// Copyright (C) 2002-2007 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #ifndef __IRR_MATH_H_INCLUDED__ #define __IRR_MATH_H_INCLUDED__ #include "IrrCompileConfig.h" #include "irrTypes.h" #include #if defined(_IRR_SOLARIS_PLATFORM_) || defined(__BORLANDC__) || defined (__BCPLUSPLUS__) #define sqrtf(X) (f32)sqrt((f64)(X)) #define sinf(X) (f32)sin((f64)(X)) #define cosf(X) (f32)cos((f64)(X)) #define ceilf(X) (f32)ceil((f64)(X)) #define floorf(X) (f32)floor((f64)(X)) #define powf(X,Y) (f32)pow((f64)(X),(f64)(Y)) #define fmodf(X,Y) (f32)fmod((f64)(X),(f64)(Y)) #define fabsf(X) (f32)fabs((f64)(X)) #endif namespace irr { namespace core { //! Rounding error constant often used when comparing f32 values. #ifdef IRRLICHT_FAST_MATH const f32 ROUNDING_ERROR_32 = 0.00005f; const f64 ROUNDING_ERROR_64 = 0.000005f; #else const f32 ROUNDING_ERROR_32 = 0.000001f; const f64 ROUNDING_ERROR_64 = 0.00000001f; #endif //! Constant for PI. const f32 PI = 3.14159265359f; //! Constant for reciprocal of PI. const f32 RECIPROCAL_PI = 1.0f/PI; //! Constant for half of PI. const f32 HALF_PI = PI/2.0f; //! Constant for 64bit PI. const f64 PI64 = 3.1415926535897932384626433832795028841971693993751; //! Constant for 64bit reciprocal of PI. const f64 RECIPROCAL_PI64 = 1.0/PI64; //! 32bit Constant for converting from degrees to radians const f32 DEGTORAD = PI / 180.0f; //! 32bit constant for converting from radians to degrees (formally known as GRAD_PI) const f32 RADTODEG = 180.0f / PI; //! 64bit constant for converting from degrees to radians (formally known as GRAD_PI2) const f64 DEGTORAD64 = PI64 / 180.0; //! 64bit constant for converting from radians to degrees const f64 RADTODEG64 = 180.0 / PI64; //! returns minimum of two values. Own implementation to get rid of the STL (VS6 problems) template inline const T& min_(const T& a, const T& b) { return a < b ? a : b; } //! returns minimum of three values. Own implementation to get rid of the STL (VS6 problems) template inline const T& min_(const T& a, const T& b, const T& c) { return a < b ? min_(a, c) : min_(b, c); } //! returns maximum of two values. Own implementation to get rid of the STL (VS6 problems) template inline const T& max_(const T& a, const T& b) { return a < b ? b : a; } //! returns maximum of three values. Own implementation to get rid of the STL (VS6 problems) template inline const T& max_(const T& a, const T& b, const T& c) { return a < b ? max_(b, c) : max_(a, c); } //! returns abs of two values. Own implementation to get rid of STL (VS6 problems) template inline T abs_(const T& a) { return a < (T)0 ? -a : a; } //! returns linear interpolation of a and b with ratio t //! \return: a if t==0, b if t==1, and the linear interpolation else template inline T lerp(const T& a, const T& b, const f32 t) { return (a*(1.f-t)) + (b*t); } //! clamps a value between low and high template inline const T clamp (const T& value, const T& low, const T& high) { return min_ (max_(value,low), high); } //! returns if a equals b, taking possible rounding errors into account inline bool equals(const f32 a, const f32 b, const f32 tolerance = ROUNDING_ERROR_32) { return (a + tolerance >= b) && (a - tolerance <= b); } //! returns if a equals b, taking possible rounding errors into account inline bool equals(const s32 a, const s32 b, const s32 tolerance = 0) { return (a + tolerance >= b) && (a - tolerance <= b); } //! returns if a equals b, taking possible rounding errors into account inline bool equals(const u32 a, const u32 b, const u32 tolerance = 0) { return (a + tolerance >= b) && (a - tolerance <= b); } //! returns if a equals zero, taking rounding errors into account inline bool iszero(const f32 a, const f32 tolerance = ROUNDING_ERROR_32) { return fabsf ( a ) <= tolerance; } //! returns if a equals zero, taking rounding errors into account inline bool iszero(const s32 a, const s32 tolerance = 0) { return ( a & 0x7ffffff ) <= tolerance; } //! returns if a equals zero, taking rounding errors into account inline bool iszero(const u32 a, const u32 tolerance = 0) { return a <= tolerance; } inline s32 s32_min ( s32 a, s32 b) { s32 mask = (a - b) >> 31; return (a & mask) | (b & ~mask); } inline s32 s32_max ( s32 a, s32 b) { s32 mask = (a - b) >> 31; return (b & mask) | (a & ~mask); } inline s32 s32_clamp (s32 value, s32 low, s32 high) { return s32_min (s32_max(value,low), high); } /* float IEEE-754 bit represenation 0 0x00000000 1.0 0x3f800000 0.5 0x3f000000 3 0x40400000 +inf 0x7f800000 -inf 0xff800000 +NaN 0x7fc00000 or 0x7ff00000 in general: number = (sign ? -1:1) * 2^(exponent) * 1.(mantissa bits) */ #define F32_AS_S32(f) (*((s32 *) &(f))) #define F32_AS_U32(f) (*((u32 *) &(f))) #define F32_AS_U32_POINTER(f) ( ((u32 *) &(f))) #define F32_VALUE_0 0x00000000 #define F32_VALUE_1 0x3f800000 #define F32_SIGN_BIT 0x80000000U #define F32_EXPON_MANTISSA 0x7FFFFFFFU //! code is taken from IceFPU //! Integer representation of a floating-point value. #define IR(x) ((u32&)(x)) //! Absolute integer representation of a floating-point value #define AIR(x) (IR(x)&0x7fffffff) //! Floating-point representation of an integer value. #define FR(x) ((f32&)(x)) #define IEEE_1_0 0x3f800000 //!< integer representation of 1.0 #define IEEE_255_0 0x437f0000 //!< integer representation of 255.0 #ifdef IRRLICHT_FAST_MATH #define F32_LOWER_0(f) (F32_AS_U32(f) > F32_SIGN_BIT) #define F32_LOWER_EQUAL_0(f) (F32_AS_S32(f) <= F32_VALUE_0) #define F32_GREATER_0(f) (F32_AS_S32(f) > F32_VALUE_0) #define F32_GREATER_EQUAL_0(f) (F32_AS_U32(f) <= F32_SIGN_BIT) #define F32_EQUAL_1(f) (F32_AS_U32(f) == F32_VALUE_1) #define F32_EQUAL_0(f) ( (F32_AS_U32(f) & F32_EXPON_MANTISSA ) == F32_VALUE_0) // only same sign #define F32_A_GREATER_B(a,b) (F32_AS_S32((a)) > F32_AS_S32((b))) #else #define F32_LOWER_0(n) ((n) < 0.0f) #define F32_LOWER_EQUAL_0(n) ((n) <= 0.0f) #define F32_GREATER_0(n) ((n) > 0.0f) #define F32_GREATER_EQUAL_0(n) ((n) >= 0.0f) #define F32_EQUAL_1(n) ((n) == 1.0f) #define F32_EQUAL_0(n) ((n) == 0.0f) #define F32_A_GREATER_B(a,b) ((a) > (b)) #endif #ifndef REALINLINE #ifdef _MSC_VER #define REALINLINE __forceinline #else #define REALINLINE inline #endif #endif //! conditional set based on mask and arithmetic shift REALINLINE u32 if_c_a_else_b ( const s32 condition, const u32 a, const u32 b ) { return ( ( -condition >> 31 ) & ( a ^ b ) ) ^ b; } //! conditional set based on mask and arithmetic shift REALINLINE u32 if_c_a_else_0 ( const s32 condition, const u32 a ) { return ( -condition >> 31 ) & a; } /* if (condition) state |= m; else state &= ~m; */ REALINLINE void setbit ( u32 &state, s32 condition, u32 mask ) { // 0, or any postive to mask //s32 conmask = -condition >> 31; state ^= ( ( -condition >> 31 ) ^ state ) & mask; } inline f32 round_( f32 x ) { return floorf( x + 0.5f ); } REALINLINE void clearFPUException () { #ifdef IRRLICHT_FAST_MATH #ifdef feclearexcept feclearexcept(FE_ALL_EXCEPT); #elif defined(_MSC_VER) __asm fnclex; #elif defined(__GNUC__) && defined(__x86__) __asm__ __volatile__ ("fclex \n\t"); #else # warn clearFPUException not supported. #endif #endif } REALINLINE f32 reciprocal_squareroot(const f32 x) { #ifdef IRRLICHT_FAST_MATH // comes from Nvidia #if 1 u32 tmp = (u32(IEEE_1_0 << 1) + IEEE_1_0 - *(u32*)&x) >> 1; f32 y = *(f32*)&tmp; return y * (1.47f - 0.47f * x * y * y); #elif defined(_MSC_VER) // an sse2 version __asm { movss xmm0, x rsqrtss xmm0, xmm0 movss x, xmm0 } return x; #endif #else // no fast math return 1.f / sqrtf ( x ); #endif } REALINLINE f32 reciprocal ( const f32 f ) { #ifdef IRRLICHT_FAST_MATH //! i do not divide through 0.. (fpu expection) // instead set f to a high value to get a return value near zero.. // -1000000000000.f.. is use minus to stay negative.. // must test's here (plane.normal dot anything ) checks on <= 0.f return 1.f / f; //u32 x = (-(AIR(f) != 0 ) >> 31 ) & ( IR(f) ^ 0xd368d4a5 ) ^ 0xd368d4a5; //return 1.f / FR ( x ); #else // no fast math return 1.f / f; #endif } REALINLINE f32 reciprocal_approxim ( const f32 p ) { #ifdef IRRLICHT_FAST_MATH register u32 x = 0x7F000000 - IR ( p ); const f32 r = FR ( x ); return r * (2.0f - p * r); #else // no fast math return 1.f / p; #endif } REALINLINE s32 floor32(f32 x) { #ifdef IRRLICHT_FAST_MATH const f32 h = 0.5f; s32 t; #if defined(_MSC_VER) __asm { fld x fsub h fistp t } #elif defined(__GNUC__) __asm__ __volatile__ ( "fsub %2 \n\t" "fistpl %0" : "=m" (t) : "t" (x), "f" (h) : "st" ); #else # warn IRRLICHT_FAST_MATH not supported. return (s32) floorf ( x ); #endif return t; #else // no fast math return (s32) floorf ( x ); #endif } REALINLINE s32 ceil32 ( f32 x ) { #ifdef IRRLICHT_FAST_MATH const f32 h = 0.5f; s32 t; #if defined(_MSC_VER) __asm { fld x fadd h fistp t } #elif defined(__GNUC__) __asm__ __volatile__ ( "fadd %2 \n\t" "fistpl %0 \n\t" : "=m"(t) : "t"(x), "f"(h) : "st" ); #else # warn IRRLICHT_FAST_MATH not supported. return (s32) ceilf ( x ); #endif return t; #else // not fast math return (s32) ceilf ( x ); #endif } REALINLINE s32 round32(f32 x) { #if defined(IRRLICHT_FAST_MATH) s32 t; #if defined(_MSC_VER) __asm { fld x fistp t } #elif defined(__GNUC__) __asm__ __volatile__ ( "fistpl %0 \n\t" : "=m"(t) : "t"(x) : "st" ); #else # warn IRRLICHT_FAST_MATH not supported. return (s32) round_(x); #endif return t; #else // no fast math return (s32) round_(x); #endif } inline f32 f32_max3(const f32 a, const f32 b, const f32 c) { return a > b ? (a > c ? a : c) : (b > c ? b : c); } inline f32 f32_min3(const f32 a, const f32 b, const f32 c) { return a < b ? (a < c ? a : c) : (b < c ? b : c); } inline f32 fract ( f32 x ) { return x - floorf ( x ); } } // end namespace core } // end namespace irr #endif