/* This file is part of Warzone 2100. Copyright (C) 1999-2004 Eidos Interactive Copyright (C) 2005-2007 Warzone Resurrection Project Warzone 2100 is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Warzone 2100 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Warzone 2100; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * Trig.c * * Trig lookup tables * */ /* Allow frame header files to be singly included */ #define FRAME_LIB_INCLUDE #include #include #include "types.h" #include "debug.h" #include "fractions.h" #include "trig.h" /* Number of steps between -1 and 1 for the inverse tables */ #define TRIG_ACCURACY 4096 #define TRIG_ACCMASK 0x0fff /* Number of entries in sqrt table */ #define SQRT_ACCURACY 4096 #define SQRT_ACCBITS 12 static float aSin[TRIG_DEGREES]; static float aCos[TRIG_DEGREES]; static float aInvCos[TRIG_ACCURACY]; static float aInvSin[TRIG_ACCURACY]; static float aSqrt[SQRT_ACCURACY]; /* Initialise the Trig tables */ BOOL trigInitialise(void) { float val = 0.0f, inc = 2.0f * (float)M_PI / TRIG_DEGREES; int i; // Initialise the tables for (i = 0; i < TRIG_DEGREES; i++) { aSin[i] = sinf(val); aCos[i] = cosf(val); val += inc; } inc = 2.0f / (TRIG_ACCURACY-1); val = -1; for (i = 0; i < TRIG_ACCURACY; i++) { aInvSin[i] = asinf(val) * (float)TRIG_DEGREES / (2.0f * (float)M_PI); aInvCos[i] = acosf(val) * (float)TRIG_DEGREES / (2.0f * (float)M_PI); val += inc; } for (i = 0; i < SQRT_ACCURACY; i++) { val = (float)i / (SQRT_ACCURACY / 2); aSqrt[i]= sqrtf(val); } return TRUE; } /* Shutdown the trig tables */ void trigShutDown(void) {} /* Access the trig tables */ float trigSin(int angle) { if (angle < 0) { angle = (-angle) % TRIG_DEGREES; angle = TRIG_DEGREES - angle; } else { angle = angle % TRIG_DEGREES; } return aSin[angle % TRIG_DEGREES]; } float trigCos(int angle) { if (angle < 0) { angle = (-angle) % TRIG_DEGREES; angle = TRIG_DEGREES - angle; } else { angle = angle % TRIG_DEGREES; } return aCos[angle % TRIG_DEGREES]; } float trigInvSin(float val) { SDWORD index = (val+1) * (TRIG_ACCURACY-1) / 2; return aInvSin[index & TRIG_ACCMASK]; } float trigInvCos(float val) { SDWORD index = (val+1) * (TRIG_ACCURACY-1) / 2; return aInvCos[index & TRIG_ACCMASK]; } /* Fast lookup sqrt */ float trigIntSqrt(unsigned int val) { UDWORD exp, mask; if (val == 0) { return 0.0f; } // find the exponent of the number mask = 0x80000000; // set the msb in the mask for(exp = 32; exp != 0; exp--) { if (val & mask) { break; } mask >>= 1; } // make all exponents even // odd exponents result in a mantissa of [1..2) rather than [0..1) if (exp & 1) { exp -= 1; } // need to shift the top bit to SQRT_BITS - left or right? if (exp >= SQRT_ACCBITS) { val >>= exp - SQRT_ACCBITS + 1; } else { val <<= SQRT_ACCBITS - 1 - exp; } // now generate the fractional part for the lookup table ASSERT( val < SQRT_ACCURACY, "trigIntSqrt: table index out of range" ); return aSqrt[val] * (1 << (exp/2)); }