/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "ComputedTimingFunction.h" #include "nsAlgorithm.h" // For clamped() #include "nsStyleUtil.h" namespace mozilla { void ComputedTimingFunction::Init(const nsTimingFunction &aFunction) { mType = aFunction.mType; if (nsTimingFunction::IsSplineType(mType)) { mTimingFunction.Init(aFunction.mFunc.mX1, aFunction.mFunc.mY1, aFunction.mFunc.mX2, aFunction.mFunc.mY2); } else { mSteps = aFunction.mSteps; } } static inline double StepTiming(uint32_t aSteps, double aPortion, ComputedTimingFunction::BeforeFlag aBeforeFlag, nsTimingFunction::Type aType) { MOZ_ASSERT(0.0 <= aPortion && aPortion <= 1.0, "out of range"); MOZ_ASSERT(aType == nsTimingFunction::Type::StepStart || aType == nsTimingFunction::Type::StepEnd, "invalid type"); if (aPortion == 1.0) { return 1.0; } // Calculate current step using step-end behavior uint32_t step = uint32_t(aPortion * aSteps); // floor // step-start is one step ahead if (aType == nsTimingFunction::Type::StepStart) { step++; } // If the "before flag" is set and we are at a transition point, // drop back a step (but only if we are not already at the zero point-- // we do this clamping here since |step| is an unsigned integer) if (step != 0 && aBeforeFlag == ComputedTimingFunction::BeforeFlag::Set && fmod(aPortion * aSteps, 1) == 0) { step--; } // Convert to a progress value return double(step) / double(aSteps); } double ComputedTimingFunction::GetValue( double aPortion, ComputedTimingFunction::BeforeFlag aBeforeFlag) const { if (HasSpline()) { // Check for a linear curve. // (GetSplineValue(), below, also checks this but doesn't work when // aPortion is outside the range [0.0, 1.0]). if (mTimingFunction.X1() == mTimingFunction.Y1() && mTimingFunction.X2() == mTimingFunction.Y2()) { return aPortion; } // Ensure that we return 0 or 1 on both edges. if (aPortion == 0.0) { return 0.0; } if (aPortion == 1.0) { return 1.0; } // For negative values, try to extrapolate with tangent (p1 - p0) or, // if p1 is coincident with p0, with (p2 - p0). if (aPortion < 0.0) { if (mTimingFunction.X1() > 0.0) { return aPortion * mTimingFunction.Y1() / mTimingFunction.X1(); } else if (mTimingFunction.Y1() == 0 && mTimingFunction.X2() > 0.0) { return aPortion * mTimingFunction.Y2() / mTimingFunction.X2(); } // If we can't calculate a sensible tangent, don't extrapolate at all. return 0.0; } // For values greater than 1, try to extrapolate with tangent (p2 - p3) or, // if p2 is coincident with p3, with (p1 - p3). if (aPortion > 1.0) { if (mTimingFunction.X2() < 1.0) { return 1.0 + (aPortion - 1.0) * (mTimingFunction.Y2() - 1) / (mTimingFunction.X2() - 1); } else if (mTimingFunction.Y2() == 1 && mTimingFunction.X1() < 1.0) { return 1.0 + (aPortion - 1.0) * (mTimingFunction.Y1() - 1) / (mTimingFunction.X1() - 1); } // If we can't calculate a sensible tangent, don't extrapolate at all. return 1.0; } return mTimingFunction.GetSplineValue(aPortion); } // Since we use endpoint-exclusive timing, the output of a steps(start) timing // function when aPortion = 0.0 is the top of the first step. When aPortion is // negative, however, we should use the bottom of the first step. We handle // negative values of aPortion specially here since once we clamp aPortion // to [0,1] below we will no longer be able to distinguish to the two cases. if (aPortion < 0.0) { return 0.0; } // Clamp in case of steps(end) and steps(start) for values greater than 1. aPortion = clamped(aPortion, 0.0, 1.0); return StepTiming(mSteps, aPortion, aBeforeFlag, mType); } int32_t ComputedTimingFunction::Compare(const ComputedTimingFunction& aRhs) const { if (mType != aRhs.mType) { return int32_t(mType) - int32_t(aRhs.mType); } if (mType == nsTimingFunction::Type::CubicBezier) { int32_t order = mTimingFunction.Compare(aRhs.mTimingFunction); if (order != 0) { return order; } } else if (mType == nsTimingFunction::Type::StepStart || mType == nsTimingFunction::Type::StepEnd) { if (mSteps != aRhs.mSteps) { return int32_t(mSteps) - int32_t(aRhs.mSteps); } } return 0; } void ComputedTimingFunction::AppendToString(nsAString& aResult) const { switch (mType) { case nsTimingFunction::Type::CubicBezier: nsStyleUtil::AppendCubicBezierTimingFunction(mTimingFunction.X1(), mTimingFunction.Y1(), mTimingFunction.X2(), mTimingFunction.Y2(), aResult); break; case nsTimingFunction::Type::StepStart: case nsTimingFunction::Type::StepEnd: nsStyleUtil::AppendStepsTimingFunction(mType, mSteps, aResult); break; default: nsStyleUtil::AppendCubicBezierKeywordTimingFunction(mType, aResult); break; } } /* static */ int32_t ComputedTimingFunction::Compare(const Maybe& aLhs, const Maybe& aRhs) { // We can't use |operator<| for const Maybe<>& here because // 'ease' is prior to 'linear' which is represented by Nothing(). // So we have to convert Nothing() as 'linear' and check it first. nsTimingFunction::Type lhsType = aLhs.isNothing() ? nsTimingFunction::Type::Linear : aLhs->GetType(); nsTimingFunction::Type rhsType = aRhs.isNothing() ? nsTimingFunction::Type::Linear : aRhs->GetType(); if (lhsType != rhsType) { return int32_t(lhsType) - int32_t(rhsType); } // Both of them are Nothing(). if (lhsType == nsTimingFunction::Type::Linear) { return 0; } // Other types. return aLhs->Compare(aRhs.value()); } } // namespace mozilla