/* This file is part of Warzone 2100. Copyright (C) 2007-2009 Warzone Resurrection Project Warzone 2100 is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Warzone 2100 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Warzone 2100; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef VECTOR_H #define VECTOR_H #include "wzglobal.h" #include "fixedpoint.h" #include typedef struct { int x, y; } Vector2i; typedef struct { float x, y; } Vector2f; typedef struct { int x, y, z; } Vector3i; typedef struct { float x, y, z; } Vector3f; typedef struct { uint16_t x, y, z; } Vector3uw; //Only used for basedef.h BASE_ELEMENTS1. /*! * Create a Vector from x and y * Needed for MSVC which doesn't support C99 struct assignments. * \param x,y Coordinates * \return New Vector */ static inline WZ_DECL_CONST Vector2i Vector2i_Init(const int x, const int y) { Vector2i dest = { x, y }; return dest; } /*! * Convert an integer vector to float * \param v Vector to convert * \return Float vector */ static inline WZ_DECL_CONST Vector2f Vector2i_To2f(const Vector2i v) { Vector2f dest = { (float)v.x, (float)v.y }; return dest; } /*! * \return true if both vectors are equal */ static inline WZ_DECL_CONST bool Vector2i_Compare(const Vector2i a, const Vector2i b) { return a.x == b.x && a.y == b.y; } /*! * Add op2 to op1. * \param[in] op1,op2 Operands * \return Result */ static inline WZ_DECL_CONST Vector2i Vector2i_Add(const Vector2i op1, const Vector2i op2) { Vector2i dest = { op1.x + op2.x, op1.y + op2.y }; return dest; } /*! * Substract op2 from op1. * \param op1,op2 Operands * \return Result */ static inline WZ_DECL_CONST Vector2i Vector2i_Sub(const Vector2i op1, const Vector2i op2) { Vector2i dest = { op1.x - op2.x, op1.y - op2.y }; return dest; } /*! * Multiply a vector with a scalar. * \param v Vector * \param s Scalar * \return Product */ static inline WZ_DECL_CONST Vector2i Vector2i_Mult(const Vector2i v, const int s) { Vector2i dest = { v.x * s, v.y * s }; return dest; } /*! * Calculate the scalar product of op1 and op2. * \param op1,op2 Operands * \return Scalarproduct of the 2 vectors */ static inline WZ_DECL_CONST int Vector2i_ScalarP(const Vector2i op1, const Vector2i op2) { return op1.x * op2.x + op1.y * op2.y; } /*! * Calculate the length of a vector. * \param v Vector * \return Length */ static inline WZ_DECL_CONST int Vector2i_Length(const Vector2i v) { return sqrtf( (float)Vector2i_ScalarP(v, v) ); } /*! * Checks to see if vector v is inside the circle whose centre is at point c * with a radius of r. * This function makes use of the following equation: * (x - a)^2 + (y - b)^2 = r^2 which is used for drawing a circle of radius r * with a centre (a, b). However we can also use it to see if a point is in a * circle, which is the case so long as RHS > LHS. * \param v Vector to test * \param c Vector containing the centre of the circle * \param r The radius of the circle * \return If v falls within the circle */ static inline WZ_DECL_CONST bool Vector2i_InCircle(const Vector2i v, const Vector2i c, const unsigned int r) { Vector2i delta = Vector2i_Sub(v, c); // Explictily cast to "unsigned int" because this number never can be // negative, due to the fact that these numbers are squared. Still GCC // warns about a comparison of a comparison between an unsigned and a // signed integer. return (unsigned int)((delta.x * delta.x) + (delta.y * delta.y)) < (r * r); } /*! * Create a Vector from x and y * Needed for MSVC which doesn't support C99 struct assignments. * \param x,y Coordinates * \return New Vector */ static inline WZ_DECL_CONST Vector2f Vector2f_Init(const float x, const float y) { Vector2f dest = { x, y }; return dest; } /*! * Convert a float vector to integer * \param v Vector to convert * \return Float vector */ static inline WZ_DECL_CONST Vector2i Vector2f_To2i(const Vector2f v) { Vector2i dest = { (int)v.x, (int)v.y }; return dest; } /*! * Add op2 to op1. * \param op1,op2 Operands * \return Result */ static inline WZ_DECL_CONST Vector2f Vector2f_Add(const Vector2f op1, const Vector2f op2) { Vector2f dest = { op1.x + op2.x, op1.y + op2.y }; return dest; } /*! * Substract op2 from op1. * \param op1,op2 Operands * \return Result */ static inline WZ_DECL_CONST Vector2f Vector2f_Sub(const Vector2f op1, const Vector2f op2) { Vector2f dest = { op1.x - op2.x, op1.y - op2.y }; return dest; } /*! * Multiply a vector with a scalar. * \param v Vector * \param s Scalar * \return Product */ static inline WZ_DECL_CONST Vector2f Vector2f_Mult(const Vector2f v, const float s) { Vector2f dest = { v.x * s, v.y * s }; return dest; } /*! * Calculate the scalar product of op1 and op2. * \param op1,op2 Operands * \return Scalarproduct of the 2 vectors */ static inline WZ_DECL_CONST float Vector2f_ScalarP(const Vector2f op1, const Vector2f op2) { return op1.x * op2.x + op1.y * op2.y; } /*! * Calculate the length of a vector. * \param v Vector * \return Length */ static inline WZ_DECL_CONST float Vector2f_Length(const Vector2f v) { return sqrtf( Vector2f_ScalarP(v, v) ); } /*! * Normalise a Vector * \param v Vector * \return Normalised vector, nullvector when input was nullvector or very small */ static inline WZ_DECL_CONST Vector2f Vector2f_Normalise(const Vector2f v) { float length = Vector2f_Length(v); if (length == 0.0f) { Vector2f dest = { 0.0f, 0.0f }; return dest; } else { Vector2f dest = { v.x / length, v.y / length }; return dest; } } /*! * Rotate v * \param v vector to rotate * \param degrees the amount of degrees to rotate in counterclockwise direction * \return Result */ static inline WZ_DECL_CONST Vector2f Vector2f_Rotate2f(Vector2f v, float degrees) { Vector2f result; float radians = (degrees / 360) * 2 * 3.14; result.x = v.x*cos(radians) - v.y*sin(radians); result.y = v.x*sin(radians) + v.y*cos(radians); return result; } /*! * Finds a point that lies in between two other points, a starting and ending * point. * * \param from Vector representing the starting point. * \param to Vector representing the ending point. * \param s The distance travelled along the line between vectors \c from and * \c to expressed as a number ranging from 0.f to 1.f. * * \return a Vector that's \c s along the line between \c from and \to */ static inline WZ_DECL_CONST Vector2i Vector2i_LinearInterpolate(const Vector2i from, const Vector2i to, const float s) { assert(s >= 0.f && s <= 1.f); return Vector2i_Add(from, Vector2f_To2i(Vector2f_Mult(Vector2i_To2f(Vector2i_Sub(to, from)), s))); } /*! * Finds a point that lies in between two other points, a starting and ending * point. * * \param from Vector representing the starting point. * \param to Vector representing the ending point. * \param s The distance travelled along the line between vectors \c from and * \c to expressed as a number ranging from 0.f to 1.f. * * \return a Vector that's \c s along the line between \c from and \to */ static inline WZ_DECL_CONST Vector2f Vector2f_LinearInterpolate(const Vector2f from, const Vector2f to, const float s) { assert(s >= 0.f && s <= 1.f); return Vector2f_Add(from, Vector2f_Mult(Vector2f_Sub(to, from), s)); } /*! * Print a vector to stdout */ static inline void Vector3f_Print(const Vector3f v) { printf("V: x:%f, y:%f, z:%f\n", v.x, v.y, v.z); } /*! * Set the vector field by field, same as v = (Vector3f){x, y, z}; * Needed for MSVC which doesn't support C99 struct assignments. * \param x,y,z Values to set to * \return New vector */ static inline WZ_DECL_CONST Vector3f Vector3f_Init(const float x, const float y, const float z) { Vector3f dest = { x, y, z }; return dest; } /*! * Convert a float vector to integer * \param v Vector to convert * \return Float vector */ static inline WZ_DECL_CONST Vector3i Vector3f_To3i(const Vector3f v) { Vector3i dest = { (int)v.x, (int)v.y, (int)v.z }; return dest; } /*! * Convert a float vector to short * \param v Vector to convert * \return Short vector */ static inline WZ_DECL_CONST Vector3uw Vector3f_To3uw(const Vector3f v) { Vector3uw dest = { (uint16_t)v.x, (uint16_t)v.y, (uint16_t)v.z }; return dest; } /*! * \return true if both vectors are equal */ static inline WZ_DECL_CONST bool Vector3f_Compare(const Vector3f a, const Vector3f b) { return a.x == b.x && a.y == b.y && a.z == b.z; } /*! * Add op2 to op1. * \param op1,op2 Operands * \return Result */ static inline WZ_DECL_CONST Vector3f Vector3f_Add(const Vector3f op1, const Vector3f op2) { Vector3f dest = { op1.x + op2.x, op1.y + op2.y, op1.z + op2.z }; return dest; } /*! * Substract op2 from op1. * \param op1,op2 Operands * \return Result */ static inline WZ_DECL_CONST Vector3f Vector3f_Sub(const Vector3f op1, const Vector3f op2) { Vector3f dest = { op1.x - op2.x, op1.y - op2.y, op1.z - op2.z }; return dest; } /*! * Multiply a vector with a scalar. * \param v Vector * \param s Scalar * \return Product */ static inline WZ_DECL_CONST Vector3f Vector3f_Mult(const Vector3f v, const float s) { Vector3f dest = { v.x * s, v.y * s, v.z * s }; return dest; } /*! * Calculate the scalar product of op1 and op2. * \param op1,op2 Operands * \return Scalarproduct of the 2 vectors */ static inline WZ_DECL_CONST float Vector3f_ScalarP(const Vector3f op1, const Vector3f op2) { return op1.x * op2.x + op1.y * op2.y + op1.z * op2.z; } /*! * Calculate the crossproduct of op1 and op2. * \param op1,op2 Operands * \return Crossproduct */ static inline WZ_DECL_CONST Vector3f Vector3f_CrossP(const Vector3f op1, const Vector3f op2) { Vector3f dest = { op1.y * op2.z - op1.z * op2.y, op1.z * op2.x - op1.x * op2.z, op1.x * op2.y - op1.y * op2.x }; return dest; } /*! * Calculate the length of a vector. * \param v Vector * \return Length */ static inline WZ_DECL_CONST float Vector3f_Length(const Vector3f v) { return sqrtf( Vector3f_ScalarP(v, v) ); } /*! * Normalise a Vector * \param v Vector * \return Normalised vector, nullvector when input was nullvector or very small */ static inline WZ_DECL_CONST Vector3f Vector3f_Normalise(const Vector3f v) { float length = Vector3f_Length(v); if (length == 0.0f) { Vector3f dest = { 0.0f, 0.0f, 0.0f }; return dest; } else { Vector3f dest = { v.x / length, v.y / length, v.z / length }; return dest; } } /*! * Much the same as Vector2i_InCircle except that it works in 3-axis by discarding the z-component and with * circles. * \param v Vector to test * \param c Vector containing the centre of the circle * \param r The radius of the circle * \return If v falls within the circle */ static inline WZ_DECL_CONST bool Vector3f_InCircle(const Vector3f v, const Vector3f c, const float r) { Vector3f delta = Vector3f_Sub(v, c); // Explictily cast to "unsigned int" because this number never can be // negative, due to the fact that these numbers are squared. Still GCC // warns about a comparison of a comparison between an unsigned and a // signed integer. return (delta.x * delta.x) + (delta.y * delta.y) < (r * r); } /*! * Much the same as Vector2i_InCircle except that it works in 3-axis and with * spheres. * The equation used is also ever so slightly different: * (x - a)^2 + (y - b)^2 + (z - c)^2 = r^2. Notice how it is still squared and * _not_ cubed! * \param v Vector to test * \param c Vector containing the centre of the sphere * \param r The radius of the sphere * \return If v falls within the sphere */ static inline WZ_DECL_CONST bool Vector3f_InSphere (const Vector3f v, const Vector3f c, const float r) { Vector3f delta = Vector3f_Sub(v, c); // Explictily cast to "unsigned int" because this number never can be // negative, due to the fact that these numbers are squared. Still GCC // warns about a comparison of a comparison between an unsigned and a // signed integer. return (delta.x * delta.x) + (delta.y * delta.y) + (delta.z * delta.z) < (r * r); } /*! * Compute the forward vector, a body's local Z axis, for a set of Euler angles * (pitch, yaw and roll). * \param v Vector containing the pitch, yaw and roll in its x, y and z members * respectively. These rotations need to be expressed in radians. * \return Forward vector. */ static inline WZ_DECL_CONST Vector3f Vector3f_EulerToForwardVector(const Vector3f v) { Vector3f dest = { cosf(v.x) * sinf(v.y), -sinf(v.x), cosf(v.x) * cosf(v.y) }; return dest; } /*! * Compute the up vector, a body's local Y axis, for a set of Euler angles * (pitch, yaw and roll). * \param v Vector containing the pitch, yaw and roll in its x, y and z members * respectively. These rotations need to be expressed in radians. * \return Up vector. */ static inline WZ_DECL_CONST Vector3f Vector3f_EulerToUpVector(const Vector3f v) { Vector3f dest = { sinf(v.x) * sinf(v.y) * cosf(v.z) - sinf(v.z) * cosf(v.z), cosf(v.x) * cosf(v.z), sinf(v.x) * cosf(v.y) * cosf(v.z) + sinf(v.y) * sinf(v.z) }; return dest; } /*! * Finds a point that lies in between two other points, a starting and ending * point. * * \param from Vector representing the starting point. * \param to Vector representing the ending point. * \param s The distance travelled along the line between vectors \c from and * \c to expressed as a number ranging from 0.f to 1.f. * * \return a Vector that's \c s along the line between \c from and \to */ static inline WZ_DECL_CONST Vector3f Vector3f_LinearInterpolate(const Vector3f from, const Vector3f to, const float s) { assert(s >= 0.f && s <= 1.f); return Vector3f_Add(from, Vector3f_Mult(Vector3f_Sub(to, from), s)); } /*! * Set the vector field by field, same as v = (Vector3i){x, y, z}; * Needed for MSVC which doesn't support C99 struct assignments. * \param x,y,z Coordinates * \return New Vector */ static inline WZ_DECL_CONST Vector3i Vector3i_Init(const int x, const int y, const int z) { Vector3i dest = { x, y, z }; return dest; } /*! * Convert an integer vector to float * \param v Vector to convert * \return Float vector */ static inline WZ_DECL_CONST Vector3f Vector3i_To3f(const Vector3i v) { Vector3f dest = { (float)v.x, (float)v.y, (float)v.z }; return dest; } /*! * Convert an integer vector to short * \param v Vector to convert * \return Short vector */ static inline WZ_DECL_CONST Vector3uw Vector3i_To3uw(const Vector3i v) { Vector3uw dest = { (uint16_t)v.x, (uint16_t)v.y, (uint16_t)v.z }; return dest; } /*! * Convert a vector of degree angles into radians. * \param v Vector to convert * \return Radian vector */ static inline WZ_DECL_CONST Vector3f Vector3f_ToRadians(const Vector3f v) { Vector3f dest = { deg2radf(v.x), deg2radf(v.y), deg2radf(v.z) }; return dest; } /*! * Convert a vector of fixed-point, wannabe-floats (used on the PSX, and * unfortunately on the PC as well), to real floats expressed in real degrees. * \param v Rotation vector in "wannabe-float" degrees * \return Float vector in real degrees */ static inline WZ_DECL_CONST Vector3f Vector3iPSX_To3fDegree(const Vector3i v) { return Vector3f_Mult(Vector3i_To3f(v), // Required to multiply by this to undo the PSX fixed point fract stuff 360.f / (float)DEG_360); } /*! * \return true if both vectors are equal */ static inline WZ_DECL_CONST bool Vector3i_Compare(const Vector3i a, const Vector3i b) { return a.x == b.x && a.y == b.y && a.z == b.z; } /*! * Add op2 to op1. * \param op1,op2 Operands * \return Result */ static inline WZ_DECL_CONST Vector3i Vector3i_Add(const Vector3i op1, const Vector3i op2) { Vector3i dest = { op1.x + op2.x, op1.y + op2.y, op1.z + op2.z }; return dest; } /*! * Substract op2 from op1. * \param op1,op2 Operands * \return Result */ static inline WZ_DECL_CONST Vector3i Vector3i_Sub(const Vector3i op1, const Vector3i op2) { Vector3i dest = { op1.x - op2.x, op1.y - op2.y, op1.z - op2.z }; return dest; } /*! * Multiply a vector with a scalar. * \param v Vector * \param s Scalar * \return Product */ static inline WZ_DECL_CONST Vector3i Vector3i_Mult(const Vector3i v, const int s) { Vector3i dest = { v.x * s, v.y * s, v.z * s }; return dest; } /*! * Divide a vector with a scalar. * \param v Vector * \param s Scalar * \return Product */ static inline WZ_DECL_CONST Vector3i Vector3i_Div(const Vector3i v, const int s) { Vector3i dest = { v.x / s, v.y / s, v.z / s }; return dest; } /*! * Calculate the scalar product of op1 and op2. * \param op1,op2 Operands * \return Scalarproduct of the 2 vectors */ static inline WZ_DECL_CONST unsigned int Vector3i_ScalarP(const Vector3i op1, const Vector3i op2) { return op1.x * op2.x + op1.y * op2.y + op1.z * op2.z; } /*! * Calculate the length of a vector. * \param v Vector * \return Length */ static inline WZ_DECL_CONST float Vector3i_Length(const Vector3i v) { return sqrtf( Vector3i_ScalarP(v, v) ); } /*! * Normalise a Vector * \param v Vector * \return Normalised vector, nullvector when input was nullvector or very small */ static inline WZ_DECL_CONST Vector3i Vector3i_Normalise(const Vector3i v) { float length = Vector3i_Length(v); if (length == 0.0f) { Vector3i dest = { 0, 0, 0 }; return dest; } else { Vector3i dest = { v.x / length, v.y / length, v.z / length }; return dest; } } /*! * Much the same as Vector2i_InCircle except that it works in 3-axis by discarding the z-component and with * circles. * \param v Vector to test * \param c Vector containing the centre of the circle * \param r The radius of the circle * \return If v falls within the circle */ static inline WZ_DECL_CONST bool Vector3i_InCircle(const Vector3i v, const Vector3i c, const unsigned int r) { Vector3i delta = Vector3i_Sub(v, c); // Explictily cast to "unsigned int" because this number never can be // negative, due to the fact that these numbers are squared. Still GCC // warns about a comparison of a comparison between an unsigned and a // signed integer. return (unsigned int)((delta.x * delta.x) + (delta.y * delta.y)) < (r * r); } /*! * Much the same as Vector2i_InCircle except that it works in 3-axis and with * spheres. * The equation used is also ever so slightly different: * (x - a)^2 + (y - b)^2 + (z - c)^2 = r^2. Notice how it is still squared and * _not_ cubed! * \param v Vector to test * \param c Vector containing the centre of the sphere * \param r The radius of the sphere * \return If v falls within the sphere */ static inline WZ_DECL_CONST bool Vector3i_InSphere (const Vector3i v, const Vector3i c, const unsigned int r) { Vector3i delta = Vector3i_Sub(v, c); // Explictily cast to "unsigned int" because this number never can be // negative, due to the fact that these numbers are squared. Still GCC // warns about a comparison of a comparison between an unsigned and a // signed integer. return (unsigned int)((delta.x * delta.x) + (delta.y * delta.y) + (delta.z * delta.z)) < (r * r); } /*! * Finds a point that lies in between two other points, a starting and ending * point. * * \param from Vector representing the starting point. * \param to Vector representing the ending point. * \param s The distance travelled along the line between vectors \c from and * \c to expressed as a number ranging from 0.f to 1.f. * * \return a Vector that's \c s along the line between \c from and \to */ static inline WZ_DECL_CONST Vector3i Vector3i_LinearInterpolate(const Vector3i from, const Vector3i to, const float s) { assert(s >= 0.f && s <= 1.f); return Vector3i_Add(from, Vector3f_To3i(Vector3f_Mult(Vector3i_To3f(Vector3i_Sub(to, from)), s))); } /*! * Print a vector to stdout */ static inline void Vector3uw_Print(const Vector3uw v) { printf("V: x:%u, y:%u, z:%u\n", v.x, v.y, v.z); } /*! * Set the vector field by field, same as v = (Vector3uw){x, y, z}; * Needed for MSVC which doesn't support C99 struct assignments. * \param x,y,z Coordinates * \return New Vector */ static inline WZ_DECL_CONST Vector3uw Vector3uw_Init(const unsigned int x, const unsigned int y, const unsigned int z) { Vector3uw dest = { x, y, z }; return dest; } /*! * Convert an short vector to int * \param v Vector to convert * \return Short vector */ static inline WZ_DECL_CONST Vector3i Vector3uw_To3i(const Vector3uw v) { Vector3i dest = { (int)v.x, (int)v.y, (int)v.z }; return dest; } /*! * Convert an short vector to int * \param v Vector to convert * \return Short vector */ static inline WZ_DECL_CONST Vector3f Vector3uw_To3f(const Vector3uw v) { Vector3f dest = { (float)v.x, (float)v.y, (float)v.z }; return dest; } #endif // VECTOR_H