s4DVertex_ofs(has_vertex_run)].flag = (u32)(VertexCache.vSize[VertexCache.vType].Format); v[s4DVertex_proj(has_vertex_run)].flag = v[s4DVertex_ofs(has_vertex_run)].flag; } size_t vOut; // vertices count per line vOut = clipToFrustum(VertexCache.primitiveHasVertex); if (vOut < VertexCache.primitiveHasVertex) return; // to DC Space, project homogenous vertex ndc_2_dc_and_project(v + s4DVertex_proj(0), v+ s4DVertex_ofs(0), s4DVertex_ofs(vOut)); // unproject vertex color #if 0 #if BURNING_MATERIAL_MAX_COLORS > 0 for (g = 0; g != vOut; g += 2) { v[g + 1].Color[0].setA8R8G8B8(color.color); } #endif #endif IBurningShader* shader = 0; if (CurrentShader && CurrentShader->canWireFrame()) shader = CurrentShader; else shader = BurningShader[ETR_TEXTURE_GOURAUD_WIRE]; shader = BurningShader[ETR_TEXTURE_GOURAUD_WIRE]; shader->pushEdgeTest(1, 0, 1); shader->setRenderTarget(RenderTargetSurface, ViewPort, Interlaced); for (has_vertex_run = 0; (has_vertex_run + VertexCache.primitiveHasVertex) <= vOut; has_vertex_run += 1) { shader->drawLine(v + s4DVertex_proj(has_vertex_run), v + s4DVertex_proj(has_vertex_run+1)); } shader->popEdgeTest(); } //! \return Returns the name of the video driver. Example: In case of the DirectX8 //! driver, it would return "Direct3D8.1". const wchar_t* CBurningVideoDriver::getName() const { #ifdef BURNINGVIDEO_RENDERER_BEAUTIFUL return L"Burning's Video 0.52 beautiful"; #elif defined ( BURNINGVIDEO_RENDERER_ULTRA_FAST ) return L"Burning's Video 0.52 ultra fast"; #elif defined ( BURNINGVIDEO_RENDERER_FAST ) return L"Burning's Video 0.52 fast"; #elif defined ( BURNINGVIDEO_RENDERER_CE ) return L"Burning's Video 0.52 CE"; #else return L"Burning's Video 0.52"; #endif } //! Returns the graphics card vendor name. core::stringc CBurningVideoDriver::getVendorInfo() { return "Burning's Video: Ing. Thomas Alten (c) 2006-2020"; } //! Returns type of video driver E_DRIVER_TYPE CBurningVideoDriver::getDriverType() const { return EDT_BURNINGSVIDEO; } //! returns color format ECOLOR_FORMAT CBurningVideoDriver::getColorFormat() const { return BackBuffer ? BackBuffer->getColorFormat() : CNullDriver::getColorFormat(); } //! Creates a render target texture. ITexture* CBurningVideoDriver::addRenderTargetTexture(const core::dimension2d& size, const io::path& name, const ECOLOR_FORMAT format #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) , const bool useStencil #endif ) { //IImage* img = createImage(SOFTWARE_DRIVER_2_RENDERTARGET_COLOR_FORMAT, size); //empty proxy image IImage* img = createImageFromData(format, size, 0, true, false); ITexture* tex = new CSoftwareTexture2(img, name, CSoftwareTexture2::IS_RENDERTARGET /*| CSoftwareTexture2::GEN_MIPMAP */, this); if ( img ) img->drop(); addTexture(tex); tex->drop(); return tex; } void CBurningVideoDriver::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil) { if ((flag & ECBF_COLOR) && RenderTargetSurface) image_fill(RenderTargetSurface, color, Interlaced); if ((flag & ECBF_DEPTH) && DepthBuffer) DepthBuffer->clear(depth, Interlaced); if ((flag & ECBF_STENCIL) && StencilBuffer) StencilBuffer->clear(stencil, Interlaced); } #if 0 void CBurningVideoDriver::saveBuffer() { static int shotCount = 0; char buf[256]; if (BackBuffer) { sprintf(buf, "shot/%04d_b.png", shotCount); writeImageToFile(BackBuffer, buf); } if (StencilBuffer) { CImage stencil(ECF_A8R8G8B8, StencilBuffer->getSize(), StencilBuffer->lock(), true, false); sprintf(buf, "shot/%04d_s.ppm", shotCount); writeImageToFile(&stencil, buf); } shotCount += 1; } #endif //! Returns an image created from the last rendered frame. IImage* CBurningVideoDriver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target) { if (target != video::ERT_FRAME_BUFFER) return 0; if (BackBuffer) { IImage* tmp = createImage(BackBuffer->getColorFormat(), BackBuffer->getDimension()); BackBuffer->copyTo(tmp); return tmp; } else return 0; } ITexture* CBurningVideoDriver::createDeviceDependentTexture(const io::path& name, IImage* image) { u32 flags = ((TextureCreationFlags & ETCF_CREATE_MIP_MAPS) ? CSoftwareTexture2::GEN_MIPMAP : 0) #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) | CSoftwareTexture2::GEN_MIPMAP_AUTO #else | ((TextureCreationFlags & ETCF_AUTO_GENERATE_MIP_MAPS) ? CSoftwareTexture2::GEN_MIPMAP_AUTO : 0) #endif | ((TextureCreationFlags & ETCF_ALLOW_NON_POWER_2) ? CSoftwareTexture2::ALLOW_NPOT : 0) #if defined(IRRLICHT_sRGB) | ((TextureCreationFlags & ETCF_IMAGE_IS_LINEAR) ? CSoftwareTexture2::IMAGE_IS_LINEAR : 0) | ((TextureCreationFlags & ETCF_TEXTURE_IS_LINEAR) ? CSoftwareTexture2::TEXTURE_IS_LINEAR : 0) #endif ; CSoftwareTexture2* texture = new CSoftwareTexture2(image, name, flags, this); return texture; } ITexture* CBurningVideoDriver::createDeviceDependentTextureCubemap(const io::path& name, const core::array& image) { return 0; } //! Returns the maximum amount of primitives (mostly vertices) which //! the device is able to render with one drawIndexedTriangleList //! call. u32 CBurningVideoDriver::getMaximalPrimitiveCount() const { return 0x7FFFFFFF; } //! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do //! this: First, draw all geometry. Then use this method, to draw the shadow //! volume. Next use IVideoDriver::drawStencilShadow() to visualize the shadow. void CBurningVideoDriver::drawStencilShadowVolume(const core::array& triangles, bool zfail, u32 debugDataVisible) { const u32 count = triangles.size(); if (!StencilBuffer || !count) return; Material.org.MaterialType = video::EMT_SOLID; Material.org.Lighting = false; Material.org.ZWriteEnable = video::EZW_OFF; Material.org.ZBuffer = ECFN_LESS; CurrentShader = BurningShader[ETR_STENCIL_SHADOW]; CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort, Interlaced); CurrentShader->pushEdgeTest(Material.org.Wireframe, 0, 0); //setMaterial EyeSpace.TL_Flag &= ~(TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP); CurrentShader->setTLFlag(EyeSpace.TL_Flag); //glStencilMask(~0); //glStencilFunc(GL_ALWAYS, 0, ~0); //glEnable(GL_DEPTH_CLAMP); if (zfail) { Material.org.BackfaceCulling = false; Material.org.FrontfaceCulling = true; Material.CullFlag = CULL_FRONT | CULL_INVISIBLE; CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_INCR, StencilOp_KEEP); drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE) E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE) E4IT_NONE); Material.org.BackfaceCulling = true; Material.org.FrontfaceCulling = false; Material.CullFlag = CULL_BACK | CULL_INVISIBLE; CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_DECR, StencilOp_KEEP); drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE) E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE) E4IT_NONE); } else // zpass { Material.org.BackfaceCulling = true; Material.org.FrontfaceCulling = false; Material.CullFlag = CULL_BACK | CULL_INVISIBLE; CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_KEEP, StencilOp_INCR); drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE) E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE) E4IT_NONE); Material.org.BackfaceCulling = false; Material.org.FrontfaceCulling = true; Material.CullFlag = CULL_FRONT | CULL_INVISIBLE; CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_KEEP, StencilOp_DECR); drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE) E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE) E4IT_NONE); } //glDisable(GL_DEPTH_CLAMP); } //! Fills the stencil shadow with color. After the shadow volume has been drawn //! into the stencil buffer using IVideoDriver::drawStencilShadowVolume(), use this //! to draw the color of the shadow. void CBurningVideoDriver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge, video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge) { if (!StencilBuffer) return; // draw a shadow rectangle covering the entire screen using stencil buffer const u32 h = RenderTargetSurface->getDimension().Height; const u32 w = RenderTargetSurface->getDimension().Width; const bool bit32 = RenderTargetSurface->getColorFormat() == ECF_A8R8G8B8; const tVideoSample alpha = extractAlpha(leftUpEdge.color) >> (bit32 ? 0 : 3); const tVideoSample src = bit32 ? leftUpEdge.color : video::A8R8G8B8toA1R5G5B5(leftUpEdge.color); interlace_scanline_data line; for (line.y = 0; line.y < h; line.y += SOFTWARE_DRIVER_2_STEP_Y) { interlace_scanline { tVideoSample * dst = (tVideoSample*)RenderTargetSurface->getData() + (line.y * w); const tStencilSample* stencil = (tStencilSample*)StencilBuffer->lock() + (line.y * w); if (bit32) { for (u32 x = 0; x < w; x += SOFTWARE_DRIVER_2_STEP_X) { if (stencil[x]) dst[x] = PixelBlend32(dst[x], src, alpha); } } else { for (u32 x = 0; x < w; x += SOFTWARE_DRIVER_2_STEP_X) { if (stencil[x]) dst[x] = PixelBlend16(dst[x], src, alpha); } } } } if (clearStencilBuffer) StencilBuffer->clear(0, Interlaced); } core::dimension2du CBurningVideoDriver::getMaxTextureSize() const { return core::dimension2du(SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE, SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE); } bool CBurningVideoDriver::queryTextureFormat(ECOLOR_FORMAT format) const { return format == SOFTWARE_DRIVER_2_RENDERTARGET_COLOR_FORMAT || format == SOFTWARE_DRIVER_2_TEXTURE_COLOR_FORMAT; } #if !defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) bool CBurningVideoDriver::needsTransparentRenderPass(const irr::video::SMaterial& material) const { return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation(); // || material.isTransparent(); } #endif s32 CBurningVideoDriver::addShaderMaterial(const c8* vertexShaderProgram, const c8* pixelShaderProgram, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { s32 materialID = -1; IBurningShader* shader = new IBurningShader( this, materialID, vertexShaderProgram, 0, video::EVST_VS_1_1, pixelShaderProgram, 0, video::EPST_PS_1_1, 0, 0, EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, callback, baseMaterial, userData); shader->drop(); return materialID; } //! Adds a new material renderer to the VideoDriver, based on a high level shading language. s32 CBurningVideoDriver::addHighLevelShaderMaterial( const c8* vertexShaderProgram, const c8* vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, const c8* pixelShaderProgram, const c8* pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, const c8* geometryShaderProgram, const c8* geometryShaderEntryPointName, E_GEOMETRY_SHADER_TYPE gsCompileTarget, scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType, u32 verticesOut, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) , E_GPU_SHADING_LANGUAGE shadingLang #endif ) { s32 materialID = -1; IBurningShader* shader = new IBurningShader( this, materialID, vertexShaderProgram, vertexShaderEntryPointName, vsCompileTarget, pixelShaderProgram, pixelShaderEntryPointName, psCompileTarget, geometryShaderProgram, geometryShaderEntryPointName, gsCompileTarget, inType, outType, verticesOut, callback, baseMaterial, userData); shader->drop(); return materialID; } void CBurningVideoDriver::setFallback_Material(E_MATERIAL_TYPE fallback_MaterialType) { //this should be in material.... Material.Fallback_MaterialType = fallback_MaterialType; } void CBurningVideoDriver::setBasicRenderStates(const SMaterial& material, const SMaterial& lastMaterial, bool resetAllRenderstates) { } //! Return an index constant for the vertex shader based on a name. s32 CBurningVideoDriver::getVertexShaderConstantID(const c8* name) { return -1; } bool CBurningVideoDriver::setVertexShaderConstant(s32 index, const f32* floats, int count) { return true; } bool CBurningVideoDriver::setVertexShaderConstant(s32 index, const s32* ints, int count) { return true; } bool CBurningVideoDriver::setVertexShaderConstant(s32 index, const u32* ints, int count) { return true; } void CBurningVideoDriver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) { } //! Return an index constant for the pixel shader based on a name. s32 CBurningVideoDriver::getPixelShaderConstantID(const c8* name) { return -1; } bool CBurningVideoDriver::setPixelShaderConstant(s32 index, const f32* floats, int count) { return false; } bool CBurningVideoDriver::setPixelShaderConstant(s32 index, const s32* ints, int count) { return false; } bool CBurningVideoDriver::setPixelShaderConstant(s32 index, const u32* ints, int count) { return false; } void CBurningVideoDriver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount = 1) { } //! Get pointer to the IVideoDriver interface /** \return Pointer to the IVideoDriver interface */ IVideoDriver* CBurningVideoDriver::getVideoDriver() { return this; } } // end namespace video } // end namespace irr #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ namespace irr { namespace video { //! creates a video driver IVideoDriver* createBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter) { #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ return new CBurningVideoDriver(params, io, presenter); #else return 0; #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ } } // end namespace video } // end namespace irr