// Copyright (C) 2002-2009 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #ifndef __I_IRRLICHT_CREATION_PARAMETERS_H_INCLUDED__ #define __I_IRRLICHT_CREATION_PARAMETERS_H_INCLUDED__ #include "EDriverTypes.h" #include "dimension2d.h" namespace irr { class IEventReceiver; //! Structure for holding Irrlicht Device creation parameters. /** This structure is used in the createDeviceEx() function. */ struct SIrrlichtCreationParameters { //! Constructs a SIrrlichtCreationParameters structure with default values. SIrrlichtCreationParameters() : DriverType(video::EDT_BURNINGSVIDEO), WindowSize(core::dimension2d(800, 600)), Bits(16), ZBufferBits(16), Fullscreen(false), Stencilbuffer(false), Vsync(false), AntiAlias(0), WithAlphaChannel(false), Doublebuffer(true), IgnoreInput(false), Stereobuffer(false), HighPrecisionFPU(false), EventReceiver(0), WindowId(0), SDK_version_do_not_use(IRRLICHT_SDK_VERSION) { } SIrrlichtCreationParameters(const SIrrlichtCreationParameters& other) : SDK_version_do_not_use(IRRLICHT_SDK_VERSION) {*this = other;} SIrrlichtCreationParameters& operator=(const SIrrlichtCreationParameters& other) { DriverType = other.DriverType; WindowSize = other.WindowSize; Bits = other.Bits; ZBufferBits = other.ZBufferBits; Fullscreen = other.Fullscreen; Stencilbuffer = other.Stencilbuffer; Vsync = other.Vsync; AntiAlias = other.AntiAlias; WithAlphaChannel = other.WithAlphaChannel; Doublebuffer = other.Doublebuffer; IgnoreInput = other.IgnoreInput; Stereobuffer = other.Stereobuffer; HighPrecisionFPU = other.HighPrecisionFPU; EventReceiver = other.EventReceiver; WindowId = other.WindowId; return *this; } //! Type of the device. /** This can currently be video::EDT_NULL, video::EDT_SOFTWARE, video::EDT_BURNINGSVIDEO, video::EDT_DIRECT3D8, video::EDT_DIRECT3D9, and video::EDT_OPENGL. Default: Software. */ video::E_DRIVER_TYPE DriverType; //! Size of the window or the video mode in fullscreen mode. Default: 800x600 core::dimension2d WindowSize; //! Minimum Bits per pixel of the color buffer in fullscreen mode. Ignored if windowed mode. Default: 16. u8 Bits; //! Minimum Bits per pixel of the depth buffer. Default: 16. u8 ZBufferBits; //! Should be set to true if the device should run in fullscreen. /** Otherwise the device runs in windowed mode. Default: false. */ bool Fullscreen; //! Specifies if the stencil buffer should be enabled. /** Set this to true, if you want the engine be able to draw stencil buffer shadows. Note that not all devices are able to use the stencil buffer, hence it can be ignored during device creation. Without the stencil buffer no shadows will be drawn. Default: false. */ bool Stencilbuffer; //! Specifies vertical syncronisation. /** If set to true, the driver will wait for the vertical retrace period, otherwise not. May be silently ignored. Default: false */ bool Vsync; //! Specifies if the device should use fullscreen anti aliasing /** Makes sharp/pixelated edges softer, but requires more performance. Also, 2D elements might look blurred with this switched on. The resulting rendering quality also depends on the hardware and driver you are using, your program might look different on different hardware with this. So if you are writing a game/application with AntiAlias switched on, it would be a good idea to make it possible to switch this option off again by the user. The value is the maximal antialiasing factor requested for the device. The cretion method will automatically try smaller values if no window can be created with the diven value. Value one is usually the same as 0 (disabled), but might be a special value on some platforms. On D3D devices it maps to NONMASKABLE. Default value: 0 - disabled */ u8 AntiAlias; //! Whether the main framebuffer uses an alpha channel. /** In some situations it might be desireable to get a color buffer with an alpha channel, e.g. when rendering into a transparent window or overlay. If this flag is set the device tries to create a framebuffer with alpha channel. If this flag is set, only color buffers with alpha channel are considered. Otherwise, it depends on the actual hardware if the colorbuffer has an alpha channel or not. Default value: false */ bool WithAlphaChannel; //! Whether the main framebuffer uses doublebuffering. /** This should be usually enabled, in order to avoid render artifacts on the visible framebuffer. However, it might be useful to use only one buffer on very small devices. If no doublebuffering is available, the drivers will fall back to single buffers. Default value: true */ bool Doublebuffer; //! Specifies if the device should ignore input events /** This is only relevant when using external I/O handlers. External windows need to take care of this themselves. Currently only supported by X11. Default value: false */ bool IgnoreInput; //! Specifies if the device should use stereo buffers /** Some high-end gfx cards support two framebuffers for direct support of stereoscopic output devices. If this flag is set the device tries to create a stereo context. Currently only supported by OpenGL. Default value: false */ bool Stereobuffer; //! Specifies if the device should use high precision FPU setting /** This is only relevant for DirectX Devices, which switch to low FPU precision by default for performance reasons. However, this may lead to problems with the other computations of the application. In this case setting this flag to true should help - on the expense of performance loss, though. Default value: false */ bool HighPrecisionFPU; //! A user created event receiver. IEventReceiver* EventReceiver; //! Window Id. /** If this is set to a value other than 0, the Irrlicht Engine will be created in an already existing window. For windows, set this to the HWND of the window you want. The windowSize and FullScreen options will be ignored when using the WindowId parameter. Default this is set to 0. To make Irrlicht run inside the custom window, you still will have to draw Irrlicht on your own. You can use this loop, as usual: \code while (device->run()) { driver->beginScene(true, true, 0); smgr->drawAll(); driver->endScene(); } \endcode Instead of this, you can also simply use your own message loop using GetMessage, DispatchMessage and whatever. Calling IrrlichtDevice::run() will cause Irrlicht to dispatch messages internally too. You need not call Device->run() if you want to do your own message dispatching loop, but Irrlicht will not be able to fetch user input then and you have to do it on your own using the window messages, DirectInput, or whatever. Also, you'll have to increment the Irrlicht timer. An alternative, own message dispatching loop without device->run() would look like this: \code MSG msg; while (true) { if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { TranslateMessage(&msg); DispatchMessage(&msg); if (msg.message == WM_QUIT) break; } // increase virtual timer time device->getTimer()->tick(); // draw engine picture driver->beginScene(true, true, 0); smgr->drawAll(); driver->endScene(); } \endcode However, there is no need to draw the picture this often. Just do it how you like. */ void* WindowId; //! Don't use or change this parameter. /** Always set it to IRRLICHT_SDK_VERSION, which is done by default. This is needed for sdk version checks. */ const c8* const SDK_version_do_not_use; }; } // end namespace irr #endif