// Special Cases: // // - sinh(+-0) = +-0 // - sinh(+-inf) = +-inf // - sinh(nan) = nan const builtin = @import("builtin"); const std = @import("../index.zig"); const math = std.math; const assert = std.debug.assert; const expo2 = @import("expo2.zig").expo2; pub fn sinh(x: var) @typeOf(x) { const T = @typeOf(x); return switch (T) { f32 => sinh32(x), f64 => sinh64(x), else => @compileError("sinh not implemented for " ++ @typeName(T)), }; } // sinh(x) = (exp(x) - 1 / exp(x)) / 2 // = (exp(x) - 1 + (exp(x) - 1) / exp(x)) / 2 // = x + x^3 / 6 + o(x^5) fn sinh32(x: f32) f32 { const u = @bitCast(u32, x); const ux = u & 0x7FFFFFFF; const ax = @bitCast(f32, ux); if (x == 0.0 or math.isNan(x)) { return x; } var h: f32 = 0.5; if (u >> 31 != 0) { h = -h; } // |x| < log(FLT_MAX) if (ux < 0x42B17217) { const t = math.expm1(ax); if (ux < 0x3F800000) { if (ux < 0x3F800000 - (12 << 23)) { return x; } else { return h * (2 * t - t * t / (t + 1)); } } return h * (t + t / (t + 1)); } // |x| > log(FLT_MAX) or nan return 2 * h * expo2(ax); } fn sinh64(x: f64) f64 { const u = @bitCast(u64, x); const w = @intCast(u32, u >> 32); const ax = @bitCast(f64, u & (@maxValue(u64) >> 1)); if (x == 0.0 or math.isNan(x)) { return x; } var h: f32 = 0.5; if (u >> 63 != 0) { h = -h; } // |x| < log(FLT_MAX) if (w < 0x40862E42) { const t = math.expm1(ax); if (w < 0x3FF00000) { if (w < 0x3FF00000 - (26 << 20)) { return x; } else { return h * (2 * t - t * t / (t + 1)); } } // NOTE: |x| > log(0x1p26) + eps could be h * exp(x) return h * (t + t / (t + 1)); } // |x| > log(DBL_MAX) or nan return 2 * h * expo2(ax); } test "math.sinh" { assert(sinh(f32(1.5)) == sinh32(1.5)); assert(sinh(f64(1.5)) == sinh64(1.5)); } test "math.sinh32" { const epsilon = 0.000001; assert(math.approxEq(f32, sinh32(0.0), 0.0, epsilon)); assert(math.approxEq(f32, sinh32(0.2), 0.201336, epsilon)); assert(math.approxEq(f32, sinh32(0.8923), 1.015512, epsilon)); assert(math.approxEq(f32, sinh32(1.5), 2.129279, epsilon)); } test "math.sinh64" { const epsilon = 0.000001; assert(math.approxEq(f64, sinh64(0.0), 0.0, epsilon)); assert(math.approxEq(f64, sinh64(0.2), 0.201336, epsilon)); assert(math.approxEq(f64, sinh64(0.8923), 1.015512, epsilon)); assert(math.approxEq(f64, sinh64(1.5), 2.129279, epsilon)); } test "math.sinh32.special" { assert(sinh32(0.0) == 0.0); assert(sinh32(-0.0) == -0.0); assert(math.isPositiveInf(sinh32(math.inf(f32)))); assert(math.isNegativeInf(sinh32(-math.inf(f32)))); assert(math.isNan(sinh32(math.nan(f32)))); } test "math.sinh64.special" { assert(sinh64(0.0) == 0.0); assert(sinh64(-0.0) == -0.0); assert(math.isPositiveInf(sinh64(math.inf(f64)))); assert(math.isNegativeInf(sinh64(-math.inf(f64)))); assert(math.isNan(sinh64(math.nan(f64)))); }