const math = @import("index.zig"); const assert = @import("../debug.zig").assert; pub const tan = tan_workaround; pub fn tan_workaround(x: var) -> @typeOf(x) { const T = @typeOf(x); switch (T) { f32 => @inlineCall(tan32, x), f64 => @inlineCall(tan64, x), else => @compileError("tan not implemented for " ++ @typeName(T)), } } const Tp0 = -1.30936939181383777646E4; const Tp1 = 1.15351664838587416140E6; const Tp2 = -1.79565251976484877988E7; const Tq1 = 1.36812963470692954678E4; const Tq2 = -1.32089234440210967447E6; const Tq3 = 2.50083801823357915839E7; const Tq4 = -5.38695755929454629881E7; // NOTE: This is taken from the go stdlib. The musl implementation is much more complex. // // This may have slight differences on some edge cases and may need to replaced if so. fn tan32(x_: f32) -> f32 { @setFloatMode(this, @import("builtin").FloatMode.Strict); const pi4a = 7.85398125648498535156e-1; const pi4b = 3.77489470793079817668E-8; const pi4c = 2.69515142907905952645E-15; const m4pi = 1.273239544735162542821171882678754627704620361328125; var x = x_; if (x == 0 or math.isNan(x)) { return x; } if (math.isInf(x)) { return math.nan(f32); } var sign = false; if (x < 0) { x = -x; sign = true; } var y = math.floor(x * m4pi); var j = i64(y); if (j & 1 == 1) { j += 1; y += 1; } const z = ((x - y * pi4a) - y * pi4b) - y * pi4c; const w = z * z; var r = { if (w > 1e-14) { z + z * (w * ((Tp0 * w + Tp1) * w + Tp2) / ((((w + Tq1) * w + Tq2) * w + Tq3) * w + Tq4)) } else { z } }; if (j & 2 == 2) { r = -1 / r; } if (sign) { r = -r; } r } fn tan64(x_: f64) -> f64 { const pi4a = 7.85398125648498535156e-1; const pi4b = 3.77489470793079817668E-8; const pi4c = 2.69515142907905952645E-15; const m4pi = 1.273239544735162542821171882678754627704620361328125; var x = x_; if (x == 0 or math.isNan(x)) { return x; } if (math.isInf(x)) { return math.nan(f64); } var sign = false; if (x < 0) { x = -x; sign = true; } var y = math.floor(x * m4pi); var j = i64(y); if (j & 1 == 1) { j += 1; y += 1; } const z = ((x - y * pi4a) - y * pi4b) - y * pi4c; const w = z * z; var r = { if (w > 1e-14) { z + z * (w * ((Tp0 * w + Tp1) * w + Tp2) / ((((w + Tq1) * w + Tq2) * w + Tq3) * w + Tq4)) } else { z } }; if (j & 2 == 2) { r = -1 / r; } if (sign) { r = -r; } r } test "math.tan" { assert(tan(f32(0.0)) == tan32(0.0)); assert(tan(f64(0.0)) == tan64(0.0)); } test "math.tan32" { const epsilon = 0.000001; assert(math.approxEq(f32, tan32(0.0), 0.0, epsilon)); assert(math.approxEq(f32, tan32(0.2), 0.202710, epsilon)); assert(math.approxEq(f32, tan32(0.8923), 1.240422, epsilon)); assert(math.approxEq(f32, tan32(1.5), 14.101420, epsilon)); assert(math.approxEq(f32, tan32(37.45), -0.254397, epsilon)); assert(math.approxEq(f32, tan32(89.123), 2.285852, epsilon)); } test "math.tan64" { const epsilon = 0.000001; assert(math.approxEq(f64, tan64(0.0), 0.0, epsilon)); assert(math.approxEq(f64, tan64(0.2), 0.202710, epsilon)); assert(math.approxEq(f64, tan64(0.8923), 1.240422, epsilon)); assert(math.approxEq(f64, tan64(1.5), 14.101420, epsilon)); assert(math.approxEq(f64, tan64(37.45), -0.254397, epsilon)); assert(math.approxEq(f64, tan64(89.123), 2.2858376, epsilon)); }