const std = @import("../index.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const mem = std.mem; const posix = std.os.posix; const windows = std.os.windows; const AtomicRmwOp = builtin.AtomicRmwOp; const AtomicOrder = builtin.AtomicOrder; pub const Loop = struct { allocator: *mem.Allocator, next_tick_queue: std.atomic.Queue(promise), os_data: OsData, final_resume_node: ResumeNode, pending_event_count: usize, extra_threads: []*std.os.Thread, // pre-allocated eventfds. all permanently active. // this is how we send promises to be resumed on other threads. available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd), eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node, pub const NextTickNode = std.atomic.Queue(promise).Node; pub const ResumeNode = struct { id: Id, handle: promise, pub const Id = enum { Basic, Stop, EventFd, }; pub const EventFd = switch (builtin.os) { builtin.Os.macosx => MacOsEventFd, builtin.Os.linux => struct { base: ResumeNode, epoll_op: u32, eventfd: i32, }, builtin.Os.windows => struct { base: ResumeNode, completion_key: usize, }, else => @compileError("unsupported OS"), }; const MacOsEventFd = struct { base: ResumeNode, kevent: posix.Kevent, }; }; /// After initialization, call run(). /// TODO copy elision / named return values so that the threads referencing *Loop /// have the correct pointer value. fn initSingleThreaded(self: *Loop, allocator: *mem.Allocator) !void { return self.initInternal(allocator, 1); } /// The allocator must be thread-safe because we use it for multiplexing /// coroutines onto kernel threads. /// After initialization, call run(). /// TODO copy elision / named return values so that the threads referencing *Loop /// have the correct pointer value. fn initMultiThreaded(self: *Loop, allocator: *mem.Allocator) !void { const core_count = try std.os.cpuCount(allocator); return self.initInternal(allocator, core_count); } /// Thread count is the total thread count. The thread pool size will be /// max(thread_count - 1, 0) fn initInternal(self: *Loop, allocator: *mem.Allocator, thread_count: usize) !void { self.* = Loop{ .pending_event_count = 1, .allocator = allocator, .os_data = undefined, .next_tick_queue = std.atomic.Queue(promise).init(), .extra_threads = undefined, .available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init(), .eventfd_resume_nodes = undefined, .final_resume_node = ResumeNode{ .id = ResumeNode.Id.Stop, .handle = undefined, }, }; const extra_thread_count = thread_count - 1; self.eventfd_resume_nodes = try self.allocator.alloc( std.atomic.Stack(ResumeNode.EventFd).Node, extra_thread_count, ); errdefer self.allocator.free(self.eventfd_resume_nodes); self.extra_threads = try self.allocator.alloc(*std.os.Thread, extra_thread_count); errdefer self.allocator.free(self.extra_threads); try self.initOsData(extra_thread_count); errdefer self.deinitOsData(); } pub fn deinit(self: *Loop) void { self.deinitOsData(); self.allocator.free(self.extra_threads); } const InitOsDataError = std.os.LinuxEpollCreateError || mem.Allocator.Error || std.os.LinuxEventFdError || std.os.SpawnThreadError || std.os.LinuxEpollCtlError || std.os.BsdKEventError || std.os.WindowsCreateIoCompletionPortError; const wakeup_bytes = []u8{0x1} ** 8; fn initOsData(self: *Loop, extra_thread_count: usize) InitOsDataError!void { switch (builtin.os) { builtin.Os.linux => { errdefer { while (self.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd); } for (self.eventfd_resume_nodes) |*eventfd_node| { eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{ .data = ResumeNode.EventFd{ .base = ResumeNode{ .id = ResumeNode.Id.EventFd, .handle = undefined, }, .eventfd = try std.os.linuxEventFd(1, posix.EFD_CLOEXEC | posix.EFD_NONBLOCK), .epoll_op = posix.EPOLL_CTL_ADD, }, .next = undefined, }; self.available_eventfd_resume_nodes.push(eventfd_node); } self.os_data.epollfd = try std.os.linuxEpollCreate(posix.EPOLL_CLOEXEC); errdefer std.os.close(self.os_data.epollfd); self.os_data.final_eventfd = try std.os.linuxEventFd(0, posix.EFD_CLOEXEC | posix.EFD_NONBLOCK); errdefer std.os.close(self.os_data.final_eventfd); self.os_data.final_eventfd_event = posix.epoll_event{ .events = posix.EPOLLIN, .data = posix.epoll_data{ .ptr = @ptrToInt(&self.final_resume_node) }, }; try std.os.linuxEpollCtl( self.os_data.epollfd, posix.EPOLL_CTL_ADD, self.os_data.final_eventfd, &self.os_data.final_eventfd_event, ); var extra_thread_index: usize = 0; errdefer { // writing 8 bytes to an eventfd cannot fail std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable; while (extra_thread_index != 0) { extra_thread_index -= 1; self.extra_threads[extra_thread_index].wait(); } } while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) { self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun); } }, builtin.Os.macosx => { self.os_data.kqfd = try std.os.bsdKQueue(); errdefer std.os.close(self.os_data.kqfd); self.os_data.kevents = try self.allocator.alloc(posix.Kevent, extra_thread_count); errdefer self.allocator.free(self.os_data.kevents); const eventlist = ([*]posix.Kevent)(undefined)[0..0]; for (self.eventfd_resume_nodes) |*eventfd_node, i| { eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{ .data = ResumeNode.EventFd{ .base = ResumeNode{ .id = ResumeNode.Id.EventFd, .handle = undefined, }, // this one is for sending events .kevent = posix.Kevent{ .ident = i, .filter = posix.EVFILT_USER, .flags = posix.EV_CLEAR | posix.EV_ADD | posix.EV_DISABLE, .fflags = 0, .data = 0, .udata = @ptrToInt(&eventfd_node.data.base), }, }, .next = undefined, }; self.available_eventfd_resume_nodes.push(eventfd_node); const kevent_array = (*[1]posix.Kevent)(&eventfd_node.data.kevent); _ = try std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null); eventfd_node.data.kevent.flags = posix.EV_CLEAR | posix.EV_ENABLE; eventfd_node.data.kevent.fflags = posix.NOTE_TRIGGER; // this one is for waiting for events self.os_data.kevents[i] = posix.Kevent{ .ident = i, .filter = posix.EVFILT_USER, .flags = 0, .fflags = 0, .data = 0, .udata = @ptrToInt(&eventfd_node.data.base), }; } // Pre-add so that we cannot get error.SystemResources // later when we try to activate it. self.os_data.final_kevent = posix.Kevent{ .ident = extra_thread_count, .filter = posix.EVFILT_USER, .flags = posix.EV_ADD | posix.EV_DISABLE, .fflags = 0, .data = 0, .udata = @ptrToInt(&self.final_resume_node), }; const kevent_array = (*[1]posix.Kevent)(&self.os_data.final_kevent); _ = try std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null); self.os_data.final_kevent.flags = posix.EV_ENABLE; self.os_data.final_kevent.fflags = posix.NOTE_TRIGGER; var extra_thread_index: usize = 0; errdefer { _ = std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null) catch unreachable; while (extra_thread_index != 0) { extra_thread_index -= 1; self.extra_threads[extra_thread_index].wait(); } } while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) { self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun); } }, builtin.Os.windows => { self.os_data.io_port = try std.os.windowsCreateIoCompletionPort( windows.INVALID_HANDLE_VALUE, null, undefined, undefined, ); errdefer std.os.close(self.os_data.io_port); for (self.eventfd_resume_nodes) |*eventfd_node, i| { eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{ .data = ResumeNode.EventFd{ .base = ResumeNode{ .id = ResumeNode.Id.EventFd, .handle = undefined, }, // this one is for sending events .completion_key = @ptrToInt(&eventfd_node.data.base), }, .next = undefined, }; self.available_eventfd_resume_nodes.push(eventfd_node); } var extra_thread_index: usize = 0; errdefer { var i: usize = 0; while (i < extra_thread_index) : (i += 1) { while (true) { const overlapped = @intToPtr(?*windows.OVERLAPPED, 0x1); std.os.windowsPostQueuedCompletionStatus(self.os_data.io_port, undefined, @ptrToInt(&self.final_resume_node), overlapped) catch continue; break; } } while (extra_thread_index != 0) { extra_thread_index -= 1; self.extra_threads[extra_thread_index].wait(); } } while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) { self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun); } }, else => {}, } } fn deinitOsData(self: *Loop) void { switch (builtin.os) { builtin.Os.linux => { std.os.close(self.os_data.final_eventfd); while (self.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd); std.os.close(self.os_data.epollfd); self.allocator.free(self.eventfd_resume_nodes); }, builtin.Os.macosx => { self.allocator.free(self.os_data.kevents); std.os.close(self.os_data.kqfd); }, builtin.Os.windows => { std.os.close(self.os_data.io_port); }, else => {}, } } /// resume_node must live longer than the promise that it holds a reference to. pub fn addFd(self: *Loop, fd: i32, resume_node: *ResumeNode) !void { _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst); errdefer { self.finishOneEvent(); } try self.modFd( fd, posix.EPOLL_CTL_ADD, std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET, resume_node, ); } pub fn modFd(self: *Loop, fd: i32, op: u32, events: u32, resume_node: *ResumeNode) !void { var ev = std.os.linux.epoll_event{ .events = events, .data = std.os.linux.epoll_data{ .ptr = @ptrToInt(resume_node) }, }; try std.os.linuxEpollCtl(self.os_data.epollfd, op, fd, &ev); } pub fn removeFd(self: *Loop, fd: i32) void { self.removeFdNoCounter(fd); self.finishOneEvent(); } fn removeFdNoCounter(self: *Loop, fd: i32) void { std.os.linuxEpollCtl(self.os_data.epollfd, std.os.linux.EPOLL_CTL_DEL, fd, undefined) catch {}; } pub async fn waitFd(self: *Loop, fd: i32) !void { defer self.removeFd(fd); suspend |p| { // TODO explicitly put this memory in the coroutine frame #1194 var resume_node = ResumeNode{ .id = ResumeNode.Id.Basic, .handle = p, }; try self.addFd(fd, &resume_node); } } fn dispatch(self: *Loop) void { while (self.available_eventfd_resume_nodes.pop()) |resume_stack_node| { const next_tick_node = self.next_tick_queue.get() orelse { self.available_eventfd_resume_nodes.push(resume_stack_node); return; }; const eventfd_node = &resume_stack_node.data; eventfd_node.base.handle = next_tick_node.data; switch (builtin.os) { builtin.Os.macosx => { const kevent_array = (*[1]posix.Kevent)(&eventfd_node.kevent); const eventlist = ([*]posix.Kevent)(undefined)[0..0]; _ = std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null) catch { self.next_tick_queue.unget(next_tick_node); self.available_eventfd_resume_nodes.push(resume_stack_node); return; }; }, builtin.Os.linux => { // the pending count is already accounted for const epoll_events = posix.EPOLLONESHOT | std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET; self.modFd( eventfd_node.eventfd, eventfd_node.epoll_op, epoll_events, &eventfd_node.base, ) catch { self.next_tick_queue.unget(next_tick_node); self.available_eventfd_resume_nodes.push(resume_stack_node); return; }; }, builtin.Os.windows => { // this value is never dereferenced but we need it to be non-null so that // the consumer code can decide whether to read the completion key. // it has to do this for normal I/O, so we match that behavior here. const overlapped = @intToPtr(?*windows.OVERLAPPED, 0x1); std.os.windowsPostQueuedCompletionStatus( self.os_data.io_port, undefined, eventfd_node.completion_key, overlapped, ) catch { self.next_tick_queue.unget(next_tick_node); self.available_eventfd_resume_nodes.push(resume_stack_node); return; }; }, else => @compileError("unsupported OS"), } } } /// Bring your own linked list node. This means it can't fail. pub fn onNextTick(self: *Loop, node: *NextTickNode) void { _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst); self.next_tick_queue.put(node); self.dispatch(); } pub fn run(self: *Loop) void { self.finishOneEvent(); // the reference we start with self.workerRun(); for (self.extra_threads) |extra_thread| { extra_thread.wait(); } } /// This is equivalent to an async call, except instead of beginning execution of the async function, /// it immediately returns to the caller, and the async function is queued in the event loop. It still /// returns a promise to be awaited. pub fn call(self: *Loop, comptime func: var, args: ...) !(promise->@typeOf(func).ReturnType) { const S = struct { async fn asyncFunc(loop: *Loop, handle: *promise->@typeOf(func).ReturnType, args2: ...) @typeOf(func).ReturnType { suspend |p| { handle.* = p; var my_tick_node = Loop.NextTickNode{ .next = undefined, .data = p, }; loop.onNextTick(&my_tick_node); } // TODO guaranteed allocation elision for await in same func as async return await (async func(args2) catch unreachable); } }; var handle: promise->@typeOf(func).ReturnType = undefined; return async S.asyncFunc(self, &handle, args); } /// Awaiting a yield lets the event loop run, starting any unstarted async operations. /// Note that async operations automatically start when a function yields for any other reason, /// for example, when async I/O is performed. This function is intended to be used only when /// CPU bound tasks would be waiting in the event loop but never get started because no async I/O /// is performed. pub async fn yield(self: *Loop) void { suspend |p| { var my_tick_node = Loop.NextTickNode{ .next = undefined, .data = p, }; self.onNextTick(&my_tick_node); } } fn finishOneEvent(self: *Loop) void { if (@atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst) == 1) { // cause all the threads to stop switch (builtin.os) { builtin.Os.linux => { // writing 8 bytes to an eventfd cannot fail std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable; return; }, builtin.Os.macosx => { const final_kevent = (*[1]posix.Kevent)(&self.os_data.final_kevent); const eventlist = ([*]posix.Kevent)(undefined)[0..0]; // cannot fail because we already added it and this just enables it _ = std.os.bsdKEvent(self.os_data.kqfd, final_kevent, eventlist, null) catch unreachable; return; }, builtin.Os.windows => { var i: usize = 0; while (i < self.extra_threads.len + 1) : (i += 1) { while (true) { const overlapped = @intToPtr(?*windows.OVERLAPPED, 0x1); std.os.windowsPostQueuedCompletionStatus(self.os_data.io_port, undefined, @ptrToInt(&self.final_resume_node), overlapped) catch continue; break; } } return; }, else => @compileError("unsupported OS"), } } } fn workerRun(self: *Loop) void { while (true) { while (true) { const next_tick_node = self.next_tick_queue.get() orelse break; self.dispatch(); resume next_tick_node.data; self.finishOneEvent(); } switch (builtin.os) { builtin.Os.linux => { // only process 1 event so we don't steal from other threads var events: [1]std.os.linux.epoll_event = undefined; const count = std.os.linuxEpollWait(self.os_data.epollfd, events[0..], -1); for (events[0..count]) |ev| { const resume_node = @intToPtr(*ResumeNode, ev.data.ptr); const handle = resume_node.handle; const resume_node_id = resume_node.id; switch (resume_node_id) { ResumeNode.Id.Basic => {}, ResumeNode.Id.Stop => return, ResumeNode.Id.EventFd => { const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node); event_fd_node.epoll_op = posix.EPOLL_CTL_MOD; const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node); self.available_eventfd_resume_nodes.push(stack_node); }, } resume handle; if (resume_node_id == ResumeNode.Id.EventFd) { self.finishOneEvent(); } } }, builtin.Os.macosx => { var eventlist: [1]posix.Kevent = undefined; const count = std.os.bsdKEvent(self.os_data.kqfd, self.os_data.kevents, eventlist[0..], null) catch unreachable; for (eventlist[0..count]) |ev| { const resume_node = @intToPtr(*ResumeNode, ev.udata); const handle = resume_node.handle; const resume_node_id = resume_node.id; switch (resume_node_id) { ResumeNode.Id.Basic => {}, ResumeNode.Id.Stop => return, ResumeNode.Id.EventFd => { const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node); const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node); self.available_eventfd_resume_nodes.push(stack_node); }, } resume handle; if (resume_node_id == ResumeNode.Id.EventFd) { self.finishOneEvent(); } } }, builtin.Os.windows => { var completion_key: usize = undefined; while (true) { var nbytes: windows.DWORD = undefined; var overlapped: ?*windows.OVERLAPPED = undefined; switch (std.os.windowsGetQueuedCompletionStatus(self.os_data.io_port, &nbytes, &completion_key, &overlapped, windows.INFINITE)) { std.os.WindowsWaitResult.Aborted => return, std.os.WindowsWaitResult.Normal => {}, } if (overlapped != null) break; } const resume_node = @intToPtr(*ResumeNode, completion_key); const handle = resume_node.handle; const resume_node_id = resume_node.id; switch (resume_node_id) { ResumeNode.Id.Basic => {}, ResumeNode.Id.Stop => return, ResumeNode.Id.EventFd => { const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node); const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node); self.available_eventfd_resume_nodes.push(stack_node); }, } resume handle; if (resume_node_id == ResumeNode.Id.EventFd) { self.finishOneEvent(); } }, else => @compileError("unsupported OS"), } } } const OsData = switch (builtin.os) { builtin.Os.linux => struct { epollfd: i32, final_eventfd: i32, final_eventfd_event: std.os.linux.epoll_event, }, builtin.Os.macosx => MacOsData, builtin.Os.windows => struct { io_port: windows.HANDLE, extra_thread_count: usize, }, else => struct {}, }; const MacOsData = struct { kqfd: i32, final_kevent: posix.Kevent, kevents: []posix.Kevent, }; }; test "std.event.Loop - basic" { var da = std.heap.DirectAllocator.init(); defer da.deinit(); const allocator = &da.allocator; var loop: Loop = undefined; try loop.initMultiThreaded(allocator); defer loop.deinit(); loop.run(); } test "std.event.Loop - call" { var da = std.heap.DirectAllocator.init(); defer da.deinit(); const allocator = &da.allocator; var loop: Loop = undefined; try loop.initMultiThreaded(allocator); defer loop.deinit(); var did_it = false; const handle = try loop.call(testEventLoop); const handle2 = try loop.call(testEventLoop2, handle, &did_it); defer cancel handle2; loop.run(); assert(did_it); } async fn testEventLoop() i32 { return 1234; } async fn testEventLoop2(h: promise->i32, did_it: *bool) void { const value = await h; assert(value == 1234); did_it.* = true; }