// Copyright (C) 2002-2007 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #ifndef __IRR_POINT_3D_H_INCLUDED__ #define __IRR_POINT_3D_H_INCLUDED__ #include "irrMath.h" namespace irr { namespace core { //! 3d vector template class with lots of operators and methods. template class vector3d { public: #ifdef IRRLICHT_FAST_MATH vector3d() {}; #else vector3d() : X(0), Y(0), Z(0) {}; #endif vector3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {}; vector3d(const vector3d& other) : X(other.X), Y(other.Y), Z(other.Z) {}; // operators vector3d operator-() const { return vector3d(-X, -Y, -Z); } vector3d& operator=(const vector3d& other) { X = other.X; Y = other.Y; Z = other.Z; return *this; } vector3d operator+(const vector3d& other) const { return vector3d(X + other.X, Y + other.Y, Z + other.Z); } vector3d& operator+=(const vector3d& other) { X+=other.X; Y+=other.Y; Z+=other.Z; return *this; } vector3d operator-(const vector3d& other) const { return vector3d(X - other.X, Y - other.Y, Z - other.Z); } vector3d& operator-=(const vector3d& other) { X-=other.X; Y-=other.Y; Z-=other.Z; return *this; } vector3d operator*(const vector3d& other) const { return vector3d(X * other.X, Y * other.Y, Z * other.Z); } vector3d& operator*=(const vector3d& other) { X*=other.X; Y*=other.Y; Z*=other.Z; return *this; } vector3d operator*(const T v) const { return vector3d(X * v, Y * v, Z * v); } vector3d& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; } vector3d operator/(const vector3d& other) const { return vector3d(X / other.X, Y / other.Y, Z / other.Z); } vector3d& operator/=(const vector3d& other) { X/=other.X; Y/=other.Y; Z/=other.Z; return *this; } vector3d operator/(const T v) const { T i=(T)1.0/v; return vector3d(X * i, Y * i, Z * i); } vector3d& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; } bool operator<=(const vector3d&other) const { return X<=other.X && Y<=other.Y && Z<=other.Z;}; bool operator>=(const vector3d&other) const { return X>=other.X && Y>=other.Y && Z>=other.Z;}; bool operator<(const vector3d&other) const { return X(const vector3d&other) const { return X>other.X && Y>other.Y && Z>other.Z;}; //! use week float compare //bool operator==(const vector3d& other) const { return other.X==X && other.Y==Y && other.Z==Z; } //bool operator!=(const vector3d& other) const { return other.X!=X || other.Y!=Y || other.Z!=Z; } bool operator==(const vector3d& other) const { return core::equals(X, other.X) && core::equals(Y, other.Y) && core::equals(Z, other.Z); } bool operator!=(const vector3d& other) const { return !core::equals(X, other.X) || !core::equals(Y, other.Y) || !core::equals(Z, other.Z); } // functions //! returns if this vector equals the other one, taking floating point rounding errors into account bool equals(const vector3d& other, const f32 tolerance = ROUNDING_ERROR_32 ) const { return core::equals(X, other.X, tolerance) && core::equals(Y, other.Y, tolerance) && core::equals(Z, other.Z, tolerance); } void set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; } void set(const vector3d& p) { X=p.X; Y=p.Y; Z=p.Z;} //! Returns length of the vector. T getLength() const { return (T) sqrt(X*X + Y*Y + Z*Z); } //! Returns squared length of the vector. /** This is useful because it is much faster than getLength(). */ T getLengthSQ() const { return X*X + Y*Y + Z*Z; } //! Returns the dot product with another vector. T dotProduct(const vector3d& other) const { return X*other.X + Y*other.Y + Z*other.Z; } //! Returns distance from another point. /** Here, the vector is interpreted as point in 3 dimensional space. */ T getDistanceFrom(const vector3d& other) const { return vector3d(X - other.X, Y - other.Y, Z - other.Z).getLength(); } //! Returns squared distance from another point. /** Here, the vector is interpreted as point in 3 dimensional space. */ T getDistanceFromSQ(const vector3d& other) const { return vector3d(X - other.X, Y - other.Y, Z - other.Z).getLengthSQ(); } //! Calculates the cross product with another vector //! \param p: vector to multiply with. //! \return Crossproduct of this vector with p. vector3d crossProduct(const vector3d& p) const { return vector3d(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X); } //! Returns if this vector interpreted as a point is on a line between two other points. /** It is assumed that the point is on the line. */ //! \param begin: Beginning vector to compare between. //! \param end: Ending vector to compare between. //! \return True if this vector is between begin and end. False if not. bool isBetweenPoints(const vector3d& begin, const vector3d& end) const { T f = (end - begin).getLengthSQ(); return getDistanceFromSQ(begin) < f && getDistanceFromSQ(end) < f; } //! Normalizes the vector. In case of the 0 vector the result //! is still 0, otherwise the length of the vector will be 1. //! Todo: 64 Bit template doesnt work.. need specialized template vector3d& normalize() { T l = X*X + Y*Y + Z*Z; if (l == 0) return *this; l = (T) reciprocal_squareroot ( (f32)l ); X *= l; Y *= l; Z *= l; return *this; } //! Sets the length of the vector to a new value void setLength(T newlength) { normalize(); *this *= newlength; } //! Inverts the vector. void invert() { X *= -1.0f; Y *= -1.0f; Z *= -1.0f; } //! Rotates the vector by a specified number of degrees around the Y //! axis and the specified center. //! \param degrees: Number of degrees to rotate around the Y axis. //! \param center: The center of the rotation. void rotateXZBy(f64 degrees, const vector3d& center) { degrees *= DEGTORAD64; T cs = (T)cos(degrees); T sn = (T)sin(degrees); X -= center.X; Z -= center.Z; set(X*cs - Z*sn, Y, X*sn + Z*cs); X += center.X; Z += center.Z; } //! Rotates the vector by a specified number of degrees around the Z //! axis and the specified center. //! \param degrees: Number of degrees to rotate around the Z axis. //! \param center: The center of the rotation. void rotateXYBy(f64 degrees, const vector3d& center) { degrees *= DEGTORAD64; T cs = (T)cos(degrees); T sn = (T)sin(degrees); X -= center.X; Y -= center.Y; set(X*cs - Y*sn, X*sn + Y*cs, Z); X += center.X; Y += center.Y; } //! Rotates the vector by a specified number of degrees around the X //! axis and the specified center. //! \param degrees: Number of degrees to rotate around the X axis. //! \param center: The center of the rotation. void rotateYZBy(f64 degrees, const vector3d& center) { degrees *= DEGTORAD64; T cs = (T)cos(degrees); T sn = (T)sin(degrees); Z -= center.Z; Y -= center.Y; set(X, Y*cs - Z*sn, Y*sn + Z*cs); Z += center.Z; Y += center.Y; } //! Returns interpolated vector. /** \param other: other vector to interpolate between \param d: value between 0.0f and 1.0f. */ vector3d getInterpolated(const vector3d& other, const T d) const { const T inv = (T) 1.0 - d; return vector3d(other.X*inv + X*d, other.Y*inv + Y*d, other.Z*inv + Z*d); } //! Returns interpolated vector. ( quadratic ) /** \param v2: second vector to interpolate with \param v3: third vector to interpolate with \param d: value between 0.0f and 1.0f. */ vector3d getInterpolated_quadratic(const vector3d& v2, const vector3d& v3, const T d) const { // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d; const T inv = (T) 1.0 - d; const T mul0 = inv * inv; const T mul1 = (T) 2.0 * d * inv; const T mul2 = d * d; return vector3d ( X * mul0 + v2.X * mul1 + v3.X * mul2, Y * mul0 + v2.Y * mul1 + v3.Y * mul2, Z * mul0 + v2.Z * mul1 + v3.Z * mul2); } //! Gets the Y and Z rotations of a vector. /** Thanks to Arras on the Irrlicht forums to add this method. \return A vector representing the rotation in degrees of this vector. The Z component of the vector will always be 0. */ vector3d getHorizontalAngle() { vector3d angle; angle.Y = (T)atan2(X, Z); angle.Y *= (f32)RADTODEG64; if (angle.Y < 0.0f) angle.Y += 360.0f; if (angle.Y >= 360.0f) angle.Y -= 360.0f; f32 z1 = (f32)sqrt(X*X + Z*Z); angle.X = (T)atan2(z1, Y); angle.X *= (f32)RADTODEG64; angle.X -= 90.0f; if (angle.X < 0.0f) angle.X += 360.0f; if (angle.X >= 360.0f) angle.X -= 360.0f; return angle; } //! Fills an array of 4 values with the vector data (usually floats). /** Useful for setting in shader constants for example. The fourth value will always be 0. */ void getAs4Values(T* array) const { array[0] = X; array[1] = Y; array[2] = Z; array[3] = 0; } // member variables T X, Y, Z; }; //! Typedef for a f32 3d vector. typedef vector3d vector3df; //! Typedef for an integer 3d vector. typedef vector3d vector3di; template vector3d operator*(const S scalar, const vector3d& vector) { return vector*scalar; } } // end namespace core } // end namespace irr #endif