/* This file is part of Warzone 2100. Copyright (C) 1999-2004 Eidos Interactive Copyright (C) 2005-2007 Warzone Resurrection Project Warzone 2100 is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Warzone 2100 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Warzone 2100; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /** \file * Render routines for 3D coloured and shaded transparency rendering. */ #include "lib/ivis_opengl/GLee.h" #include #include #include "lib/framework/frame.h" #include "lib/ivis_common/ivisdef.h" #include "lib/ivis_common/imd.h" #include "lib/ivis_common/rendmode.h" #include "lib/ivis_common/piefunc.h" #include "lib/ivis_common/tex.h" #include "lib/ivis_common/piedef.h" #include "lib/ivis_common/piestate.h" #include "lib/ivis_common/pieclip.h" #include "piematrix.h" #include "screen.h" #define SHADOW_END_DISTANCE (8000*8000) // Keep in sync with lighting.c:FOG_END #define VERTICES_PER_TRIANGLE 3 #define COLOUR_COMPONENTS 4 #define TEXCOORD_COMPONENTS 2 #define VERTEX_COMPONENTS 3 #define TRIANGLES_PER_TILE 2 #define VERTICES_PER_TILE (TRIANGLES_PER_TILE * VERTICES_PER_TRIANGLE) static GLubyte *aColour = NULL; static GLfloat *aTexCoord = NULL; static GLfloat *aVertex = NULL; static GLuint allocX = 0, allocY = 0; static size_t sizeColour = 0, sizeTexCoord = 0, sizeVertex = 0; extern BOOL drawing_interface; /* * Local Variables */ static unsigned int pieCount = 0; static unsigned int tileCount = 0; static unsigned int polyCount = 0; static BOOL lighting = false; static BOOL shadows = false; /* * Source */ void pie_BeginLighting(const Vector3f * light) { const float pos[4] = {light->x, light->y, light->z, 0.0f}; const float zero[4] = {0.0f, 0.0f, 0.0f, 0.0f}; const float ambient[4] = {0.3f, 0.3f, 0.3f, 1.0f}; const float diffuse[4] = {0.8f, 0.8f, 0.8f, 1.0f}; const float specular[4] = {1.0f, 1.0f, 1.0f, 1.0f}; glLightModelfv(GL_LIGHT_MODEL_AMBIENT, zero); glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_FALSE); glLightfv(GL_LIGHT0, GL_POSITION, pos); glLightfv(GL_LIGHT0, GL_AMBIENT, ambient); glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse); glLightfv(GL_LIGHT0, GL_SPECULAR, specular); glEnable(GL_LIGHT0); // lighting = true; shadows = true; } void pie_EndLighting(void) { shadows = false; lighting = false; } /*************************************************************************** * pie_Draw3dShape * * Project and render a pumpkin image to render surface * Will support zbuffering, texturing, coloured lighting and alpha effects * Avoids recalculating vertex projections for every poly ***************************************************************************/ typedef struct { float matrix[16]; iIMDShape* shape; int flag; int flag_data; Vector3f light; } shadowcasting_shape_t; typedef struct { float matrix[16]; iIMDShape* shape; int frame; PIELIGHT colour; PIELIGHT specular; int flag; int flag_data; } transluscent_shape_t; static shadowcasting_shape_t* scshapes = NULL; static unsigned int scshapes_size = 0; static unsigned int nb_scshapes = 0; static transluscent_shape_t* tshapes = NULL; static unsigned int tshapes_size = 0; static unsigned int nb_tshapes = 0; static void pie_Draw3DShape2(iIMDShape *shape, int frame, PIELIGHT colour, WZ_DECL_UNUSED PIELIGHT specular, int pieFlag, int pieFlagData) { Vector3f *pVertices, *pPixels, scrPoints[pie_MAX_VERTICES]; iIMDPoly *pPolys; BOOL light = lighting; pie_SetAlphaTest(true); /* Set tranlucency */ if (pieFlag & pie_ADDITIVE) { //Assume also translucent pie_SetFogStatus(false); pie_SetRendMode(REND_ADDITIVE_TEX); colour.byte.a = (UBYTE)pieFlagData; light = false; } else if (pieFlag & pie_TRANSLUCENT) { pie_SetFogStatus(false); pie_SetRendMode(REND_ALPHA_TEX); colour.byte.a = (UBYTE)pieFlagData; light = false; } else { if (pieFlag & pie_BUTTON) { pie_SetFogStatus(false); pie_SetDepthBufferStatus(DEPTH_CMP_LEQ_WRT_ON); } else { pie_SetFogStatus(true); } pie_SetRendMode(REND_GOURAUD_TEX); } if (light) { const float ambient[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; const float diffuse[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; const float specular[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; const float shininess = 10; glEnable(GL_LIGHTING); glEnable(GL_NORMALIZE); glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient); glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, diffuse); glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, specular); glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, shininess); } if (pieFlag & pie_RAISE) { pieFlagData = (shape->max.y * (pie_RAISE_SCALE - pieFlagData)) / pie_RAISE_SCALE; } pie_SetTexturePage(shape->texpage); //now draw the shape //rotate and project points from shape->points to scrPoints for (pVertices = shape->points, pPixels = scrPoints; pVertices < shape->points + shape->npoints; pVertices++, pPixels++) { float tempY = pVertices->y; if (pieFlag & pie_RAISE) { tempY = pVertices->y - pieFlagData; if (tempY < 0) tempY = 0; } else if ( (pieFlag & pie_HEIGHT_SCALED) && pVertices->y > 0 ) { tempY = (pVertices->y * pieFlagData) / pie_RAISE_SCALE; } pPixels->x = pVertices->x; pPixels->y = tempY; pPixels->z = pVertices->z; } glColor4ubv(colour.vector); // Only need to set once for entire model for (pPolys = shape->polys; pPolys < shape->polys + shape->npolys; pPolys++) { Vector2f texCoords[pie_MAX_VERTICES_PER_POLYGON]; Vector3f vertexCoords[pie_MAX_VERTICES_PER_POLYGON]; int n; VERTEXID *index; for (n = 0, index = pPolys->pindex; n < pPolys->npnts; n++, index++) { vertexCoords[n].x = scrPoints[*index].x; vertexCoords[n].y = scrPoints[*index].y; vertexCoords[n].z = scrPoints[*index].z; texCoords[n].x = pPolys->texCoord[n].x; texCoords[n].y = pPolys->texCoord[n].y; } polyCount++; if (frame != 0 && pPolys->flags & iV_IMD_TEXANIM) { frame %= pPolys->texAnim.nFrames; if (frame > 0) { const int framesPerLine = 256 / pPolys->texAnim.textureWidth; const int uFrame = (frame % framesPerLine) * pPolys->texAnim.textureWidth; const int vFrame = (frame / framesPerLine) * pPolys->texAnim.textureHeight; for (n = 0; n < pPolys->npnts; n++) { texCoords[n].x += uFrame; texCoords[n].y += vFrame; } } } if (pPolys->flags & PIE_NO_CULL) { glDisable(GL_CULL_FACE); } glBegin(GL_TRIANGLE_FAN); if (light) { glNormal3fv((GLfloat*)&pPolys->normal); } for (n = 0; n < pPolys->npnts; n++) { glTexCoord2fv((GLfloat*)&texCoords[n]); glVertex3fv((GLfloat*)&vertexCoords[n]); } glEnd(); if (pPolys->flags & PIE_NO_CULL) { glEnable(GL_CULL_FACE); } } if (pieFlag & pie_BUTTON) { pie_SetDepthBufferStatus(DEPTH_CMP_ALWAYS_WRT_ON); } if (light) { glDisable(GL_LIGHTING); glDisable(GL_NORMALIZE); } } /// returns true if the edges are adjacent static int compare_edge (EDGE *A, EDGE *B, const Vector3f *pVertices ) { if(A->from == B->to) { if(A->to == B->from) { return true; } return Vector3f_Compare(pVertices[A->to], pVertices[B->from]); } if(!Vector3f_Compare(pVertices[A->from], pVertices[B->to])) { return false; } if(A->to == B->from) { return true; } return Vector3f_Compare(pVertices[A->to], pVertices[B->from]); } /// Add an edge to an edgelist /// Makes sure only silhouette edges are present static void addToEdgeList(int a, int b, EDGE *edgelist, unsigned int* edge_count, Vector3f *pVertices) { EDGE newEdge = {a, b}; unsigned int i; BOOL foundMatching = false; for(i = 0; i < *edge_count; i++) { if(edgelist[i].from < 0) { // does not exist anymore continue; } if(compare_edge(&newEdge, &edgelist[i], pVertices)) { // remove the other too edgelist[i].from = -1; foundMatching = true; break; } } if(!foundMatching) { edgelist[*edge_count] = newEdge; (*edge_count)++; } } /// scale the height according to the flags static inline float scale_y(float y, int flag, int flag_data) { float tempY = y; if (flag & pie_RAISE) { tempY = y - flag_data; if (y - flag_data < 0) tempY = 0; } else if (flag & pie_HEIGHT_SCALED) { if(y>0) { tempY = (y * flag_data)/pie_RAISE_SCALE; } } return tempY; } /// Draw the shadow for a shape static void pie_DrawShadow(iIMDShape *shape, int flag, int flag_data, Vector3f* light) { unsigned int i, j, n; Vector3f *pVertices; iIMDPoly *pPolys; unsigned int edge_count = 0; static EDGE *edgelist = NULL; static unsigned int edgelistsize = 256; EDGE *drawlist = NULL; if(!edgelist) { edgelist = (EDGE*)malloc(sizeof(EDGE)*edgelistsize); } pVertices = shape->points; if( flag & pie_STATIC_SHADOW && shape->shadowEdgeList ) { drawlist = shape->shadowEdgeList; edge_count = shape->nShadowEdges; } else { for (i = 0, pPolys = shape->polys; i < shape->npolys; ++i, ++pPolys) { Vector3f p[3], v[2], normal = {0.0f, 0.0f, 0.0f}; VERTEXID current, first; for(j = 0; j < 3; j++) { current = pPolys->pindex[j]; p[j] = Vector3f_New(pVertices[current].x, scale_y(pVertices[current].y, flag, flag_data), pVertices[current].z); } v[0] = Vector3f_Sub(p[2], p[0]); v[1] = Vector3f_Sub(p[1], p[0]); normal = Vector3f_CrossP(v[0], v[1]); if (Vector3f_ScalarP(normal, *light) > 0) { first = pPolys->pindex[0]; for (n = 1; n < pPolys->npnts; n++) { // link to the previous vertex addToEdgeList(pPolys->pindex[n-1], pPolys->pindex[n], edgelist, &edge_count, pVertices); // check if the edgelist is still large enough if(edge_count >= edgelistsize-1) { // enlarge EDGE* newstack; edgelistsize *= 2; newstack = realloc(edgelist, sizeof(EDGE) * edgelistsize); if (newstack == NULL) { debug(LOG_ERROR, "pie_DrawShadow: Out of memory!"); abort(); return; } edgelist = newstack; debug(LOG_WARNING, "new edge list size: %u", edgelistsize); } } // back to the first addToEdgeList(pPolys->pindex[pPolys->npnts-1], first, edgelist, &edge_count, pVertices); } } //debug(LOG_WARNING, "we have %i edges", edge_count); drawlist = edgelist; if(flag & pie_STATIC_SHADOW) { // first compact the current edgelist for(i = 0, j = 0; i < edge_count; i++) { if(edgelist[i].from < 0) { continue; } edgelist[j] = edgelist[i]; j++; } edge_count = j; // then store it in the imd shape->nShadowEdges = edge_count; shape->shadowEdgeList = realloc(shape->shadowEdgeList, sizeof(EDGE) * shape->nShadowEdges); memcpy(shape->shadowEdgeList, edgelist, sizeof(EDGE) * shape->nShadowEdges); } } // draw the shadow volume glBegin(GL_QUADS); for(i=0;ix, scale_y(pVertices[b].y, flag, flag_data)+light->y, pVertices[b].z+light->z); glVertex3f(pVertices[a].x+light->x, scale_y(pVertices[a].y, flag, flag_data)+light->y, pVertices[a].z+light->z); glVertex3f(pVertices[a].x, scale_y(pVertices[a].y, flag, flag_data), pVertices[a].z); } glEnd(); #ifdef SHOW_SHADOW_EDGES glDisable(GL_DEPTH_TEST); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glColor4ub(0xFF, 0, 0, 0xFF); glBegin(GL_LINES); for(i = 0; i < edge_count; i++) { int a = drawlist[i].from, b = drawlist[i].to; if(a < 0) { continue; } glVertex3f(pVertices[b].x, scale_y(pVertices[b].y, flag, flag_data), pVertices[b].z); glVertex3f(pVertices[a].x, scale_y(pVertices[a].y, flag, flag_data), pVertices[a].z); } glEnd(); glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glEnable(GL_DEPTH_TEST); #endif } static void inverse_matrix(const float * src, float * dst) { const float det = src[0]*src[5]*src[10] + src[4]*src[9]*src[2] + src[8]*src[1]*src[6] - src[2]*src[5]*src[8] - src[6]*src[9]*src[0] - src[10]*src[1]*src[4]; const float invdet = 1.0f/det; dst[0] = invdet * (src[5]*src[10] - src[9]*src[6]); dst[1] = invdet * (src[9]*src[2] - src[1]*src[10]); dst[2] = invdet * (src[1]*src[6] - src[5]*src[2]); dst[3] = invdet * (src[8]*src[6] - src[4]*src[10]); dst[4] = invdet * (src[0]*src[10] - src[8]*src[2]); dst[5] = invdet * (src[4]*src[2] - src[0]*src[6]); dst[6] = invdet * (src[4]*src[9] - src[8]*src[5]); dst[7] = invdet * (src[8]*src[1] - src[0]*src[9]); dst[8] = invdet * (src[0]*src[5] - src[4]*src[1]); } void pie_CleanUp( void ) { free( tshapes ); free( scshapes ); tshapes = NULL; scshapes = NULL; } void pie_Draw3DShape(iIMDShape *shape, int frame, int team, PIELIGHT colour, PIELIGHT specular, int pieFlag, int pieFlagData) { pieCount++; // Fix for transparent buildings and features!! if( (pieFlag & pie_TRANSLUCENT) && (pieFlagData > 220) ) { // force to bilinear and non-transparent pieFlag = pieFlag & ~pie_TRANSLUCENT; pieFlagData = 0; } if (frame == 0) { frame = team; } if (drawing_interface || !shadows) { pie_Draw3DShape2(shape, frame, colour, specular, pieFlag, pieFlagData); } else { if (pieFlag & (pie_ADDITIVE | pie_TRANSLUCENT)) { if (tshapes_size <= nb_tshapes) { if (tshapes_size == 0) { tshapes_size = 64; tshapes = (transluscent_shape_t*)malloc(tshapes_size*sizeof(transluscent_shape_t)); memset( tshapes, 0, tshapes_size*sizeof(transluscent_shape_t) ); } else { const unsigned int old_size = tshapes_size; tshapes_size <<= 1; tshapes = (transluscent_shape_t*)realloc(tshapes, tshapes_size*sizeof(transluscent_shape_t)); memset( &tshapes[old_size], 0, (tshapes_size-old_size)*sizeof(transluscent_shape_t) ); } } glGetFloatv(GL_MODELVIEW_MATRIX, tshapes[nb_tshapes].matrix); tshapes[nb_tshapes].shape = shape; tshapes[nb_tshapes].frame = frame; tshapes[nb_tshapes].colour = colour; tshapes[nb_tshapes].specular = specular; tshapes[nb_tshapes].flag = pieFlag; tshapes[nb_tshapes].flag_data = pieFlagData; nb_tshapes++; } else { if(pieFlag & pie_SHADOW || pieFlag & pie_STATIC_SHADOW) { float distance; // draw a shadow if (scshapes_size <= nb_scshapes) { if (scshapes_size == 0) { scshapes_size = 64; scshapes = (shadowcasting_shape_t*)malloc(scshapes_size*sizeof(shadowcasting_shape_t)); memset( scshapes, 0, scshapes_size*sizeof(shadowcasting_shape_t) ); } else { const unsigned int old_size = scshapes_size; scshapes_size <<= 1; scshapes = (shadowcasting_shape_t*)realloc(scshapes, scshapes_size*sizeof(shadowcasting_shape_t)); memset( &scshapes[old_size], 0, (scshapes_size-old_size)*sizeof(shadowcasting_shape_t) ); } } glGetFloatv(GL_MODELVIEW_MATRIX, scshapes[nb_scshapes].matrix); distance = scshapes[nb_scshapes].matrix[12] * scshapes[nb_scshapes].matrix[12]; distance += scshapes[nb_scshapes].matrix[13] * scshapes[nb_scshapes].matrix[13]; distance += scshapes[nb_scshapes].matrix[14] * scshapes[nb_scshapes].matrix[14]; // if object is too far in the fog don't generate a shadow. if (distance < SHADOW_END_DISTANCE) { float invmat[9], pos_light0[4]; inverse_matrix( scshapes[nb_scshapes].matrix, invmat ); // Calculate the light position relative to the object glGetLightfv(GL_LIGHT0, GL_POSITION, pos_light0); scshapes[nb_scshapes].light.x = invmat[0] * pos_light0[0] + invmat[3] * pos_light0[1] + invmat[6] * pos_light0[2]; scshapes[nb_scshapes].light.y = invmat[1] * pos_light0[0] + invmat[4] * pos_light0[1] + invmat[7] * pos_light0[2]; scshapes[nb_scshapes].light.z = invmat[2] * pos_light0[0] + invmat[5] * pos_light0[1] + invmat[8] * pos_light0[2]; scshapes[nb_scshapes].shape = shape; scshapes[nb_scshapes].flag = pieFlag; scshapes[nb_scshapes].flag_data = pieFlagData; nb_scshapes++; } } pie_Draw3DShape2(shape, frame, colour, specular, pieFlag, pieFlagData); } } } static void pie_ShadowDrawLoop(void) { unsigned int i = 0; for (i = 0; i < nb_scshapes; i++) { glLoadMatrixf(scshapes[i].matrix); pie_DrawShadow(scshapes[i].shape, scshapes[i].flag, scshapes[i].flag_data, &scshapes[i].light); } } static void pie_DrawShadows(void) { const float width = pie_GetVideoBufferWidth(); const float height = pie_GetVideoBufferHeight(); pie_SetTexturePage(TEXPAGE_NONE); glPushMatrix(); pie_SetAlphaTest(false); glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glDepthFunc(GL_LESS); glDepthMask(GL_FALSE); glEnable(GL_STENCIL_TEST); // Check if we have the required extensions if (GLEE_EXT_stencil_two_side && GLEE_EXT_stencil_wrap) { glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT); glDisable(GL_CULL_FACE); glStencilMask(~0); glActiveStencilFaceEXT(GL_BACK); glStencilOp(GL_KEEP, GL_KEEP, GL_DECR_WRAP_EXT); glStencilFunc(GL_ALWAYS, 0, ~0); glActiveStencilFaceEXT(GL_FRONT); glStencilOp(GL_KEEP, GL_KEEP, GL_INCR_WRAP_EXT); glStencilFunc(GL_ALWAYS, 0, ~0); pie_ShadowDrawLoop(); glDisable(GL_STENCIL_TEST_TWO_SIDE_EXT); } else { // Setup stencil for back faces. glStencilMask(~0); glStencilFunc(GL_ALWAYS, 0, ~0); glEnable(GL_CULL_FACE); glCullFace(GL_BACK); glStencilOp(GL_KEEP, GL_KEEP, GL_INCR); pie_ShadowDrawLoop(); // Setup stencil for front faces. glCullFace(GL_FRONT); glStencilOp(GL_KEEP, GL_KEEP, GL_DECR); // Draw shadows again pie_ShadowDrawLoop(); } glEnable(GL_CULL_FACE); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); glStencilMask(~0); glStencilFunc(GL_LESS, 0, ~0); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glColor4f(0, 0, 0, 0.5); pie_PerspectiveEnd(); glLoadIdentity(); glDisable(GL_DEPTH_TEST); glBegin(GL_TRIANGLE_STRIP); glVertex2f(0, 0); glVertex2f(width, 0); glVertex2f(0, height); glVertex2f(width, height); glEnd(); pie_PerspectiveBegin(); glDisable(GL_BLEND); glDisable(GL_STENCIL_TEST); glEnable(GL_DEPTH_TEST); glDepthMask(GL_TRUE); glPopMatrix(); nb_scshapes = 0; } static void pie_DrawRemainingTransShapes(void) { unsigned int i = 0; glPushMatrix(); for (i = 0; i < nb_tshapes; ++i) { glLoadMatrixf(tshapes[i].matrix); pie_Draw3DShape2(tshapes[i].shape, tshapes[i].frame, tshapes[i].colour, tshapes[i].specular, tshapes[i].flag, tshapes[i].flag_data); } glPopMatrix(); nb_tshapes = 0; } void pie_RemainingPasses(void) { if(shadows) { pie_DrawShadows(); } pie_DrawRemainingTransShapes(); } /*************************************************************************** * pie_Drawimage * * General purpose blit function * Will support zbuffering, non_textured, coloured lighting and alpha effects * * replaces all ivis blit functions * ***************************************************************************/ void pie_DrawImage(const PIEIMAGE *image, const PIERECT *dest) { PIELIGHT colour = WZCOL_WHITE; /* Set transparent color to be 0 red, 0 green, 0 blue, 0 alpha */ polyCount++; pie_SetTexturePage(image->texPage); glColor4ubv(colour.vector); glBegin(GL_TRIANGLE_STRIP); //set up 4 pie verts glTexCoord2f(image->tu, image->tv); glVertex2f(dest->x, dest->y); glTexCoord2f(image->tu + image->tw, image->tv); glVertex2f(dest->x + dest->w, dest->y); glTexCoord2f(image->tu, image->tv + image->th); glVertex2f(dest->x, dest->y + dest->h); glTexCoord2f(image->tu + image->tw, image->tv + image->th); glVertex2f(dest->x + dest->w, dest->y + dest->h); glEnd(); } static inline void pie_ClearArrays(void) { memset(aColour, 0, sizeColour); memset(aVertex, 0, sizeVertex); } void pie_TerrainInit(int sizex, int sizey) { int size = sizex * sizey; assert(sizex > 0 && sizey > 0); pie_TerrainCleanup(); sizeColour = size * sizeof(GLubyte) * COLOUR_COMPONENTS * VERTICES_PER_TILE; sizeTexCoord = size * sizeof(GLfloat) * TEXCOORD_COMPONENTS * VERTICES_PER_TILE; sizeVertex = size * sizeof(GLfloat) * VERTEX_COMPONENTS * VERTICES_PER_TILE; aColour = malloc(sizeColour); aTexCoord = malloc(sizeTexCoord); aVertex = malloc(sizeVertex); allocX = sizex; allocY = sizey; pie_ClearArrays(); // hack, removes seams } void pie_TerrainCleanup() { if (aColour) { free(aColour); } if (aTexCoord) { free(aTexCoord); } if (aVertex) { free(aVertex); } aColour = NULL; aTexCoord = NULL; aVertex = NULL; } void pie_DrawTerrain(int x1, int y1, int x2, int y2) { int y; assert(x1 >= 0 && y1 >= 0 && x2 < allocX && y2 < allocY); glEnableClientState(GL_COLOR_ARRAY); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glColorPointer(COLOUR_COMPONENTS, GL_UNSIGNED_BYTE, 0, aColour); glTexCoordPointer(TEXCOORD_COMPONENTS, GL_FLOAT, 0, aTexCoord); glVertexPointer(VERTEX_COMPONENTS, GL_FLOAT, 0, aVertex); glMatrixMode(GL_TEXTURE); glLoadIdentity(); for (y = y1; y < y2; y++) { glDrawArrays(GL_TRIANGLES, (y * allocX + x1) * VERTICES_PER_TILE, (x2 - x1) * VERTICES_PER_TILE); } pie_ClearArrays(); glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } // index gives us the triangle void pie_DrawTerrainTriangle(int x, int y, int triangle, const TERRAIN_VERTEX *aVrts) { int i, j; assert(x >= 0 && y >= 0 && triangle >= 0 && triangle < 3 && aVrts); j = (y * allocX + x) * VERTICES_PER_TILE + triangle * VERTICES_PER_TRIANGLE; tileCount++; for ( i = 0; i < 3; i++ ) { aColour[j * COLOUR_COMPONENTS + 0] = aVrts[i].light.byte.r; aColour[j * COLOUR_COMPONENTS + 1] = aVrts[i].light.byte.g; aColour[j * COLOUR_COMPONENTS + 2] = aVrts[i].light.byte.b; aColour[j * COLOUR_COMPONENTS + 3] = aVrts[i].light.byte.a; aTexCoord[j * TEXCOORD_COMPONENTS + 0] = aVrts[i].u; aTexCoord[j * TEXCOORD_COMPONENTS + 1] = aVrts[i].v; aVertex[j * VERTEX_COMPONENTS + 0] = aVrts[i].pos.x; aVertex[j * VERTEX_COMPONENTS + 1] = aVrts[i].pos.y; aVertex[j * VERTEX_COMPONENTS + 2] = aVrts[i].pos.z; j++; } } void pie_DrawWaterTriangle(const TERRAIN_VERTEX *aVrts) { unsigned int i = 0; /* Since this is only used from within source for the terrain draw - we can backface cull the polygons. */ tileCount++; glBegin(GL_TRIANGLE_FAN); for ( i = 0; i < 3; i++ ) { glColor4ubv(aVrts[i].light.vector); glTexCoord2f(aVrts[i].u, aVrts[i].v); glVertex3f( aVrts[i].pos.x, aVrts[i].pos.y, aVrts[i].pos.z ); } glEnd(); } void pie_GetResetCounts(unsigned int* pPieCount, unsigned int* pTileCount, unsigned int* pPolyCount, unsigned int* pStateCount) { *pPieCount = pieCount; *pTileCount = tileCount; *pPolyCount = polyCount; *pStateCount = pieStateCount; pieCount = 0; tileCount = 0; polyCount = 0; pieStateCount = 0; return; }