// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "IrrCompileConfig.h" #include "IBurningShader.h" #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ // compile flag for this file #undef USE_ZBUFFER #undef IPOL_Z #undef CMP_Z #undef WRITE_Z #undef IPOL_W #undef CMP_W #undef WRITE_W #undef SUBTEXEL #undef INVERSE_W #undef IPOL_C0 #undef IPOL_T0 #undef IPOL_T1 // define render case #ifdef BURNINGVIDEO_RENDERER_FAST #define SUBTEXEL #define INVERSE_W #else #define SUBTEXEL #define INVERSE_W #endif //#define USE_ZBUFFER #define IPOL_W //#define CMP_W //#define WRITE_W //#define IPOL_C0 #define IPOL_T0 //#define IPOL_T1 #if BURNING_MATERIAL_MAX_COLORS < 1 #undef IPOL_C0 #endif // apply global override #ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT #undef INVERSE_W #ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT #undef IPOL_W #endif #endif #ifndef SOFTWARE_DRIVER_2_SUBTEXEL #undef SUBTEXEL #endif #if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER ) #define IPOL_Z #ifdef CMP_W #undef CMP_W #define CMP_Z #endif #ifdef WRITE_W #undef WRITE_W #define WRITE_Z #endif #endif burning_namespace_start class CTRTextureGouraudNoZ2 : public IBurningShader { public: //! constructor CTRTextureGouraudNoZ2(CBurningVideoDriver* driver); //! draws an indexed triangle list virtual void drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c) IRR_OVERRIDE; virtual void OnSetMaterialBurning(const SBurningShaderMaterial& material) IRR_OVERRIDE; virtual bool canWireFrame() IRR_OVERRIDE { return true; } private: // fragment shader typedef void (CTRTextureGouraudNoZ2::* tFragmentShader) (); void fragment_linear(); void fragment_nearest(); tFragmentShader fragmentShader; }; //! constructor CTRTextureGouraudNoZ2::CTRTextureGouraudNoZ2(CBurningVideoDriver* driver) : IBurningShader(driver,EMT_SOLID) { #ifdef _DEBUG setDebugName("CTRTextureGouraudNoZ2"); #endif fragmentShader = &CTRTextureGouraudNoZ2::fragment_linear; } /*! */ void CTRTextureGouraudNoZ2::OnSetMaterialBurning(const SBurningShaderMaterial& material) { if (material.org.TextureLayer[0].BilinearFilter || material.org.TextureLayer[0].TrilinearFilter || material.org.TextureLayer[0].AnisotropicFilter ) { fragmentShader = &CTRTextureGouraudNoZ2::fragment_linear; } else { fragmentShader = &CTRTextureGouraudNoZ2::fragment_nearest; } } /*! */ void CTRTextureGouraudNoZ2::fragment_linear() { tVideoSample* dst; #ifdef USE_ZBUFFER fp24* z; #endif s32 xStart; s32 xEnd; s32 dx; #ifdef SUBTEXEL f32 subPixel; #endif #ifdef IPOL_Z f32 slopeZ; #endif #ifdef IPOL_W fp24 slopeW; #endif #ifdef IPOL_C0 sVec4 slopeC; #endif #ifdef IPOL_T0 sVec2 slopeT[BURNING_MATERIAL_MAX_TEXTURES]; #endif // apply top-left fill-convention, left xStart = fill_convention_left(line.x[0]); xEnd = fill_convention_right(line.x[1]); dx = xEnd - xStart; if (dx < 0) return; // slopes const f32 invDeltaX = fill_step_x(line.x[1] - line.x[0]); #ifdef IPOL_Z slopeZ = (line.z[1] - line.z[0]) * invDeltaX; #endif #ifdef IPOL_W slopeW = (line.w[1] - line.w[0]) * invDeltaX; #endif #ifdef IPOL_C0 slopeC = (line.c[1] - line.c[0]) * invDeltaX; #endif #ifdef IPOL_T0 slopeT[0] = (line.t[0][1] - line.t[0][0]) * invDeltaX; #endif #ifdef IPOL_T1 slopeT[1] = (line.t[1][1] - line.t[1][0]) * invDeltaX; #endif #ifdef SUBTEXEL subPixel = ((f32) xStart) - line.x[0]; #ifdef IPOL_Z line.z[0] += slopeZ * subPixel; #endif #ifdef IPOL_W line.w[0] += slopeW * subPixel; #endif #ifdef IPOL_C0 line.c[0] += slopeC * subPixel; #endif #ifdef IPOL_T0 line.t[0][0] += slopeT[0] * subPixel; #endif #ifdef IPOL_T1 line.t[1][0] += slopeT[1] * subPixel; #endif #endif SOFTWARE_DRIVER_2_CLIPCHECK; dst = (tVideoSample*)RenderTarget->getData() + (line.y * RenderTarget->getDimension().Width) + xStart; #ifdef USE_ZBUFFER z = (fp24*)DepthBuffer->lock() + (line.y * RenderTarget->getDimension().Width) + xStart; #endif f32 inversew = FIX_POINT_F32_MUL; tFixPoint tx0; tFixPoint ty0; tFixPoint r0, g0, b0; for (s32 i = 0; i <= dx; i += SOFTWARE_DRIVER_2_STEP_X) { //if test active only first pixel if ((0 == EdgeTestPass) & (i > line.x_edgetest)) break; #ifdef CMP_Z if (line.z[0] < z[i]) #endif #ifdef CMP_W if (line.w[0] >= z[i]) #endif if_scissor_test_x { #ifdef INVERSE_W inversew = fix_inverse32(line.w[0]); #endif tx0 = tofix(line.t[0][0].x,inversew); ty0 = tofix(line.t[0][0].y,inversew); //skybox //dst[i] = getTexel_plain ( &IT[0], tx0, ty0 ); getSample_texture(r0, g0, b0, IT + 0, tx0, ty0); dst[i] = fix_to_sample(r0, g0, b0); #ifdef WRITE_Z z[i] = line.z[0]; #endif #ifdef WRITE_W z[i] = line.w[0]; #endif } #ifdef IPOL_Z line.z[0] += slopeZ; #endif #ifdef IPOL_W line.w[0] += slopeW; #endif #ifdef IPOL_C0 line.c[0] += slopeC; #endif #ifdef IPOL_T0 line.t[0][0] += slopeT[0]; #endif #ifdef IPOL_T1 line.t[1][0] += slopeT[1]; #endif } } /*! */ void CTRTextureGouraudNoZ2::fragment_nearest() { tVideoSample* dst; #ifdef USE_ZBUFFER fp24* z; #endif s32 xStart; s32 xEnd; s32 dx; #ifdef SUBTEXEL f32 subPixel; #endif #ifdef IPOL_Z f32 slopeZ; #endif #ifdef IPOL_W fp24 slopeW; #endif #ifdef IPOL_C0 sVec4 slopeC; #endif #ifdef IPOL_T0 sVec2 slopeT[BURNING_MATERIAL_MAX_TEXTURES]; #endif // apply top-left fill-convention, left xStart = fill_convention_left(line.x[0]); xEnd = fill_convention_right(line.x[1]); dx = xEnd - xStart; if (dx < 0) return; // slopes const f32 invDeltaX = fill_step_x(line.x[1] - line.x[0]); #ifdef IPOL_Z slopeZ = (line.z[1] - line.z[0]) * invDeltaX; #endif #ifdef IPOL_W slopeW = (line.w[1] - line.w[0]) * invDeltaX; #endif #ifdef IPOL_C0 slopeC = (line.c[1] - line.c[0]) * invDeltaX; #endif #ifdef IPOL_T0 slopeT[0] = (line.t[0][1] - line.t[0][0]) * invDeltaX; #endif #ifdef IPOL_T1 slopeT[1] = (line.t[1][1] - line.t[1][0]) * invDeltaX; #endif #ifdef SUBTEXEL subPixel = ((f32)xStart) - line.x[0]; #ifdef IPOL_Z line.z[0] += slopeZ * subPixel; #endif #ifdef IPOL_W line.w[0] += slopeW * subPixel; #endif #ifdef IPOL_C0 line.c[0] += slopeC * subPixel; #endif #ifdef IPOL_T0 line.t[0][0] += slopeT[0] * subPixel; #endif #ifdef IPOL_T1 line.t[1][0] += slopeT[1] * subPixel; #endif #endif SOFTWARE_DRIVER_2_CLIPCHECK; dst = (tVideoSample*)RenderTarget->getData() + (line.y * RenderTarget->getDimension().Width) + xStart; #ifdef USE_ZBUFFER z = (fp24*)DepthBuffer->lock() + (line.y * RenderTarget->getDimension().Width) + xStart; #endif f32 inversew = FIX_POINT_F32_MUL; tFixPoint tx0; tFixPoint ty0; //tFixPoint r0, g0, b0; for (s32 i = 0; i <= dx; i += SOFTWARE_DRIVER_2_STEP_X) { #ifdef CMP_Z if (line.z[0] < z[i]) #endif #ifdef CMP_W if (line.w[0] >= z[i]) #endif //scissor_test_x { #ifdef INVERSE_W inversew = fix_inverse32(line.w[0]); #endif tx0 = tofix(line.t[0][0].x, inversew); ty0 = tofix(line.t[0][0].y, inversew); //skybox dst[i] = getTexel_plain(&IT[0], tx0, ty0); //getSample_texture ( r0, g0, b0, IT+0, tx0, ty0 ); //dst[i] = fix_to_sample( r0, g0, b0 ); #ifdef WRITE_Z z[i] = line.z[0]; #endif #ifdef WRITE_W z[i] = line.w[0]; #endif } #ifdef IPOL_Z line.z[0] += slopeZ; #endif #ifdef IPOL_W line.w[0] += slopeW; #endif #ifdef IPOL_C0 line.c[0] += slopeC; #endif #ifdef IPOL_T0 line.t[0][0] += slopeT[0]; #endif #ifdef IPOL_T1 line.t[1][0] += slopeT[1]; #endif } } void CTRTextureGouraudNoZ2::drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c) { // sort on height, y if (F32_A_GREATER_B(a->Pos.y, b->Pos.y)) swapVertexPointer(&a, &b); if (F32_A_GREATER_B(b->Pos.y, c->Pos.y)) swapVertexPointer(&b, &c); if (F32_A_GREATER_B(a->Pos.y, b->Pos.y)) swapVertexPointer(&a, &b); const f32 ca = c->Pos.y - a->Pos.y; const f32 ba = b->Pos.y - a->Pos.y; const f32 cb = c->Pos.y - b->Pos.y; // calculate delta y of the edges scan.invDeltaY[0] = fill_step_y(ca); scan.invDeltaY[1] = fill_step_y(ba); scan.invDeltaY[2] = fill_step_y(cb); if (F32_LOWER_EQUAL_0(scan.invDeltaY[0])) return; // find if the major edge is left or right aligned f32 temp[4]; temp[0] = a->Pos.x - c->Pos.x; temp[1] = -ca; temp[2] = b->Pos.x - a->Pos.x; temp[3] = ba; scan.left = (temp[0] * temp[3] - temp[1] * temp[2]) < 0.f ? 1 : 0; scan.right = 1 - scan.left; // calculate slopes for the major edge scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0]; scan.x[0] = a->Pos.x; #ifdef IPOL_Z scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0]; scan.z[0] = a->Pos.z; #endif #ifdef IPOL_W scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0]; scan.w[0] = a->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0]; scan.c[0] = a->Color[0]; #endif #ifdef IPOL_T0 scan.slopeT[0][0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0]; scan.t[0][0] = a->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT[1][0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0]; scan.t[1][0] = a->Tex[1]; #endif // top left fill convention y run s32 yStart; s32 yEnd; #ifdef SUBTEXEL f32 subPixel; #endif // rasterize upper sub-triangle if (F32_GREATER_0(scan.invDeltaY[1])) { // calculate slopes for top edge scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1]; scan.x[1] = a->Pos.x; #ifdef IPOL_Z scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1]; scan.z[1] = a->Pos.z; #endif #ifdef IPOL_W scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1]; scan.w[1] = a->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1]; scan.c[1] = a->Color[0]; #endif #ifdef IPOL_T0 scan.slopeT[0][1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1]; scan.t[0][1] = a->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT[1][1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1]; scan.t[1][1] = a->Tex[1]; #endif // apply top-left fill convention, top part yStart = fill_convention_top(a->Pos.y); yEnd = fill_convention_down(b->Pos.y); #ifdef SUBTEXEL subPixel = ((f32)yStart) - a->Pos.y; // correct to pixel center scan.x[0] += scan.slopeX[0] * subPixel; scan.x[1] += scan.slopeX[1] * subPixel; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0] * subPixel; scan.z[1] += scan.slopeZ[1] * subPixel; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0] * subPixel; scan.w[1] += scan.slopeW[1] * subPixel; #endif #ifdef IPOL_C0 scan.c[0] += scan.slopeC[0] * subPixel; scan.c[1] += scan.slopeC[1] * subPixel; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0] * subPixel; scan.t[0][1] += scan.slopeT[0][1] * subPixel; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0] * subPixel; scan.t[1][1] += scan.slopeT[1][1] * subPixel; #endif #endif // rasterize the edge scanlines line.x_edgetest = fill_convention_edge(scan.slopeX[scan.left]); for (line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y) { line.x[scan.left] = scan.x[0]; line.x[scan.right] = scan.x[1]; #ifdef IPOL_Z line.z[scan.left] = scan.z[0]; line.z[scan.right] = scan.z[1]; #endif #ifdef IPOL_W line.w[scan.left] = scan.w[0]; line.w[scan.right] = scan.w[1]; #endif #ifdef IPOL_C0 line.c[scan.left] = scan.c[0]; line.c[scan.right] = scan.c[1]; #endif #ifdef IPOL_T0 line.t[0][scan.left] = scan.t[0][0]; line.t[0][scan.right] = scan.t[0][1]; #endif #ifdef IPOL_T1 line.t[1][scan.left] = scan.t[1][0]; line.t[1][scan.right] = scan.t[1][1]; #endif // render a scanline if_interlace_scanline if_scissor_test_y (this->*fragmentShader) (); if (EdgeTestPass & edge_test_first_line) break; scan.x[0] += scan.slopeX[0]; scan.x[1] += scan.slopeX[1]; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0]; scan.z[1] += scan.slopeZ[1]; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0]; scan.w[1] += scan.slopeW[1]; #endif #ifdef IPOL_C0 scan.c[0] += scan.slopeC[0]; scan.c[1] += scan.slopeC[1]; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0]; scan.t[0][1] += scan.slopeT[0][1]; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0]; scan.t[1][1] += scan.slopeT[1][1]; #endif } } // rasterize lower sub-triangle if (F32_GREATER_0(scan.invDeltaY[2])) { // advance to middle point if (F32_GREATER_0(scan.invDeltaY[1])) { temp[0] = b->Pos.y - a->Pos.y; // dy scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0]; #ifdef IPOL_Z scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0]; #endif #ifdef IPOL_W scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0]; #endif #ifdef IPOL_C0 scan.c[0] = a->Color[0] + scan.slopeC[0] * temp[0]; #endif #ifdef IPOL_T0 scan.t[0][0] = a->Tex[0] + scan.slopeT[0][0] * temp[0]; #endif #ifdef IPOL_T1 scan.t[1][0] = a->Tex[1] + scan.slopeT[1][0] * temp[0]; #endif } // calculate slopes for bottom edge scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2]; scan.x[1] = b->Pos.x; #ifdef IPOL_Z scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2]; scan.z[1] = b->Pos.z; #endif #ifdef IPOL_W scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2]; scan.w[1] = b->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2]; scan.c[1] = b->Color[0]; #endif #ifdef IPOL_T0 scan.slopeT[0][1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2]; scan.t[0][1] = b->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT[1][1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2]; scan.t[1][1] = b->Tex[1]; #endif // apply top-left fill convention, top part yStart = fill_convention_top(b->Pos.y); yEnd = fill_convention_down(c->Pos.y); #ifdef SUBTEXEL subPixel = ((f32)yStart) - b->Pos.y; // correct to pixel center scan.x[0] += scan.slopeX[0] * subPixel; scan.x[1] += scan.slopeX[1] * subPixel; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0] * subPixel; scan.z[1] += scan.slopeZ[1] * subPixel; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0] * subPixel; scan.w[1] += scan.slopeW[1] * subPixel; #endif #ifdef IPOL_C0 scan.c[0] += scan.slopeC[0] * subPixel; scan.c[1] += scan.slopeC[1] * subPixel; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0] * subPixel; scan.t[0][1] += scan.slopeT[0][1] * subPixel; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0] * subPixel; scan.t[1][1] += scan.slopeT[1][1] * subPixel; #endif #endif // rasterize the edge scanlines line.x_edgetest = fill_convention_edge(scan.slopeX[scan.left]); for (line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y) { line.x[scan.left] = scan.x[0]; line.x[scan.right] = scan.x[1]; #ifdef IPOL_Z line.z[scan.left] = scan.z[0]; line.z[scan.right] = scan.z[1]; #endif #ifdef IPOL_W line.w[scan.left] = scan.w[0]; line.w[scan.right] = scan.w[1]; #endif #ifdef IPOL_C0 line.c[scan.left] = scan.c[0]; line.c[scan.right] = scan.c[1]; #endif #ifdef IPOL_T0 line.t[0][scan.left] = scan.t[0][0]; line.t[0][scan.right] = scan.t[0][1]; #endif #ifdef IPOL_T1 line.t[1][scan.left] = scan.t[1][0]; line.t[1][scan.right] = scan.t[1][1]; #endif // render a scanline if_interlace_scanline if_scissor_test_y (this->*fragmentShader) (); if (EdgeTestPass & edge_test_first_line) break; scan.x[0] += scan.slopeX[0]; scan.x[1] += scan.slopeX[1]; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0]; scan.z[1] += scan.slopeZ[1]; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0]; scan.w[1] += scan.slopeW[1]; #endif #ifdef IPOL_C0 scan.c[0] += scan.slopeC[0]; scan.c[1] += scan.slopeC[1]; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0]; scan.t[0][1] += scan.slopeT[0][1]; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0]; scan.t[1][1] += scan.slopeT[1][1]; #endif } } } burning_namespace_end #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ burning_namespace_start //! creates a flat triangle renderer IBurningShader* createTRTextureGouraudNoZ2(CBurningVideoDriver* driver) { // ETR_TEXTURE_GOURAUD_NOZ #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ return new CTRTextureGouraudNoZ2(driver); #else return 0; #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ } burning_namespace_end