/* This file is part of Warzone 2100. Copyright (C) 1999-2004 Eidos Interactive Copyright (C) 2005-2007 Warzone Resurrection Project Warzone 2100 is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Warzone 2100 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Warzone 2100; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /***************************************************************************/ /* * pieMatrix.c * * matrix functions for pumpkin image library. * */ /***************************************************************************/ #include "lib/framework/frame.h" #include #include "lib/ivis_common/piedef.h" #include "lib/ivis_common/pieclip.h" #include "piematrix.h" #include "lib/ivis_common/rendmode.h" /***************************************************************************/ /* * Local Definitions */ /***************************************************************************/ #define MATRIX_MAX 8 #define ONE_PERCENT 4096/100 static SDMATRIX aMatrixStack[MATRIX_MAX]; SDMATRIX *psMatrix = &aMatrixStack[0]; BOOL drawing_interface = TRUE; void pie_VectorNormalise3iv(Vector3i *v) { Sint32 size; Vector3i av; av.x = ABS(v->x); av.y = ABS(v->y); av.z = ABS(v->z); if (av.x >= av.y) { if (av.x > av.z) size = av.x + av.z/4 + av.y/4; else size = av.z + av.x/4 + av.y/4; } else { if (av.y > av.z) size = av.y + av.z/4 + av.x/4; else size = av.z + av.y/4 + av.x/4; } if (size > 0) { v->x = (v->x * FP12_MULTIPLIER) / size; v->y = (v->y * FP12_MULTIPLIER) / size; v->z = (v->z * FP12_MULTIPLIER) / size; } } void pie_VectorNormalise3fv(Vector3f *v) { Sint32 size; Vector3f av; av.x = ABS(v->x); av.y = ABS(v->y); av.z = ABS(v->z); if (av.x >= av.y) { if (av.x > av.z) size = av.x + av.z/4 + av.y/4; else size = av.z + av.x/4 + av.y/4; } else { if (av.y > av.z) size = av.y + av.z/4 + av.x/4; else size = av.z + av.y/4 + av.x/4; } if (size > 0) { v->x = (v->x * FP12_MULTIPLIER) / size; v->y = (v->y * FP12_MULTIPLIER) / size; v->z = (v->z * FP12_MULTIPLIER) / size; } } /*! * Calculate surface normal * Eg. if a polygon (with n points in clockwise order) normal is required, * p1 = point 0, p2 = point 1, p3 = point n-1 * \param[in] p1,p1,p3 points for forming 2 vector for cross product * \param[out] v normal vector returned << FP12_SHIFT */ void pie_SurfaceNormal3iv(Vector3i *p1, Vector3i *p2, Vector3i *p3, Vector3i *v) { Vector3i a, b; a.x = p3->x - p1->x; a.y = p3->y - p1->y; a.z = p3->z - p1->z; pie_VectorNormalise3iv(&a); b.x = p2->x - p1->x; b.y = p2->y - p1->y; b.z = p2->z - p1->z; pie_VectorNormalise3iv(&b); v->x = ((a.y * b.z) - (a.z * b.y)) / FP12_MULTIPLIER; v->y = ((a.z * b.x) - (a.x * b.z)) / FP12_MULTIPLIER; v->z = ((a.x * b.y) - (a.y * b.x)) / FP12_MULTIPLIER; pie_VectorNormalise3iv(v); } /*! * Calculate surface normal * Eg. if a polygon (with n points in clockwise order) normal is required, * p1 = point 0, p2 = point 1, p3 = point n-1 * \param[in] p1,p1,p3 points for forming 2 vector for cross product * \param[out] v normal vector returned << FP12_SHIFT */ void pie_SurfaceNormal3fv(Vector3f *p1, Vector3f *p2, Vector3f *p3, Vector3f *v) { Vector3f a, b; a.x = p3->x - p1->x; a.y = p3->y - p1->y; a.z = p3->z - p1->z; pie_VectorNormalise3fv(&a); b.x = p2->x - p1->x; b.y = p2->y - p1->y; b.z = p2->z - p1->z; pie_VectorNormalise3fv(&b); v->x = ((a.y * b.z) - (a.z * b.y)) / FP12_MULTIPLIER; v->y = ((a.z * b.x) - (a.x * b.z)) / FP12_MULTIPLIER; v->z = ((a.x * b.y) - (a.y * b.x)) / FP12_MULTIPLIER; pie_VectorNormalise3fv(v); } #define SC_TABLESIZE 4096 //************************************************************************* static SDMATRIX _MATRIX_ID = {FP12_MULTIPLIER, 0, 0, 0, FP12_MULTIPLIER, 0, 0, 0, FP12_MULTIPLIER, 0L, 0L, 0L}; static SDWORD _MATRIX_INDEX; //************************************************************************* SDWORD aSinTable[SC_TABLESIZE + (SC_TABLESIZE/4)]; //************************************************************************* //*** reset transformation matrix stack and make current identity //* //****** static void pie_MatReset(void) { psMatrix = &aMatrixStack[0]; // make 1st matrix identity *psMatrix = _MATRIX_ID; glLoadIdentity(); } //************************************************************************* //*** create new matrix from current transformation matrix and make current //* //****** void pie_MatBegin(void) { _MATRIX_INDEX++; ASSERT( _MATRIX_INDEX < MATRIX_MAX, "pie_MatBegin past top of the stack" ); psMatrix++; aMatrixStack[_MATRIX_INDEX] = aMatrixStack[_MATRIX_INDEX-1]; glPushMatrix(); } //************************************************************************* //*** make current transformation matrix previous one on stack //* //****** void pie_MatEnd(void) { _MATRIX_INDEX--; ASSERT( _MATRIX_INDEX >= 0, "pie_MatEnd of the bottom of the stack" ); psMatrix--; glPopMatrix(); } void pie_MATTRANS(int x, int y, int z) { GLfloat matrix[16]; psMatrix->j = x<k = y<l = z<j += ((x) * psMatrix->a + (y) * psMatrix->d + (z) * psMatrix->g); psMatrix->k += ((x) * psMatrix->b + (y) * psMatrix->e + (z) * psMatrix->h); psMatrix->l += ((x) * psMatrix->c + (y) * psMatrix->f + (z) * psMatrix->i); glTranslatef(x, y, z); } //************************************************************************* //*** matrix scale current transformation matrix //* //****** void pie_MatScale( UDWORD percent ) { SDWORD scaleFactor; if (percent == 100) { return; } scaleFactor = percent * ONE_PERCENT; psMatrix->a = (psMatrix->a * scaleFactor) / 4096; psMatrix->b = (psMatrix->b * scaleFactor) / 4096; psMatrix->c = (psMatrix->c * scaleFactor) / 4096; psMatrix->d = (psMatrix->d * scaleFactor) / 4096; psMatrix->e = (psMatrix->e * scaleFactor) / 4096; psMatrix->f = (psMatrix->f * scaleFactor) / 4096; psMatrix->g = (psMatrix->g * scaleFactor) / 4096; psMatrix->h = (psMatrix->h * scaleFactor) / 4096; psMatrix->i = (psMatrix->i * scaleFactor) / 4096; glScalef(0.01f*percent, 0.01f*percent, 0.01f*percent); } //************************************************************************* //*** matrix rotate y (yaw) current transformation matrix //* //****** void pie_MatRotY(int y) { // printf("pie_MatRotY %i\n", y); int t; int cra, sra; if (y != 0) { cra = COS(y); sra = SIN(y); t = ((cra * psMatrix->a) - (sra * psMatrix->g))>>FP12_SHIFT; psMatrix->g = ((sra * psMatrix->a) + (cra * psMatrix->g))>>FP12_SHIFT; psMatrix->a = t; t = ((cra * psMatrix->b) - (sra * psMatrix->h))>>FP12_SHIFT; psMatrix->h = ((sra * psMatrix->b) + (cra * psMatrix->h))>>FP12_SHIFT; psMatrix->b = t; t = ((cra * psMatrix->c) - (sra * psMatrix->i))>>FP12_SHIFT; psMatrix->i = ((sra * psMatrix->c) + (cra * psMatrix->i))>>FP12_SHIFT; psMatrix->c = t; } glRotatef(y*22.5f/4096.0f, 0.0f, 1.0f, 0.0f); } //************************************************************************* //*** matrix rotate z (roll) current transformation matrix //* //****** void pie_MatRotZ(int z) { // printf("pie_MatRotZ %i\n", z); int t; int cra, sra; if (z != 0) { cra = COS(z); sra = SIN(z); t = ((cra * psMatrix->a) + (sra * psMatrix->d))>>FP12_SHIFT; psMatrix->d = ((cra * psMatrix->d) - (sra * psMatrix->a))>>FP12_SHIFT; psMatrix->a = t; t = ((cra * psMatrix->b) + (sra * psMatrix->e))>>FP12_SHIFT; psMatrix->e = ((cra * psMatrix->e) - (sra * psMatrix->b))>>FP12_SHIFT; psMatrix->b = t; t = ((cra * psMatrix->c) + (sra * psMatrix->f))>>FP12_SHIFT; psMatrix->f = ((cra * psMatrix->f) - (sra * psMatrix->c))>>FP12_SHIFT; psMatrix->c = t; } glRotatef(z*22.5f/4096.0f, 0.0f, 0.0f, 1.0f); } //************************************************************************* //*** matrix rotate x (pitch) current transformation matrix //* //****** void pie_MatRotX(int x) { // printf("pie_MatRotX %i\n", x); int cra, sra; int t; if (x != 0) { cra = COS(x); sra = SIN(x); t = ((cra * psMatrix->d) + (sra * psMatrix->g))>>FP12_SHIFT; psMatrix->g = ((cra * psMatrix->g) - (sra * psMatrix->d))>>FP12_SHIFT; psMatrix->d = t; t = ((cra * psMatrix->e) + (sra * psMatrix->h))>>FP12_SHIFT; psMatrix->h = ((cra * psMatrix->h) - (sra * psMatrix->e))>>FP12_SHIFT; psMatrix->e = t; t = ((cra * psMatrix->f) + (sra * psMatrix->i))>>FP12_SHIFT; psMatrix->i = ((cra * psMatrix->i) - (sra * psMatrix->f))>>FP12_SHIFT; psMatrix->f = t; } glRotatef(x*22.5f/4096.0f, 1.0f, 0.0f, 0.0f); } /*! * 3D vector perspective projection * Projects 3D vector into 2D screen space * \param v3d 3D vector to project * \param v2d resulting 2D vector * \return projected z component of v2d */ Sint32 pie_RotateProject(const Vector3i *v3d, Vector2i *v2d) { Sint32 zfx, zfy; Sint32 zz, _x, _y, _z; _x = v3d->x * psMatrix->a + v3d->y * psMatrix->d + v3d->z * psMatrix->g + psMatrix->j; _y = v3d->x * psMatrix->b + v3d->y * psMatrix->e + v3d->z * psMatrix->h + psMatrix->k; _z = v3d->x * psMatrix->c + v3d->y * psMatrix->f + v3d->z * psMatrix->i + psMatrix->l; zz = _z >> STRETCHED_Z_SHIFT; zfx = _z >> psRendSurface->xpshift; zfy = _z >> psRendSurface->ypshift; if (zfx <= 0 || zfy <= 0 || zz < MIN_STRETCHED_Z) { v2d->x = LONG_WAY; //just along way off screen v2d->y = LONG_WAY; } else { v2d->x = psRendSurface->xcentre + (_x / zfx); v2d->y = psRendSurface->ycentre - (_y / zfy); } return zz; } //************************************************************************* void pie_PerspectiveBegin(void) { const float width = pie_GetVideoBufferWidth(); const float height = pie_GetVideoBufferHeight(); const float xangle = width/6; const float yangle = height/6; glMatrixMode(GL_PROJECTION); glLoadIdentity(); glTranslatef((2*psRendSurface->xcentre-width)/width, (height-2*psRendSurface->ycentre)/height , 0); glFrustum(-xangle, xangle, -yangle, yangle, 330, 100000); glScalef(1, 1, -1); glMatrixMode(GL_MODELVIEW); } void pie_PerspectiveEnd(void) { glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0, pie_GetVideoBufferWidth(), pie_GetVideoBufferHeight(), 0, 1, -1); glMatrixMode(GL_MODELVIEW); } void pie_Begin3DScene(void) { glDepthRange(0.1, 1); drawing_interface = FALSE; } void pie_BeginInterface(void) { glDepthRange(0, 0.1); drawing_interface = TRUE; } //************************************************************************* void pie_SetGeometricOffset(int x, int y) { psRendSurface->xcentre = x; psRendSurface->ycentre = y; } //************************************************************************* //*** inverse rotate 3D vector with current rotation matrix //* //* params v1 = pointer to 3D vector to rotate //* v2 = pointer to 3D resultant vector //* //* on exit v2 = inverse-rotated vector //* //****** void pie_VectorInverseRotate0(Vector3i *v1, Vector3i *v2) { Sint32 x, y, z; x = v1->x; y = v1->y; z = v1->z; v2->x = (x * psMatrix->a+y * psMatrix->b+z * psMatrix->c) >> FP12_SHIFT; v2->y = (x * psMatrix->d+y * psMatrix->e+z * psMatrix->f) >> FP12_SHIFT; v2->z = (x * psMatrix->g+y * psMatrix->h+z * psMatrix->i) >> FP12_SHIFT; } //************************************************************************* //*** setup transformation matrices/quaternions and trig tables //* //****** void pie_MatInit(void) { unsigned i, scsize; double conv, v; // sin/cos table scsize = SC_TABLESIZE + (SC_TABLESIZE / 4); conv = (double)(M_PI / (0.5 * SC_TABLESIZE)); for (i=0; i= 0.0) aSinTable[i] = (Sint32)(v + 0.5); else aSinTable[i] = (Sint32)(v - 0.5); } // init matrix/quat stack pie_MatReset(); debug(LOG_3D, "geo[_geo_setup] = setup successful"); }