/* * Copyright (c) 2016 Andrew Kelley * * This file is part of zig, which is MIT licensed. * See http://opensource.org/licenses/MIT */ #include "analyze.hpp" #include "ast_render.hpp" #include "error.hpp" #include "ir.hpp" #include "ir_print.hpp" #include "os.hpp" #include "range_set.hpp" #include "softfloat.hpp" #include "translate_c.hpp" #include "util.hpp" #include struct IrExecContext { ZigList mem_slot_list; }; struct IrBuilder { CodeGen *codegen; IrExecutable *exec; IrBasicBlock *current_basic_block; AstNode *main_block_node; }; struct IrAnalyze { CodeGen *codegen; IrBuilder old_irb; IrBuilder new_irb; IrExecContext exec_context; size_t old_bb_index; size_t instruction_index; ZigType *explicit_return_type; AstNode *explicit_return_type_source_node; ZigList src_implicit_return_type_list; ZigList resume_stack; IrBasicBlock *const_predecessor_bb; }; enum ConstCastResultId { ConstCastResultIdOk, ConstCastResultIdInvalid, ConstCastResultIdErrSet, ConstCastResultIdErrSetGlobal, ConstCastResultIdPointerChild, ConstCastResultIdSliceChild, ConstCastResultIdOptionalChild, ConstCastResultIdErrorUnionPayload, ConstCastResultIdErrorUnionErrorSet, ConstCastResultIdFnAlign, ConstCastResultIdFnCC, ConstCastResultIdFnVarArgs, ConstCastResultIdFnIsGeneric, ConstCastResultIdFnReturnType, ConstCastResultIdFnArgCount, ConstCastResultIdFnGenericArgCount, ConstCastResultIdFnArg, ConstCastResultIdFnArgNoAlias, ConstCastResultIdType, ConstCastResultIdUnresolvedInferredErrSet, ConstCastResultIdAsyncAllocatorType, ConstCastResultIdBadAllowsZero, }; struct ConstCastOnly; struct ConstCastArg { size_t arg_index; ZigType *actual_param_type; ZigType *expected_param_type; ConstCastOnly *child; }; struct ConstCastArgNoAlias { size_t arg_index; }; struct ConstCastOptionalMismatch; struct ConstCastPointerMismatch; struct ConstCastSliceMismatch; struct ConstCastErrUnionErrSetMismatch; struct ConstCastErrUnionPayloadMismatch; struct ConstCastErrSetMismatch; struct ConstCastTypeMismatch; struct ConstCastBadAllowsZero; struct ConstCastOnly { ConstCastResultId id; union { ConstCastErrSetMismatch *error_set_mismatch; ConstCastPointerMismatch *pointer_mismatch; ConstCastSliceMismatch *slice_mismatch; ConstCastOptionalMismatch *optional; ConstCastErrUnionPayloadMismatch *error_union_payload; ConstCastErrUnionErrSetMismatch *error_union_error_set; ConstCastTypeMismatch *type_mismatch; ConstCastOnly *return_type; ConstCastOnly *null_wrap_ptr_child; ConstCastArg fn_arg; ConstCastArgNoAlias arg_no_alias; ConstCastBadAllowsZero *bad_allows_zero; } data; }; struct ConstCastTypeMismatch { ZigType *wanted_type; ZigType *actual_type; }; struct ConstCastOptionalMismatch { ConstCastOnly child; ZigType *wanted_child; ZigType *actual_child; }; struct ConstCastPointerMismatch { ConstCastOnly child; ZigType *wanted_child; ZigType *actual_child; }; struct ConstCastSliceMismatch { ConstCastOnly child; ZigType *wanted_child; ZigType *actual_child; }; struct ConstCastErrUnionErrSetMismatch { ConstCastOnly child; ZigType *wanted_err_set; ZigType *actual_err_set; }; struct ConstCastErrUnionPayloadMismatch { ConstCastOnly child; ZigType *wanted_payload; ZigType *actual_payload; }; struct ConstCastErrSetMismatch { ZigList missing_errors; }; struct ConstCastBadAllowsZero { ZigType *wanted_type; ZigType *actual_type; }; static IrInstruction *ir_gen_node(IrBuilder *irb, AstNode *node, Scope *scope); static IrInstruction *ir_gen_node_extra(IrBuilder *irb, AstNode *node, Scope *scope, LVal lval, ResultLoc *result_loc); static IrInstruction *ir_implicit_cast(IrAnalyze *ira, IrInstruction *value, ZigType *expected_type); static IrInstruction *ir_get_deref(IrAnalyze *ira, IrInstruction *source_instruction, IrInstruction *ptr, ResultLoc *result_loc); static ErrorMsg *exec_add_error_node(CodeGen *codegen, IrExecutable *exec, AstNode *source_node, Buf *msg); static IrInstruction *ir_analyze_container_field_ptr(IrAnalyze *ira, Buf *field_name, IrInstruction *source_instr, IrInstruction *container_ptr, ZigType *container_type, bool initializing); static void ir_assert(bool ok, IrInstruction *source_instruction); static IrInstruction *ir_get_var_ptr(IrAnalyze *ira, IrInstruction *instruction, ZigVar *var); static ZigType *ir_resolve_atomic_operand_type(IrAnalyze *ira, IrInstruction *op); static IrInstruction *ir_lval_wrap(IrBuilder *irb, Scope *scope, IrInstruction *value, LVal lval, ResultLoc *result_loc); static IrInstruction *ir_expr_wrap(IrBuilder *irb, Scope *scope, IrInstruction *inst, ResultLoc *result_loc); static ZigType *adjust_ptr_align(CodeGen *g, ZigType *ptr_type, uint32_t new_align); static ZigType *adjust_slice_align(CodeGen *g, ZigType *slice_type, uint32_t new_align); static Error buf_read_value_bytes(IrAnalyze *ira, CodeGen *codegen, AstNode *source_node, uint8_t *buf, ConstExprValue *val); static void buf_write_value_bytes(CodeGen *codegen, uint8_t *buf, ConstExprValue *val); static Error ir_read_const_ptr(IrAnalyze *ira, CodeGen *codegen, AstNode *source_node, ConstExprValue *out_val, ConstExprValue *ptr_val); static IrInstruction *ir_analyze_ptr_cast(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *ptr, ZigType *dest_type, IrInstruction *dest_type_src, bool safety_check_on); static ConstExprValue *ir_resolve_const(IrAnalyze *ira, IrInstruction *value, UndefAllowed undef_allowed); static void copy_const_val(ConstExprValue *dest, ConstExprValue *src, bool same_global_refs); static Error resolve_ptr_align(IrAnalyze *ira, ZigType *ty, uint32_t *result_align); static IrInstruction *ir_analyze_int_to_ptr(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *target, ZigType *ptr_type); static IrInstruction *ir_analyze_bit_cast(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value, ZigType *dest_type); static IrInstruction *ir_resolve_result_raw(IrAnalyze *ira, IrInstruction *suspend_source_instr, ResultLoc *result_loc, ZigType *value_type, IrInstruction *value, bool force_runtime, bool non_null_comptime); static IrInstruction *ir_resolve_result(IrAnalyze *ira, IrInstruction *suspend_source_instr, ResultLoc *result_loc, ZigType *value_type, IrInstruction *value, bool force_runtime, bool non_null_comptime, bool allow_discard); static IrInstruction *ir_analyze_unwrap_optional_payload(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *base_ptr, bool safety_check_on, bool initializing); static IrInstruction *ir_analyze_unwrap_error_payload(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *base_ptr, bool safety_check_on, bool initializing); static IrInstruction *ir_analyze_unwrap_err_code(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *base_ptr, bool initializing); static IrInstruction *ir_analyze_store_ptr(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *ptr, IrInstruction *uncasted_value, bool allow_write_through_const); static IrInstruction *ir_gen_union_init_expr(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *union_type, IrInstruction *field_name, AstNode *expr_node, LVal lval, ResultLoc *parent_result_loc); static ConstExprValue *const_ptr_pointee_unchecked(CodeGen *g, ConstExprValue *const_val) { assert(get_src_ptr_type(const_val->type) != nullptr); assert(const_val->special == ConstValSpecialStatic); ConstExprValue *result; switch (type_has_one_possible_value(g, const_val->type->data.pointer.child_type)) { case OnePossibleValueInvalid: zig_unreachable(); case OnePossibleValueYes: result = create_const_vals(1); result->type = const_val->type->data.pointer.child_type; result->special = ConstValSpecialStatic; return result; case OnePossibleValueNo: break; } switch (const_val->data.x_ptr.special) { case ConstPtrSpecialInvalid: zig_unreachable(); case ConstPtrSpecialRef: result = const_val->data.x_ptr.data.ref.pointee; break; case ConstPtrSpecialBaseArray: { ConstExprValue *array_val = const_val->data.x_ptr.data.base_array.array_val; expand_undef_array(g, array_val); result = &array_val->data.x_array.data.s_none.elements[const_val->data.x_ptr.data.base_array.elem_index]; break; } case ConstPtrSpecialBaseStruct: { ConstExprValue *struct_val = const_val->data.x_ptr.data.base_struct.struct_val; expand_undef_struct(g, struct_val); result = &struct_val->data.x_struct.fields[const_val->data.x_ptr.data.base_struct.field_index]; break; } case ConstPtrSpecialBaseErrorUnionCode: result = const_val->data.x_ptr.data.base_err_union_code.err_union_val->data.x_err_union.error_set; break; case ConstPtrSpecialBaseErrorUnionPayload: result = const_val->data.x_ptr.data.base_err_union_payload.err_union_val->data.x_err_union.payload; break; case ConstPtrSpecialBaseOptionalPayload: result = const_val->data.x_ptr.data.base_optional_payload.optional_val->data.x_optional; break; case ConstPtrSpecialNull: result = const_val; break; case ConstPtrSpecialHardCodedAddr: zig_unreachable(); case ConstPtrSpecialDiscard: zig_unreachable(); case ConstPtrSpecialFunction: zig_unreachable(); } assert(result != nullptr); return result; } static bool is_opt_err_set(ZigType *ty) { return ty->id == ZigTypeIdErrorSet || (ty->id == ZigTypeIdOptional && ty->data.maybe.child_type->id == ZigTypeIdErrorSet); } static bool is_slice(ZigType *type) { return type->id == ZigTypeIdStruct && type->data.structure.is_slice; } static bool slice_is_const(ZigType *type) { assert(is_slice(type)); return type->data.structure.fields[slice_ptr_index].type_entry->data.pointer.is_const; } // This function returns true when you can change the type of a ConstExprValue and the // value remains meaningful. static bool types_have_same_zig_comptime_repr(ZigType *a, ZigType *b) { if (a == b) return true; if (get_codegen_ptr_type(a) != nullptr && get_codegen_ptr_type(b) != nullptr) return true; if (is_opt_err_set(a) && is_opt_err_set(b)) return true; if (a->id != b->id) return false; switch (a->id) { case ZigTypeIdInvalid: case ZigTypeIdUnreachable: zig_unreachable(); case ZigTypeIdMetaType: case ZigTypeIdVoid: case ZigTypeIdBool: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdPointer: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdBoundFn: case ZigTypeIdErrorSet: case ZigTypeIdOpaque: case ZigTypeIdAnyFrame: return true; case ZigTypeIdFloat: return a->data.floating.bit_count == b->data.floating.bit_count; case ZigTypeIdInt: return a->data.integral.is_signed == b->data.integral.is_signed; case ZigTypeIdStruct: return is_slice(a) && is_slice(b); case ZigTypeIdArray: case ZigTypeIdOptional: case ZigTypeIdErrorUnion: case ZigTypeIdEnum: case ZigTypeIdUnion: case ZigTypeIdFn: case ZigTypeIdArgTuple: case ZigTypeIdVector: case ZigTypeIdFnFrame: return false; } zig_unreachable(); } static bool ir_should_inline(IrExecutable *exec, Scope *scope) { if (exec->is_inline) return true; while (scope != nullptr) { if (scope->id == ScopeIdCompTime) return true; if (scope->id == ScopeIdFnDef) break; scope = scope->parent; } return false; } static void ir_instruction_append(IrBasicBlock *basic_block, IrInstruction *instruction) { assert(basic_block); assert(instruction); basic_block->instruction_list.append(instruction); } static size_t exec_next_debug_id(IrExecutable *exec) { size_t result = exec->next_debug_id; exec->next_debug_id += 1; return result; } static size_t exec_next_mem_slot(IrExecutable *exec) { size_t result = exec->mem_slot_count; exec->mem_slot_count += 1; return result; } static ZigFn *exec_fn_entry(IrExecutable *exec) { return exec->fn_entry; } static Buf *exec_c_import_buf(IrExecutable *exec) { return exec->c_import_buf; } static bool value_is_comptime(ConstExprValue *const_val) { return const_val->special != ConstValSpecialRuntime; } static bool instr_is_comptime(IrInstruction *instruction) { return value_is_comptime(&instruction->value); } static bool instr_is_unreachable(IrInstruction *instruction) { return instruction->value.type && instruction->value.type->id == ZigTypeIdUnreachable; } static void ir_link_new_bb(IrBasicBlock *new_bb, IrBasicBlock *old_bb) { new_bb->other = old_bb; old_bb->other = new_bb; } static void ir_ref_bb(IrBasicBlock *bb) { bb->ref_count += 1; } static void ir_ref_instruction(IrInstruction *instruction, IrBasicBlock *cur_bb) { assert(instruction->id != IrInstructionIdInvalid); instruction->ref_count += 1; if (instruction->owner_bb != cur_bb && !instr_is_comptime(instruction)) ir_ref_bb(instruction->owner_bb); } static void ir_ref_var(ZigVar *var) { var->ref_count += 1; } ZigType *ir_analyze_type_expr(IrAnalyze *ira, Scope *scope, AstNode *node) { ConstExprValue *result = ir_eval_const_value(ira->codegen, scope, node, ira->codegen->builtin_types.entry_type, ira->new_irb.exec->backward_branch_count, ira->new_irb.exec->backward_branch_quota, nullptr, nullptr, node, nullptr, ira->new_irb.exec, nullptr, UndefBad); if (type_is_invalid(result->type)) return ira->codegen->builtin_types.entry_invalid; assert(result->special != ConstValSpecialRuntime); return result->data.x_type; } static IrBasicBlock *ir_create_basic_block(IrBuilder *irb, Scope *scope, const char *name_hint) { IrBasicBlock *result = allocate(1); result->scope = scope; result->name_hint = name_hint; result->debug_id = exec_next_debug_id(irb->exec); result->index = SIZE_MAX; // set later return result; } static IrBasicBlock *ir_build_bb_from(IrBuilder *irb, IrBasicBlock *other_bb) { IrBasicBlock *new_bb = ir_create_basic_block(irb, other_bb->scope, other_bb->name_hint); ir_link_new_bb(new_bb, other_bb); return new_bb; } static constexpr IrInstructionId ir_instruction_id(IrInstructionDeclVarSrc *) { return IrInstructionIdDeclVarSrc; } static constexpr IrInstructionId ir_instruction_id(IrInstructionDeclVarGen *) { return IrInstructionIdDeclVarGen; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCondBr *) { return IrInstructionIdCondBr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionBr *) { return IrInstructionIdBr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSwitchBr *) { return IrInstructionIdSwitchBr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSwitchVar *) { return IrInstructionIdSwitchVar; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSwitchElseVar *) { return IrInstructionIdSwitchElseVar; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSwitchTarget *) { return IrInstructionIdSwitchTarget; } static constexpr IrInstructionId ir_instruction_id(IrInstructionPhi *) { return IrInstructionIdPhi; } static constexpr IrInstructionId ir_instruction_id(IrInstructionUnOp *) { return IrInstructionIdUnOp; } static constexpr IrInstructionId ir_instruction_id(IrInstructionBinOp *) { return IrInstructionIdBinOp; } static constexpr IrInstructionId ir_instruction_id(IrInstructionExport *) { return IrInstructionIdExport; } static constexpr IrInstructionId ir_instruction_id(IrInstructionLoadPtr *) { return IrInstructionIdLoadPtr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionLoadPtrGen *) { return IrInstructionIdLoadPtrGen; } static constexpr IrInstructionId ir_instruction_id(IrInstructionStorePtr *) { return IrInstructionIdStorePtr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFieldPtr *) { return IrInstructionIdFieldPtr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionStructFieldPtr *) { return IrInstructionIdStructFieldPtr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionUnionFieldPtr *) { return IrInstructionIdUnionFieldPtr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionElemPtr *) { return IrInstructionIdElemPtr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionVarPtr *) { return IrInstructionIdVarPtr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionReturnPtr *) { return IrInstructionIdReturnPtr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCallSrc *) { return IrInstructionIdCallSrc; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCallGen *) { return IrInstructionIdCallGen; } static constexpr IrInstructionId ir_instruction_id(IrInstructionConst *) { return IrInstructionIdConst; } static constexpr IrInstructionId ir_instruction_id(IrInstructionReturn *) { return IrInstructionIdReturn; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCast *) { return IrInstructionIdCast; } static constexpr IrInstructionId ir_instruction_id(IrInstructionResizeSlice *) { return IrInstructionIdResizeSlice; } static constexpr IrInstructionId ir_instruction_id(IrInstructionContainerInitList *) { return IrInstructionIdContainerInitList; } static constexpr IrInstructionId ir_instruction_id(IrInstructionContainerInitFields *) { return IrInstructionIdContainerInitFields; } static constexpr IrInstructionId ir_instruction_id(IrInstructionUnreachable *) { return IrInstructionIdUnreachable; } static constexpr IrInstructionId ir_instruction_id(IrInstructionTypeOf *) { return IrInstructionIdTypeOf; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSetCold *) { return IrInstructionIdSetCold; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSetRuntimeSafety *) { return IrInstructionIdSetRuntimeSafety; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSetFloatMode *) { return IrInstructionIdSetFloatMode; } static constexpr IrInstructionId ir_instruction_id(IrInstructionArrayType *) { return IrInstructionIdArrayType; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAnyFrameType *) { return IrInstructionIdAnyFrameType; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSliceType *) { return IrInstructionIdSliceType; } static constexpr IrInstructionId ir_instruction_id(IrInstructionGlobalAsm *) { return IrInstructionIdGlobalAsm; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAsm *) { return IrInstructionIdAsm; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSizeOf *) { return IrInstructionIdSizeOf; } static constexpr IrInstructionId ir_instruction_id(IrInstructionTestNonNull *) { return IrInstructionIdTestNonNull; } static constexpr IrInstructionId ir_instruction_id(IrInstructionOptionalUnwrapPtr *) { return IrInstructionIdOptionalUnwrapPtr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionClz *) { return IrInstructionIdClz; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCtz *) { return IrInstructionIdCtz; } static constexpr IrInstructionId ir_instruction_id(IrInstructionPopCount *) { return IrInstructionIdPopCount; } static constexpr IrInstructionId ir_instruction_id(IrInstructionBswap *) { return IrInstructionIdBswap; } static constexpr IrInstructionId ir_instruction_id(IrInstructionBitReverse *) { return IrInstructionIdBitReverse; } static constexpr IrInstructionId ir_instruction_id(IrInstructionUnionTag *) { return IrInstructionIdUnionTag; } static constexpr IrInstructionId ir_instruction_id(IrInstructionImport *) { return IrInstructionIdImport; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCImport *) { return IrInstructionIdCImport; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCInclude *) { return IrInstructionIdCInclude; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCDefine *) { return IrInstructionIdCDefine; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCUndef *) { return IrInstructionIdCUndef; } static constexpr IrInstructionId ir_instruction_id(IrInstructionRef *) { return IrInstructionIdRef; } static constexpr IrInstructionId ir_instruction_id(IrInstructionRefGen *) { return IrInstructionIdRefGen; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCompileErr *) { return IrInstructionIdCompileErr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCompileLog *) { return IrInstructionIdCompileLog; } static constexpr IrInstructionId ir_instruction_id(IrInstructionErrName *) { return IrInstructionIdErrName; } static constexpr IrInstructionId ir_instruction_id(IrInstructionEmbedFile *) { return IrInstructionIdEmbedFile; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCmpxchgSrc *) { return IrInstructionIdCmpxchgSrc; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCmpxchgGen *) { return IrInstructionIdCmpxchgGen; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFence *) { return IrInstructionIdFence; } static constexpr IrInstructionId ir_instruction_id(IrInstructionTruncate *) { return IrInstructionIdTruncate; } static constexpr IrInstructionId ir_instruction_id(IrInstructionIntCast *) { return IrInstructionIdIntCast; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFloatCast *) { return IrInstructionIdFloatCast; } static constexpr IrInstructionId ir_instruction_id(IrInstructionErrSetCast *) { return IrInstructionIdErrSetCast; } static constexpr IrInstructionId ir_instruction_id(IrInstructionToBytes *) { return IrInstructionIdToBytes; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFromBytes *) { return IrInstructionIdFromBytes; } static constexpr IrInstructionId ir_instruction_id(IrInstructionIntToFloat *) { return IrInstructionIdIntToFloat; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFloatToInt *) { return IrInstructionIdFloatToInt; } static constexpr IrInstructionId ir_instruction_id(IrInstructionBoolToInt *) { return IrInstructionIdBoolToInt; } static constexpr IrInstructionId ir_instruction_id(IrInstructionIntType *) { return IrInstructionIdIntType; } static constexpr IrInstructionId ir_instruction_id(IrInstructionVectorType *) { return IrInstructionIdVectorType; } static constexpr IrInstructionId ir_instruction_id(IrInstructionBoolNot *) { return IrInstructionIdBoolNot; } static constexpr IrInstructionId ir_instruction_id(IrInstructionMemset *) { return IrInstructionIdMemset; } static constexpr IrInstructionId ir_instruction_id(IrInstructionMemcpy *) { return IrInstructionIdMemcpy; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSliceSrc *) { return IrInstructionIdSliceSrc; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSliceGen *) { return IrInstructionIdSliceGen; } static constexpr IrInstructionId ir_instruction_id(IrInstructionMemberCount *) { return IrInstructionIdMemberCount; } static constexpr IrInstructionId ir_instruction_id(IrInstructionMemberType *) { return IrInstructionIdMemberType; } static constexpr IrInstructionId ir_instruction_id(IrInstructionMemberName *) { return IrInstructionIdMemberName; } static constexpr IrInstructionId ir_instruction_id(IrInstructionBreakpoint *) { return IrInstructionIdBreakpoint; } static constexpr IrInstructionId ir_instruction_id(IrInstructionReturnAddress *) { return IrInstructionIdReturnAddress; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFrameAddress *) { return IrInstructionIdFrameAddress; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFrameHandle *) { return IrInstructionIdFrameHandle; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFrameType *) { return IrInstructionIdFrameType; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFrameSizeSrc *) { return IrInstructionIdFrameSizeSrc; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFrameSizeGen *) { return IrInstructionIdFrameSizeGen; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAlignOf *) { return IrInstructionIdAlignOf; } static constexpr IrInstructionId ir_instruction_id(IrInstructionOverflowOp *) { return IrInstructionIdOverflowOp; } static constexpr IrInstructionId ir_instruction_id(IrInstructionTestErrSrc *) { return IrInstructionIdTestErrSrc; } static constexpr IrInstructionId ir_instruction_id(IrInstructionTestErrGen *) { return IrInstructionIdTestErrGen; } static constexpr IrInstructionId ir_instruction_id(IrInstructionMulAdd *) { return IrInstructionIdMulAdd; } static constexpr IrInstructionId ir_instruction_id(IrInstructionUnwrapErrCode *) { return IrInstructionIdUnwrapErrCode; } static constexpr IrInstructionId ir_instruction_id(IrInstructionUnwrapErrPayload *) { return IrInstructionIdUnwrapErrPayload; } static constexpr IrInstructionId ir_instruction_id(IrInstructionOptionalWrap *) { return IrInstructionIdOptionalWrap; } static constexpr IrInstructionId ir_instruction_id(IrInstructionErrWrapPayload *) { return IrInstructionIdErrWrapPayload; } static constexpr IrInstructionId ir_instruction_id(IrInstructionErrWrapCode *) { return IrInstructionIdErrWrapCode; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFnProto *) { return IrInstructionIdFnProto; } static constexpr IrInstructionId ir_instruction_id(IrInstructionTestComptime *) { return IrInstructionIdTestComptime; } static constexpr IrInstructionId ir_instruction_id(IrInstructionPtrCastSrc *) { return IrInstructionIdPtrCastSrc; } static constexpr IrInstructionId ir_instruction_id(IrInstructionPtrCastGen *) { return IrInstructionIdPtrCastGen; } static constexpr IrInstructionId ir_instruction_id(IrInstructionBitCastSrc *) { return IrInstructionIdBitCastSrc; } static constexpr IrInstructionId ir_instruction_id(IrInstructionBitCastGen *) { return IrInstructionIdBitCastGen; } static constexpr IrInstructionId ir_instruction_id(IrInstructionWidenOrShorten *) { return IrInstructionIdWidenOrShorten; } static constexpr IrInstructionId ir_instruction_id(IrInstructionPtrToInt *) { return IrInstructionIdPtrToInt; } static constexpr IrInstructionId ir_instruction_id(IrInstructionIntToPtr *) { return IrInstructionIdIntToPtr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionIntToEnum *) { return IrInstructionIdIntToEnum; } static constexpr IrInstructionId ir_instruction_id(IrInstructionEnumToInt *) { return IrInstructionIdEnumToInt; } static constexpr IrInstructionId ir_instruction_id(IrInstructionIntToErr *) { return IrInstructionIdIntToErr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionErrToInt *) { return IrInstructionIdErrToInt; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCheckSwitchProngs *) { return IrInstructionIdCheckSwitchProngs; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCheckStatementIsVoid *) { return IrInstructionIdCheckStatementIsVoid; } static constexpr IrInstructionId ir_instruction_id(IrInstructionTypeName *) { return IrInstructionIdTypeName; } static constexpr IrInstructionId ir_instruction_id(IrInstructionDeclRef *) { return IrInstructionIdDeclRef; } static constexpr IrInstructionId ir_instruction_id(IrInstructionPanic *) { return IrInstructionIdPanic; } static constexpr IrInstructionId ir_instruction_id(IrInstructionTagName *) { return IrInstructionIdTagName; } static constexpr IrInstructionId ir_instruction_id(IrInstructionTagType *) { return IrInstructionIdTagType; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFieldParentPtr *) { return IrInstructionIdFieldParentPtr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionByteOffsetOf *) { return IrInstructionIdByteOffsetOf; } static constexpr IrInstructionId ir_instruction_id(IrInstructionBitOffsetOf *) { return IrInstructionIdBitOffsetOf; } static constexpr IrInstructionId ir_instruction_id(IrInstructionTypeInfo *) { return IrInstructionIdTypeInfo; } static constexpr IrInstructionId ir_instruction_id(IrInstructionHasField *) { return IrInstructionIdHasField; } static constexpr IrInstructionId ir_instruction_id(IrInstructionTypeId *) { return IrInstructionIdTypeId; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSetEvalBranchQuota *) { return IrInstructionIdSetEvalBranchQuota; } static constexpr IrInstructionId ir_instruction_id(IrInstructionPtrType *) { return IrInstructionIdPtrType; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAlignCast *) { return IrInstructionIdAlignCast; } static constexpr IrInstructionId ir_instruction_id(IrInstructionImplicitCast *) { return IrInstructionIdImplicitCast; } static constexpr IrInstructionId ir_instruction_id(IrInstructionResolveResult *) { return IrInstructionIdResolveResult; } static constexpr IrInstructionId ir_instruction_id(IrInstructionResetResult *) { return IrInstructionIdResetResult; } static constexpr IrInstructionId ir_instruction_id(IrInstructionPtrOfArrayToSlice *) { return IrInstructionIdPtrOfArrayToSlice; } static constexpr IrInstructionId ir_instruction_id(IrInstructionOpaqueType *) { return IrInstructionIdOpaqueType; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSetAlignStack *) { return IrInstructionIdSetAlignStack; } static constexpr IrInstructionId ir_instruction_id(IrInstructionArgType *) { return IrInstructionIdArgType; } static constexpr IrInstructionId ir_instruction_id(IrInstructionErrorReturnTrace *) { return IrInstructionIdErrorReturnTrace; } static constexpr IrInstructionId ir_instruction_id(IrInstructionErrorUnion *) { return IrInstructionIdErrorUnion; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAtomicRmw *) { return IrInstructionIdAtomicRmw; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAtomicLoad *) { return IrInstructionIdAtomicLoad; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSaveErrRetAddr *) { return IrInstructionIdSaveErrRetAddr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAddImplicitReturnType *) { return IrInstructionIdAddImplicitReturnType; } static constexpr IrInstructionId ir_instruction_id(IrInstructionFloatOp *) { return IrInstructionIdFloatOp; } static constexpr IrInstructionId ir_instruction_id(IrInstructionCheckRuntimeScope *) { return IrInstructionIdCheckRuntimeScope; } static constexpr IrInstructionId ir_instruction_id(IrInstructionVectorToArray *) { return IrInstructionIdVectorToArray; } static constexpr IrInstructionId ir_instruction_id(IrInstructionArrayToVector *) { return IrInstructionIdArrayToVector; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAssertZero *) { return IrInstructionIdAssertZero; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAssertNonNull *) { return IrInstructionIdAssertNonNull; } static constexpr IrInstructionId ir_instruction_id(IrInstructionHasDecl *) { return IrInstructionIdHasDecl; } static constexpr IrInstructionId ir_instruction_id(IrInstructionUndeclaredIdent *) { return IrInstructionIdUndeclaredIdent; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAllocaSrc *) { return IrInstructionIdAllocaSrc; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAllocaGen *) { return IrInstructionIdAllocaGen; } static constexpr IrInstructionId ir_instruction_id(IrInstructionEndExpr *) { return IrInstructionIdEndExpr; } static constexpr IrInstructionId ir_instruction_id(IrInstructionUnionInitNamedField *) { return IrInstructionIdUnionInitNamedField; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSuspendBegin *) { return IrInstructionIdSuspendBegin; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSuspendFinish *) { return IrInstructionIdSuspendFinish; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAwaitSrc *) { return IrInstructionIdAwaitSrc; } static constexpr IrInstructionId ir_instruction_id(IrInstructionAwaitGen *) { return IrInstructionIdAwaitGen; } static constexpr IrInstructionId ir_instruction_id(IrInstructionResume *) { return IrInstructionIdResume; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSpillBegin *) { return IrInstructionIdSpillBegin; } static constexpr IrInstructionId ir_instruction_id(IrInstructionSpillEnd *) { return IrInstructionIdSpillEnd; } template static T *ir_create_instruction(IrBuilder *irb, Scope *scope, AstNode *source_node) { T *special_instruction = allocate(1); special_instruction->base.id = ir_instruction_id(special_instruction); special_instruction->base.scope = scope; special_instruction->base.source_node = source_node; special_instruction->base.debug_id = exec_next_debug_id(irb->exec); special_instruction->base.owner_bb = irb->current_basic_block; special_instruction->base.value.global_refs = allocate(1); return special_instruction; } template static T *ir_build_instruction(IrBuilder *irb, Scope *scope, AstNode *source_node) { T *special_instruction = ir_create_instruction(irb, scope, source_node); ir_instruction_append(irb->current_basic_block, &special_instruction->base); return special_instruction; } static IrInstruction *ir_build_cast(IrBuilder *irb, Scope *scope, AstNode *source_node, ZigType *dest_type, IrInstruction *value, CastOp cast_op) { IrInstructionCast *cast_instruction = ir_build_instruction(irb, scope, source_node); cast_instruction->dest_type = dest_type; cast_instruction->value = value; cast_instruction->cast_op = cast_op; ir_ref_instruction(value, irb->current_basic_block); return &cast_instruction->base; } static IrInstruction *ir_build_cond_br(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *condition, IrBasicBlock *then_block, IrBasicBlock *else_block, IrInstruction *is_comptime) { IrInstructionCondBr *cond_br_instruction = ir_build_instruction(irb, scope, source_node); cond_br_instruction->base.value.type = irb->codegen->builtin_types.entry_unreachable; cond_br_instruction->base.value.special = ConstValSpecialStatic; cond_br_instruction->condition = condition; cond_br_instruction->then_block = then_block; cond_br_instruction->else_block = else_block; cond_br_instruction->is_comptime = is_comptime; ir_ref_instruction(condition, irb->current_basic_block); ir_ref_bb(then_block); ir_ref_bb(else_block); if (is_comptime != nullptr) ir_ref_instruction(is_comptime, irb->current_basic_block); return &cond_br_instruction->base; } static IrInstruction *ir_build_return(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *operand) { IrInstructionReturn *return_instruction = ir_build_instruction(irb, scope, source_node); return_instruction->base.value.type = irb->codegen->builtin_types.entry_unreachable; return_instruction->base.value.special = ConstValSpecialStatic; return_instruction->operand = operand; if (operand != nullptr) ir_ref_instruction(operand, irb->current_basic_block); return &return_instruction->base; } static IrInstruction *ir_build_const_void(IrBuilder *irb, Scope *scope, AstNode *source_node) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, source_node); const_instruction->base.value.type = irb->codegen->builtin_types.entry_void; const_instruction->base.value.special = ConstValSpecialStatic; return &const_instruction->base; } static IrInstruction *ir_build_const_undefined(IrBuilder *irb, Scope *scope, AstNode *source_node) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, source_node); const_instruction->base.value.special = ConstValSpecialUndef; const_instruction->base.value.type = irb->codegen->builtin_types.entry_undef; return &const_instruction->base; } static IrInstruction *ir_build_const_uint(IrBuilder *irb, Scope *scope, AstNode *source_node, uint64_t value) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, source_node); const_instruction->base.value.type = irb->codegen->builtin_types.entry_num_lit_int; const_instruction->base.value.special = ConstValSpecialStatic; bigint_init_unsigned(&const_instruction->base.value.data.x_bigint, value); return &const_instruction->base; } static IrInstruction *ir_build_const_bigint(IrBuilder *irb, Scope *scope, AstNode *source_node, BigInt *bigint) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, source_node); const_instruction->base.value.type = irb->codegen->builtin_types.entry_num_lit_int; const_instruction->base.value.special = ConstValSpecialStatic; bigint_init_bigint(&const_instruction->base.value.data.x_bigint, bigint); return &const_instruction->base; } static IrInstruction *ir_build_const_bigfloat(IrBuilder *irb, Scope *scope, AstNode *source_node, BigFloat *bigfloat) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, source_node); const_instruction->base.value.type = irb->codegen->builtin_types.entry_num_lit_float; const_instruction->base.value.special = ConstValSpecialStatic; bigfloat_init_bigfloat(&const_instruction->base.value.data.x_bigfloat, bigfloat); return &const_instruction->base; } static IrInstruction *ir_build_const_null(IrBuilder *irb, Scope *scope, AstNode *source_node) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, source_node); const_instruction->base.value.type = irb->codegen->builtin_types.entry_null; const_instruction->base.value.special = ConstValSpecialStatic; return &const_instruction->base; } static IrInstruction *ir_build_const_usize(IrBuilder *irb, Scope *scope, AstNode *source_node, uint64_t value) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, source_node); const_instruction->base.value.type = irb->codegen->builtin_types.entry_usize; const_instruction->base.value.special = ConstValSpecialStatic; bigint_init_unsigned(&const_instruction->base.value.data.x_bigint, value); return &const_instruction->base; } static IrInstruction *ir_create_const_type(IrBuilder *irb, Scope *scope, AstNode *source_node, ZigType *type_entry) { IrInstructionConst *const_instruction = ir_create_instruction(irb, scope, source_node); const_instruction->base.value.type = irb->codegen->builtin_types.entry_type; const_instruction->base.value.special = ConstValSpecialStatic; const_instruction->base.value.data.x_type = type_entry; return &const_instruction->base; } static IrInstruction *ir_build_const_type(IrBuilder *irb, Scope *scope, AstNode *source_node, ZigType *type_entry) { IrInstruction *instruction = ir_create_const_type(irb, scope, source_node, type_entry); ir_instruction_append(irb->current_basic_block, instruction); return instruction; } static IrInstruction *ir_create_const_fn(IrBuilder *irb, Scope *scope, AstNode *source_node, ZigFn *fn_entry) { IrInstructionConst *const_instruction = ir_create_instruction(irb, scope, source_node); const_instruction->base.value.type = fn_entry->type_entry; const_instruction->base.value.special = ConstValSpecialStatic; const_instruction->base.value.data.x_ptr.data.fn.fn_entry = fn_entry; const_instruction->base.value.data.x_ptr.mut = ConstPtrMutComptimeConst; const_instruction->base.value.data.x_ptr.special = ConstPtrSpecialFunction; return &const_instruction->base; } static IrInstruction *ir_build_const_import(IrBuilder *irb, Scope *scope, AstNode *source_node, ZigType *import) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, source_node); const_instruction->base.value.type = irb->codegen->builtin_types.entry_type; const_instruction->base.value.special = ConstValSpecialStatic; const_instruction->base.value.data.x_type = import; return &const_instruction->base; } static IrInstruction *ir_build_const_bool(IrBuilder *irb, Scope *scope, AstNode *source_node, bool value) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, source_node); const_instruction->base.value.type = irb->codegen->builtin_types.entry_bool; const_instruction->base.value.special = ConstValSpecialStatic; const_instruction->base.value.data.x_bool = value; return &const_instruction->base; } static IrInstruction *ir_build_const_enum_literal(IrBuilder *irb, Scope *scope, AstNode *source_node, Buf *name) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, source_node); const_instruction->base.value.type = irb->codegen->builtin_types.entry_enum_literal; const_instruction->base.value.special = ConstValSpecialStatic; const_instruction->base.value.data.x_enum_literal = name; return &const_instruction->base; } static IrInstruction *ir_build_const_bound_fn(IrBuilder *irb, Scope *scope, AstNode *source_node, ZigFn *fn_entry, IrInstruction *first_arg) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, source_node); const_instruction->base.value.type = get_bound_fn_type(irb->codegen, fn_entry); const_instruction->base.value.special = ConstValSpecialStatic; const_instruction->base.value.data.x_bound_fn.fn = fn_entry; const_instruction->base.value.data.x_bound_fn.first_arg = first_arg; return &const_instruction->base; } static IrInstruction *ir_create_const_str_lit(IrBuilder *irb, Scope *scope, AstNode *source_node, Buf *str) { IrInstructionConst *const_instruction = ir_create_instruction(irb, scope, source_node); init_const_str_lit(irb->codegen, &const_instruction->base.value, str); return &const_instruction->base; } static IrInstruction *ir_build_const_str_lit(IrBuilder *irb, Scope *scope, AstNode *source_node, Buf *str) { IrInstruction *instruction = ir_create_const_str_lit(irb, scope, source_node, str); ir_instruction_append(irb->current_basic_block, instruction); return instruction; } static IrInstruction *ir_build_const_c_str_lit(IrBuilder *irb, Scope *scope, AstNode *source_node, Buf *str) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, source_node); init_const_c_str_lit(irb->codegen, &const_instruction->base.value, str); return &const_instruction->base; } static IrInstruction *ir_build_bin_op(IrBuilder *irb, Scope *scope, AstNode *source_node, IrBinOp op_id, IrInstruction *op1, IrInstruction *op2, bool safety_check_on) { IrInstructionBinOp *bin_op_instruction = ir_build_instruction(irb, scope, source_node); bin_op_instruction->op_id = op_id; bin_op_instruction->op1 = op1; bin_op_instruction->op2 = op2; bin_op_instruction->safety_check_on = safety_check_on; ir_ref_instruction(op1, irb->current_basic_block); ir_ref_instruction(op2, irb->current_basic_block); return &bin_op_instruction->base; } static IrInstruction *ir_build_var_ptr_x(IrBuilder *irb, Scope *scope, AstNode *source_node, ZigVar *var, ScopeFnDef *crossed_fndef_scope) { IrInstructionVarPtr *instruction = ir_build_instruction(irb, scope, source_node); instruction->var = var; instruction->crossed_fndef_scope = crossed_fndef_scope; ir_ref_var(var); return &instruction->base; } static IrInstruction *ir_build_var_ptr(IrBuilder *irb, Scope *scope, AstNode *source_node, ZigVar *var) { return ir_build_var_ptr_x(irb, scope, source_node, var, nullptr); } static IrInstruction *ir_build_return_ptr(IrAnalyze *ira, IrInstruction *source_instruction, ZigType *ty) { IrInstructionReturnPtr *instruction = ir_build_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = ty; return &instruction->base; } static IrInstruction *ir_build_elem_ptr(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *array_ptr, IrInstruction *elem_index, bool safety_check_on, PtrLen ptr_len, IrInstruction *init_array_type) { IrInstructionElemPtr *instruction = ir_build_instruction(irb, scope, source_node); instruction->array_ptr = array_ptr; instruction->elem_index = elem_index; instruction->safety_check_on = safety_check_on; instruction->ptr_len = ptr_len; instruction->init_array_type = init_array_type; ir_ref_instruction(array_ptr, irb->current_basic_block); ir_ref_instruction(elem_index, irb->current_basic_block); if (init_array_type != nullptr) ir_ref_instruction(init_array_type, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_field_ptr_instruction(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *container_ptr, IrInstruction *field_name_expr, bool initializing) { IrInstructionFieldPtr *instruction = ir_build_instruction(irb, scope, source_node); instruction->container_ptr = container_ptr; instruction->field_name_buffer = nullptr; instruction->field_name_expr = field_name_expr; instruction->initializing = initializing; ir_ref_instruction(container_ptr, irb->current_basic_block); ir_ref_instruction(field_name_expr, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_field_ptr(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *container_ptr, Buf *field_name, bool initializing) { IrInstructionFieldPtr *instruction = ir_build_instruction(irb, scope, source_node); instruction->container_ptr = container_ptr; instruction->field_name_buffer = field_name; instruction->field_name_expr = nullptr; instruction->initializing = initializing; ir_ref_instruction(container_ptr, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_has_field(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *container_type, IrInstruction *field_name) { IrInstructionHasField *instruction = ir_build_instruction(irb, scope, source_node); instruction->container_type = container_type; instruction->field_name = field_name; ir_ref_instruction(container_type, irb->current_basic_block); ir_ref_instruction(field_name, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_struct_field_ptr(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *struct_ptr, TypeStructField *field) { IrInstructionStructFieldPtr *instruction = ir_build_instruction(irb, scope, source_node); instruction->struct_ptr = struct_ptr; instruction->field = field; ir_ref_instruction(struct_ptr, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_union_field_ptr(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *union_ptr, TypeUnionField *field, bool safety_check_on, bool initializing) { IrInstructionUnionFieldPtr *instruction = ir_build_instruction(irb, scope, source_node); instruction->initializing = initializing; instruction->safety_check_on = safety_check_on; instruction->union_ptr = union_ptr; instruction->field = field; ir_ref_instruction(union_ptr, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_call_src(IrBuilder *irb, Scope *scope, AstNode *source_node, ZigFn *fn_entry, IrInstruction *fn_ref, size_t arg_count, IrInstruction **args, bool is_comptime, FnInline fn_inline, bool is_async, IrInstruction *new_stack, ResultLoc *result_loc) { IrInstructionCallSrc *call_instruction = ir_build_instruction(irb, scope, source_node); call_instruction->fn_entry = fn_entry; call_instruction->fn_ref = fn_ref; call_instruction->is_comptime = is_comptime; call_instruction->fn_inline = fn_inline; call_instruction->args = args; call_instruction->arg_count = arg_count; call_instruction->is_async = is_async; call_instruction->new_stack = new_stack; call_instruction->result_loc = result_loc; if (fn_ref != nullptr) ir_ref_instruction(fn_ref, irb->current_basic_block); for (size_t i = 0; i < arg_count; i += 1) ir_ref_instruction(args[i], irb->current_basic_block); if (is_async && new_stack != nullptr) { // in this case the arg at the end is the return pointer ir_ref_instruction(args[arg_count], irb->current_basic_block); } if (new_stack != nullptr) ir_ref_instruction(new_stack, irb->current_basic_block); return &call_instruction->base; } static IrInstructionCallGen *ir_build_call_gen(IrAnalyze *ira, IrInstruction *source_instruction, ZigFn *fn_entry, IrInstruction *fn_ref, size_t arg_count, IrInstruction **args, FnInline fn_inline, bool is_async, IrInstruction *new_stack, IrInstruction *result_loc, ZigType *return_type) { IrInstructionCallGen *call_instruction = ir_build_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); call_instruction->base.value.type = return_type; call_instruction->fn_entry = fn_entry; call_instruction->fn_ref = fn_ref; call_instruction->fn_inline = fn_inline; call_instruction->args = args; call_instruction->arg_count = arg_count; call_instruction->is_async = is_async; call_instruction->new_stack = new_stack; call_instruction->result_loc = result_loc; if (fn_ref != nullptr) ir_ref_instruction(fn_ref, ira->new_irb.current_basic_block); for (size_t i = 0; i < arg_count; i += 1) ir_ref_instruction(args[i], ira->new_irb.current_basic_block); if (new_stack != nullptr) ir_ref_instruction(new_stack, ira->new_irb.current_basic_block); if (result_loc != nullptr) ir_ref_instruction(result_loc, ira->new_irb.current_basic_block); return call_instruction; } static IrInstruction *ir_build_phi(IrBuilder *irb, Scope *scope, AstNode *source_node, size_t incoming_count, IrBasicBlock **incoming_blocks, IrInstruction **incoming_values, ResultLocPeerParent *peer_parent) { assert(incoming_count != 0); assert(incoming_count != SIZE_MAX); IrInstructionPhi *phi_instruction = ir_build_instruction(irb, scope, source_node); phi_instruction->incoming_count = incoming_count; phi_instruction->incoming_blocks = incoming_blocks; phi_instruction->incoming_values = incoming_values; phi_instruction->peer_parent = peer_parent; for (size_t i = 0; i < incoming_count; i += 1) { ir_ref_bb(incoming_blocks[i]); ir_ref_instruction(incoming_values[i], irb->current_basic_block); } return &phi_instruction->base; } static IrInstruction *ir_create_br(IrBuilder *irb, Scope *scope, AstNode *source_node, IrBasicBlock *dest_block, IrInstruction *is_comptime) { IrInstructionBr *br_instruction = ir_create_instruction(irb, scope, source_node); br_instruction->base.value.type = irb->codegen->builtin_types.entry_unreachable; br_instruction->base.value.special = ConstValSpecialStatic; br_instruction->dest_block = dest_block; br_instruction->is_comptime = is_comptime; ir_ref_bb(dest_block); if (is_comptime) ir_ref_instruction(is_comptime, irb->current_basic_block); return &br_instruction->base; } static IrInstruction *ir_build_br(IrBuilder *irb, Scope *scope, AstNode *source_node, IrBasicBlock *dest_block, IrInstruction *is_comptime) { IrInstruction *instruction = ir_create_br(irb, scope, source_node, dest_block, is_comptime); ir_instruction_append(irb->current_basic_block, instruction); return instruction; } static IrInstruction *ir_build_ptr_type(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *child_type, bool is_const, bool is_volatile, PtrLen ptr_len, IrInstruction *align_value, uint32_t bit_offset_start, uint32_t host_int_bytes, bool is_allow_zero) { IrInstructionPtrType *ptr_type_of_instruction = ir_build_instruction(irb, scope, source_node); ptr_type_of_instruction->align_value = align_value; ptr_type_of_instruction->child_type = child_type; ptr_type_of_instruction->is_const = is_const; ptr_type_of_instruction->is_volatile = is_volatile; ptr_type_of_instruction->ptr_len = ptr_len; ptr_type_of_instruction->bit_offset_start = bit_offset_start; ptr_type_of_instruction->host_int_bytes = host_int_bytes; ptr_type_of_instruction->is_allow_zero = is_allow_zero; if (align_value) ir_ref_instruction(align_value, irb->current_basic_block); ir_ref_instruction(child_type, irb->current_basic_block); return &ptr_type_of_instruction->base; } static IrInstruction *ir_build_un_op_lval(IrBuilder *irb, Scope *scope, AstNode *source_node, IrUnOp op_id, IrInstruction *value, LVal lval, ResultLoc *result_loc) { IrInstructionUnOp *instruction = ir_build_instruction(irb, scope, source_node); instruction->op_id = op_id; instruction->value = value; instruction->lval = lval; instruction->result_loc = result_loc; ir_ref_instruction(value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_un_op(IrBuilder *irb, Scope *scope, AstNode *source_node, IrUnOp op_id, IrInstruction *value) { return ir_build_un_op_lval(irb, scope, source_node, op_id, value, LValNone, nullptr); } static IrInstruction *ir_build_container_init_list(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *container_type, size_t item_count, IrInstruction **elem_result_loc_list, IrInstruction *result_loc) { IrInstructionContainerInitList *container_init_list_instruction = ir_build_instruction(irb, scope, source_node); container_init_list_instruction->container_type = container_type; container_init_list_instruction->item_count = item_count; container_init_list_instruction->elem_result_loc_list = elem_result_loc_list; container_init_list_instruction->result_loc = result_loc; ir_ref_instruction(container_type, irb->current_basic_block); for (size_t i = 0; i < item_count; i += 1) { ir_ref_instruction(elem_result_loc_list[i], irb->current_basic_block); } if (result_loc != nullptr) ir_ref_instruction(result_loc, irb->current_basic_block); return &container_init_list_instruction->base; } static IrInstruction *ir_build_container_init_fields(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *container_type, size_t field_count, IrInstructionContainerInitFieldsField *fields, IrInstruction *result_loc) { IrInstructionContainerInitFields *container_init_fields_instruction = ir_build_instruction(irb, scope, source_node); container_init_fields_instruction->container_type = container_type; container_init_fields_instruction->field_count = field_count; container_init_fields_instruction->fields = fields; container_init_fields_instruction->result_loc = result_loc; ir_ref_instruction(container_type, irb->current_basic_block); for (size_t i = 0; i < field_count; i += 1) { ir_ref_instruction(fields[i].result_loc, irb->current_basic_block); } if (result_loc != nullptr) ir_ref_instruction(result_loc, irb->current_basic_block); return &container_init_fields_instruction->base; } static IrInstruction *ir_build_unreachable(IrBuilder *irb, Scope *scope, AstNode *source_node) { IrInstructionUnreachable *unreachable_instruction = ir_build_instruction(irb, scope, source_node); unreachable_instruction->base.value.special = ConstValSpecialStatic; unreachable_instruction->base.value.type = irb->codegen->builtin_types.entry_unreachable; return &unreachable_instruction->base; } static IrInstructionStorePtr *ir_build_store_ptr(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *ptr, IrInstruction *value) { IrInstructionStorePtr *instruction = ir_build_instruction(irb, scope, source_node); instruction->base.value.special = ConstValSpecialStatic; instruction->base.value.type = irb->codegen->builtin_types.entry_void; instruction->ptr = ptr; instruction->value = value; ir_ref_instruction(ptr, irb->current_basic_block); ir_ref_instruction(value, irb->current_basic_block); return instruction; } static IrInstruction *ir_build_var_decl_src(IrBuilder *irb, Scope *scope, AstNode *source_node, ZigVar *var, IrInstruction *align_value, IrInstruction *ptr) { IrInstructionDeclVarSrc *decl_var_instruction = ir_build_instruction(irb, scope, source_node); decl_var_instruction->base.value.special = ConstValSpecialStatic; decl_var_instruction->base.value.type = irb->codegen->builtin_types.entry_void; decl_var_instruction->var = var; decl_var_instruction->align_value = align_value; decl_var_instruction->ptr = ptr; if (align_value != nullptr) ir_ref_instruction(align_value, irb->current_basic_block); ir_ref_instruction(ptr, irb->current_basic_block); return &decl_var_instruction->base; } static IrInstruction *ir_build_var_decl_gen(IrAnalyze *ira, IrInstruction *source_instruction, ZigVar *var, IrInstruction *var_ptr) { IrInstructionDeclVarGen *decl_var_instruction = ir_build_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); decl_var_instruction->base.value.special = ConstValSpecialStatic; decl_var_instruction->base.value.type = ira->codegen->builtin_types.entry_void; decl_var_instruction->var = var; decl_var_instruction->var_ptr = var_ptr; ir_ref_instruction(var_ptr, ira->new_irb.current_basic_block); return &decl_var_instruction->base; } static IrInstruction *ir_build_resize_slice(IrAnalyze *ira, IrInstruction *source_instruction, IrInstruction *operand, ZigType *ty, IrInstruction *result_loc) { IrInstructionResizeSlice *instruction = ir_build_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = ty; instruction->operand = operand; instruction->result_loc = result_loc; ir_ref_instruction(operand, ira->new_irb.current_basic_block); ir_ref_instruction(result_loc, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_export(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *name, IrInstruction *target, IrInstruction *linkage) { IrInstructionExport *export_instruction = ir_build_instruction( irb, scope, source_node); export_instruction->base.value.special = ConstValSpecialStatic; export_instruction->base.value.type = irb->codegen->builtin_types.entry_void; export_instruction->name = name; export_instruction->target = target; export_instruction->linkage = linkage; ir_ref_instruction(name, irb->current_basic_block); ir_ref_instruction(target, irb->current_basic_block); if (linkage) ir_ref_instruction(linkage, irb->current_basic_block); return &export_instruction->base; } static IrInstruction *ir_build_load_ptr(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *ptr) { IrInstructionLoadPtr *instruction = ir_build_instruction(irb, scope, source_node); instruction->ptr = ptr; ir_ref_instruction(ptr, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_typeof(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *value) { IrInstructionTypeOf *instruction = ir_build_instruction(irb, scope, source_node); instruction->value = value; ir_ref_instruction(value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_set_cold(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *is_cold) { IrInstructionSetCold *instruction = ir_build_instruction(irb, scope, source_node); instruction->is_cold = is_cold; ir_ref_instruction(is_cold, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_set_runtime_safety(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *safety_on) { IrInstructionSetRuntimeSafety *instruction = ir_build_instruction(irb, scope, source_node); instruction->safety_on = safety_on; ir_ref_instruction(safety_on, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_set_float_mode(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *mode_value) { IrInstructionSetFloatMode *instruction = ir_build_instruction(irb, scope, source_node); instruction->mode_value = mode_value; ir_ref_instruction(mode_value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_array_type(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *size, IrInstruction *child_type) { IrInstructionArrayType *instruction = ir_build_instruction(irb, scope, source_node); instruction->size = size; instruction->child_type = child_type; ir_ref_instruction(size, irb->current_basic_block); ir_ref_instruction(child_type, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_anyframe_type(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *payload_type) { IrInstructionAnyFrameType *instruction = ir_build_instruction(irb, scope, source_node); instruction->payload_type = payload_type; if (payload_type != nullptr) ir_ref_instruction(payload_type, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_slice_type(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *child_type, bool is_const, bool is_volatile, IrInstruction *align_value, bool is_allow_zero) { IrInstructionSliceType *instruction = ir_build_instruction(irb, scope, source_node); instruction->is_const = is_const; instruction->is_volatile = is_volatile; instruction->child_type = child_type; instruction->align_value = align_value; instruction->is_allow_zero = is_allow_zero; ir_ref_instruction(child_type, irb->current_basic_block); if (align_value) ir_ref_instruction(align_value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_global_asm(IrBuilder *irb, Scope *scope, AstNode *source_node, Buf *asm_code) { IrInstructionGlobalAsm *instruction = ir_build_instruction(irb, scope, source_node); instruction->asm_code = asm_code; return &instruction->base; } static IrInstruction *ir_build_asm(IrBuilder *irb, Scope *scope, AstNode *source_node, Buf *asm_template, AsmToken *token_list, size_t token_list_len, IrInstruction **input_list, IrInstruction **output_types, ZigVar **output_vars, size_t return_count, bool has_side_effects) { IrInstructionAsm *instruction = ir_build_instruction(irb, scope, source_node); instruction->asm_template = asm_template; instruction->token_list = token_list; instruction->token_list_len = token_list_len; instruction->input_list = input_list; instruction->output_types = output_types; instruction->output_vars = output_vars; instruction->return_count = return_count; instruction->has_side_effects = has_side_effects; assert(source_node->type == NodeTypeAsmExpr); for (size_t i = 0; i < source_node->data.asm_expr.output_list.length; i += 1) { IrInstruction *output_type = output_types[i]; if (output_type) ir_ref_instruction(output_type, irb->current_basic_block); } for (size_t i = 0; i < source_node->data.asm_expr.input_list.length; i += 1) { IrInstruction *input_value = input_list[i]; ir_ref_instruction(input_value, irb->current_basic_block); } return &instruction->base; } static IrInstruction *ir_build_size_of(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type_value) { IrInstructionSizeOf *instruction = ir_build_instruction(irb, scope, source_node); instruction->type_value = type_value; ir_ref_instruction(type_value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_test_nonnull(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *value) { IrInstructionTestNonNull *instruction = ir_build_instruction(irb, scope, source_node); instruction->value = value; ir_ref_instruction(value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_optional_unwrap_ptr(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *base_ptr, bool safety_check_on, bool initializing) { IrInstructionOptionalUnwrapPtr *instruction = ir_build_instruction(irb, scope, source_node); instruction->base_ptr = base_ptr; instruction->safety_check_on = safety_check_on; instruction->initializing = initializing; ir_ref_instruction(base_ptr, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_optional_wrap(IrAnalyze *ira, IrInstruction *source_instruction, ZigType *result_ty, IrInstruction *operand, IrInstruction *result_loc) { IrInstructionOptionalWrap *instruction = ir_build_instruction( &ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = result_ty; instruction->operand = operand; instruction->result_loc = result_loc; ir_ref_instruction(operand, ira->new_irb.current_basic_block); if (result_loc != nullptr) ir_ref_instruction(result_loc, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_err_wrap_payload(IrAnalyze *ira, IrInstruction *source_instruction, ZigType *result_type, IrInstruction *operand, IrInstruction *result_loc) { IrInstructionErrWrapPayload *instruction = ir_build_instruction( &ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = result_type; instruction->operand = operand; instruction->result_loc = result_loc; ir_ref_instruction(operand, ira->new_irb.current_basic_block); if (result_loc != nullptr) ir_ref_instruction(result_loc, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_err_wrap_code(IrAnalyze *ira, IrInstruction *source_instruction, ZigType *result_type, IrInstruction *operand, IrInstruction *result_loc) { IrInstructionErrWrapCode *instruction = ir_build_instruction( &ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = result_type; instruction->operand = operand; instruction->result_loc = result_loc; ir_ref_instruction(operand, ira->new_irb.current_basic_block); if (result_loc != nullptr) ir_ref_instruction(result_loc, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_clz(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type, IrInstruction *op) { IrInstructionClz *instruction = ir_build_instruction(irb, scope, source_node); instruction->type = type; instruction->op = op; if (type != nullptr) ir_ref_instruction(type, irb->current_basic_block); ir_ref_instruction(op, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_ctz(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type, IrInstruction *op) { IrInstructionCtz *instruction = ir_build_instruction(irb, scope, source_node); instruction->type = type; instruction->op = op; if (type != nullptr) ir_ref_instruction(type, irb->current_basic_block); ir_ref_instruction(op, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_pop_count(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type, IrInstruction *op) { IrInstructionPopCount *instruction = ir_build_instruction(irb, scope, source_node); instruction->type = type; instruction->op = op; if (type != nullptr) ir_ref_instruction(type, irb->current_basic_block); ir_ref_instruction(op, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_bswap(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type, IrInstruction *op) { IrInstructionBswap *instruction = ir_build_instruction(irb, scope, source_node); instruction->type = type; instruction->op = op; if (type != nullptr) ir_ref_instruction(type, irb->current_basic_block); ir_ref_instruction(op, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_bit_reverse(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type, IrInstruction *op) { IrInstructionBitReverse *instruction = ir_build_instruction(irb, scope, source_node); instruction->type = type; instruction->op = op; if (type != nullptr) ir_ref_instruction(type, irb->current_basic_block); ir_ref_instruction(op, irb->current_basic_block); return &instruction->base; } static IrInstructionSwitchBr *ir_build_switch_br(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target_value, IrBasicBlock *else_block, size_t case_count, IrInstructionSwitchBrCase *cases, IrInstruction *is_comptime, IrInstruction *switch_prongs_void) { IrInstructionSwitchBr *instruction = ir_build_instruction(irb, scope, source_node); instruction->base.value.type = irb->codegen->builtin_types.entry_unreachable; instruction->base.value.special = ConstValSpecialStatic; instruction->target_value = target_value; instruction->else_block = else_block; instruction->case_count = case_count; instruction->cases = cases; instruction->is_comptime = is_comptime; instruction->switch_prongs_void = switch_prongs_void; ir_ref_instruction(target_value, irb->current_basic_block); if (is_comptime) ir_ref_instruction(is_comptime, irb->current_basic_block); ir_ref_bb(else_block); if (switch_prongs_void) ir_ref_instruction(switch_prongs_void, irb->current_basic_block); for (size_t i = 0; i < case_count; i += 1) { ir_ref_instruction(cases[i].value, irb->current_basic_block); ir_ref_bb(cases[i].block); } return instruction; } static IrInstruction *ir_build_switch_target(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target_value_ptr) { IrInstructionSwitchTarget *instruction = ir_build_instruction(irb, scope, source_node); instruction->target_value_ptr = target_value_ptr; ir_ref_instruction(target_value_ptr, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_switch_var(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target_value_ptr, IrInstruction **prongs_ptr, size_t prongs_len) { IrInstructionSwitchVar *instruction = ir_build_instruction(irb, scope, source_node); instruction->target_value_ptr = target_value_ptr; instruction->prongs_ptr = prongs_ptr; instruction->prongs_len = prongs_len; ir_ref_instruction(target_value_ptr, irb->current_basic_block); for (size_t i = 0; i < prongs_len; i += 1) { ir_ref_instruction(prongs_ptr[i], irb->current_basic_block); } return &instruction->base; } // For this instruction the switch_br must be set later. static IrInstructionSwitchElseVar *ir_build_switch_else_var(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target_value_ptr) { IrInstructionSwitchElseVar *instruction = ir_build_instruction(irb, scope, source_node); instruction->target_value_ptr = target_value_ptr; ir_ref_instruction(target_value_ptr, irb->current_basic_block); return instruction; } static IrInstruction *ir_build_union_tag(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *value) { IrInstructionUnionTag *instruction = ir_build_instruction(irb, scope, source_node); instruction->value = value; ir_ref_instruction(value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_import(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *name) { IrInstructionImport *instruction = ir_build_instruction(irb, scope, source_node); instruction->name = name; ir_ref_instruction(name, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_ref(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *value, bool is_const, bool is_volatile) { IrInstructionRef *instruction = ir_build_instruction(irb, scope, source_node); instruction->value = value; instruction->is_const = is_const; instruction->is_volatile = is_volatile; ir_ref_instruction(value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_ref_gen(IrAnalyze *ira, IrInstruction *source_instruction, ZigType *result_type, IrInstruction *operand, IrInstruction *result_loc) { IrInstructionRefGen *instruction = ir_build_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = result_type; instruction->operand = operand; instruction->result_loc = result_loc; ir_ref_instruction(operand, ira->new_irb.current_basic_block); if (result_loc != nullptr) ir_ref_instruction(result_loc, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_compile_err(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *msg) { IrInstructionCompileErr *instruction = ir_build_instruction(irb, scope, source_node); instruction->msg = msg; ir_ref_instruction(msg, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_compile_log(IrBuilder *irb, Scope *scope, AstNode *source_node, size_t msg_count, IrInstruction **msg_list) { IrInstructionCompileLog *instruction = ir_build_instruction(irb, scope, source_node); instruction->msg_count = msg_count; instruction->msg_list = msg_list; for (size_t i = 0; i < msg_count; i += 1) { ir_ref_instruction(msg_list[i], irb->current_basic_block); } return &instruction->base; } static IrInstruction *ir_build_err_name(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *value) { IrInstructionErrName *instruction = ir_build_instruction(irb, scope, source_node); instruction->value = value; ir_ref_instruction(value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_c_import(IrBuilder *irb, Scope *scope, AstNode *source_node) { IrInstructionCImport *instruction = ir_build_instruction(irb, scope, source_node); return &instruction->base; } static IrInstruction *ir_build_c_include(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *name) { IrInstructionCInclude *instruction = ir_build_instruction(irb, scope, source_node); instruction->name = name; ir_ref_instruction(name, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_c_define(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *name, IrInstruction *value) { IrInstructionCDefine *instruction = ir_build_instruction(irb, scope, source_node); instruction->name = name; instruction->value = value; ir_ref_instruction(name, irb->current_basic_block); ir_ref_instruction(value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_c_undef(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *name) { IrInstructionCUndef *instruction = ir_build_instruction(irb, scope, source_node); instruction->name = name; ir_ref_instruction(name, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_embed_file(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *name) { IrInstructionEmbedFile *instruction = ir_build_instruction(irb, scope, source_node); instruction->name = name; ir_ref_instruction(name, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_cmpxchg_src(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type_value, IrInstruction *ptr, IrInstruction *cmp_value, IrInstruction *new_value, IrInstruction *success_order_value, IrInstruction *failure_order_value, bool is_weak, ResultLoc *result_loc) { IrInstructionCmpxchgSrc *instruction = ir_build_instruction(irb, scope, source_node); instruction->type_value = type_value; instruction->ptr = ptr; instruction->cmp_value = cmp_value; instruction->new_value = new_value; instruction->success_order_value = success_order_value; instruction->failure_order_value = failure_order_value; instruction->is_weak = is_weak; instruction->result_loc = result_loc; ir_ref_instruction(type_value, irb->current_basic_block); ir_ref_instruction(ptr, irb->current_basic_block); ir_ref_instruction(cmp_value, irb->current_basic_block); ir_ref_instruction(new_value, irb->current_basic_block); ir_ref_instruction(success_order_value, irb->current_basic_block); ir_ref_instruction(failure_order_value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_cmpxchg_gen(IrAnalyze *ira, IrInstruction *source_instruction, ZigType *result_type, IrInstruction *ptr, IrInstruction *cmp_value, IrInstruction *new_value, AtomicOrder success_order, AtomicOrder failure_order, bool is_weak, IrInstruction *result_loc) { IrInstructionCmpxchgGen *instruction = ir_build_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = result_type; instruction->ptr = ptr; instruction->cmp_value = cmp_value; instruction->new_value = new_value; instruction->success_order = success_order; instruction->failure_order = failure_order; instruction->is_weak = is_weak; instruction->result_loc = result_loc; ir_ref_instruction(ptr, ira->new_irb.current_basic_block); ir_ref_instruction(cmp_value, ira->new_irb.current_basic_block); ir_ref_instruction(new_value, ira->new_irb.current_basic_block); if (result_loc != nullptr) ir_ref_instruction(result_loc, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_fence(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *order_value, AtomicOrder order) { IrInstructionFence *instruction = ir_build_instruction(irb, scope, source_node); instruction->order_value = order_value; instruction->order = order; ir_ref_instruction(order_value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_truncate(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_type, IrInstruction *target) { IrInstructionTruncate *instruction = ir_build_instruction(irb, scope, source_node); instruction->dest_type = dest_type; instruction->target = target; ir_ref_instruction(dest_type, irb->current_basic_block); ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_int_cast(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_type, IrInstruction *target) { IrInstructionIntCast *instruction = ir_build_instruction(irb, scope, source_node); instruction->dest_type = dest_type; instruction->target = target; ir_ref_instruction(dest_type, irb->current_basic_block); ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_float_cast(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_type, IrInstruction *target) { IrInstructionFloatCast *instruction = ir_build_instruction(irb, scope, source_node); instruction->dest_type = dest_type; instruction->target = target; ir_ref_instruction(dest_type, irb->current_basic_block); ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_err_set_cast(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_type, IrInstruction *target) { IrInstructionErrSetCast *instruction = ir_build_instruction(irb, scope, source_node); instruction->dest_type = dest_type; instruction->target = target; ir_ref_instruction(dest_type, irb->current_basic_block); ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_to_bytes(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target, ResultLoc *result_loc) { IrInstructionToBytes *instruction = ir_build_instruction(irb, scope, source_node); instruction->target = target; instruction->result_loc = result_loc; ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_from_bytes(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_child_type, IrInstruction *target, ResultLoc *result_loc) { IrInstructionFromBytes *instruction = ir_build_instruction(irb, scope, source_node); instruction->dest_child_type = dest_child_type; instruction->target = target; instruction->result_loc = result_loc; ir_ref_instruction(dest_child_type, irb->current_basic_block); ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_int_to_float(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_type, IrInstruction *target) { IrInstructionIntToFloat *instruction = ir_build_instruction(irb, scope, source_node); instruction->dest_type = dest_type; instruction->target = target; ir_ref_instruction(dest_type, irb->current_basic_block); ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_float_to_int(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_type, IrInstruction *target) { IrInstructionFloatToInt *instruction = ir_build_instruction(irb, scope, source_node); instruction->dest_type = dest_type; instruction->target = target; ir_ref_instruction(dest_type, irb->current_basic_block); ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_bool_to_int(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target) { IrInstructionBoolToInt *instruction = ir_build_instruction(irb, scope, source_node); instruction->target = target; ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_int_type(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *is_signed, IrInstruction *bit_count) { IrInstructionIntType *instruction = ir_build_instruction(irb, scope, source_node); instruction->is_signed = is_signed; instruction->bit_count = bit_count; ir_ref_instruction(is_signed, irb->current_basic_block); ir_ref_instruction(bit_count, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_vector_type(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *len, IrInstruction *elem_type) { IrInstructionVectorType *instruction = ir_build_instruction(irb, scope, source_node); instruction->len = len; instruction->elem_type = elem_type; ir_ref_instruction(len, irb->current_basic_block); ir_ref_instruction(elem_type, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_bool_not(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *value) { IrInstructionBoolNot *instruction = ir_build_instruction(irb, scope, source_node); instruction->value = value; ir_ref_instruction(value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_memset(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_ptr, IrInstruction *byte, IrInstruction *count) { IrInstructionMemset *instruction = ir_build_instruction(irb, scope, source_node); instruction->dest_ptr = dest_ptr; instruction->byte = byte; instruction->count = count; ir_ref_instruction(dest_ptr, irb->current_basic_block); ir_ref_instruction(byte, irb->current_basic_block); ir_ref_instruction(count, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_memcpy(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_ptr, IrInstruction *src_ptr, IrInstruction *count) { IrInstructionMemcpy *instruction = ir_build_instruction(irb, scope, source_node); instruction->dest_ptr = dest_ptr; instruction->src_ptr = src_ptr; instruction->count = count; ir_ref_instruction(dest_ptr, irb->current_basic_block); ir_ref_instruction(src_ptr, irb->current_basic_block); ir_ref_instruction(count, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_slice_src(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *ptr, IrInstruction *start, IrInstruction *end, bool safety_check_on, ResultLoc *result_loc) { IrInstructionSliceSrc *instruction = ir_build_instruction(irb, scope, source_node); instruction->ptr = ptr; instruction->start = start; instruction->end = end; instruction->safety_check_on = safety_check_on; instruction->result_loc = result_loc; ir_ref_instruction(ptr, irb->current_basic_block); ir_ref_instruction(start, irb->current_basic_block); if (end) ir_ref_instruction(end, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_slice_gen(IrAnalyze *ira, IrInstruction *source_instruction, ZigType *slice_type, IrInstruction *ptr, IrInstruction *start, IrInstruction *end, bool safety_check_on, IrInstruction *result_loc) { IrInstructionSliceGen *instruction = ir_build_instruction( &ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = slice_type; instruction->ptr = ptr; instruction->start = start; instruction->end = end; instruction->safety_check_on = safety_check_on; instruction->result_loc = result_loc; ir_ref_instruction(ptr, ira->new_irb.current_basic_block); ir_ref_instruction(start, ira->new_irb.current_basic_block); if (end) ir_ref_instruction(end, ira->new_irb.current_basic_block); ir_ref_instruction(result_loc, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_member_count(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *container) { IrInstructionMemberCount *instruction = ir_build_instruction(irb, scope, source_node); instruction->container = container; ir_ref_instruction(container, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_member_type(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *container_type, IrInstruction *member_index) { IrInstructionMemberType *instruction = ir_build_instruction(irb, scope, source_node); instruction->container_type = container_type; instruction->member_index = member_index; ir_ref_instruction(container_type, irb->current_basic_block); ir_ref_instruction(member_index, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_member_name(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *container_type, IrInstruction *member_index) { IrInstructionMemberName *instruction = ir_build_instruction(irb, scope, source_node); instruction->container_type = container_type; instruction->member_index = member_index; ir_ref_instruction(container_type, irb->current_basic_block); ir_ref_instruction(member_index, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_breakpoint(IrBuilder *irb, Scope *scope, AstNode *source_node) { IrInstructionBreakpoint *instruction = ir_build_instruction(irb, scope, source_node); return &instruction->base; } static IrInstruction *ir_build_return_address(IrBuilder *irb, Scope *scope, AstNode *source_node) { IrInstructionReturnAddress *instruction = ir_build_instruction(irb, scope, source_node); return &instruction->base; } static IrInstruction *ir_build_frame_address(IrBuilder *irb, Scope *scope, AstNode *source_node) { IrInstructionFrameAddress *instruction = ir_build_instruction(irb, scope, source_node); return &instruction->base; } static IrInstruction *ir_build_handle(IrBuilder *irb, Scope *scope, AstNode *source_node) { IrInstructionFrameHandle *instruction = ir_build_instruction(irb, scope, source_node); return &instruction->base; } static IrInstruction *ir_build_frame_type(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *fn) { IrInstructionFrameType *instruction = ir_build_instruction(irb, scope, source_node); instruction->fn = fn; ir_ref_instruction(fn, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_frame_size_src(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *fn) { IrInstructionFrameSizeSrc *instruction = ir_build_instruction(irb, scope, source_node); instruction->fn = fn; ir_ref_instruction(fn, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_frame_size_gen(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *fn) { IrInstructionFrameSizeGen *instruction = ir_build_instruction(irb, scope, source_node); instruction->fn = fn; ir_ref_instruction(fn, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_overflow_op(IrBuilder *irb, Scope *scope, AstNode *source_node, IrOverflowOp op, IrInstruction *type_value, IrInstruction *op1, IrInstruction *op2, IrInstruction *result_ptr, ZigType *result_ptr_type) { IrInstructionOverflowOp *instruction = ir_build_instruction(irb, scope, source_node); instruction->op = op; instruction->type_value = type_value; instruction->op1 = op1; instruction->op2 = op2; instruction->result_ptr = result_ptr; instruction->result_ptr_type = result_ptr_type; ir_ref_instruction(type_value, irb->current_basic_block); ir_ref_instruction(op1, irb->current_basic_block); ir_ref_instruction(op2, irb->current_basic_block); ir_ref_instruction(result_ptr, irb->current_basic_block); return &instruction->base; } //TODO Powi, Pow, minnum, maxnum, maximum, minimum, copysign, // lround, llround, lrint, llrint // So far this is only non-complicated type functions. const char *float_op_to_name(BuiltinFnId op, bool llvm_name) { const bool b = llvm_name; switch (op) { case BuiltinFnIdSqrt: return "sqrt"; case BuiltinFnIdSin: return "sin"; case BuiltinFnIdCos: return "cos"; case BuiltinFnIdExp: return "exp"; case BuiltinFnIdExp2: return "exp2"; case BuiltinFnIdLn: return b ? "log" : "ln"; case BuiltinFnIdLog10: return "log10"; case BuiltinFnIdLog2: return "log2"; case BuiltinFnIdFabs: return "fabs"; case BuiltinFnIdFloor: return "floor"; case BuiltinFnIdCeil: return "ceil"; case BuiltinFnIdTrunc: return "trunc"; case BuiltinFnIdNearbyInt: return b ? "nearbyint" : "nearbyInt"; case BuiltinFnIdRound: return "round"; default: zig_unreachable(); } } static IrInstruction *ir_build_float_op(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type, IrInstruction *op1, BuiltinFnId op) { IrInstructionFloatOp *instruction = ir_build_instruction(irb, scope, source_node); instruction->type = type; instruction->op1 = op1; instruction->op = op; if (type != nullptr) ir_ref_instruction(type, irb->current_basic_block); ir_ref_instruction(op1, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_mul_add(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type_value, IrInstruction *op1, IrInstruction *op2, IrInstruction *op3) { IrInstructionMulAdd *instruction = ir_build_instruction(irb, scope, source_node); instruction->type_value = type_value; instruction->op1 = op1; instruction->op2 = op2; instruction->op3 = op3; ir_ref_instruction(type_value, irb->current_basic_block); ir_ref_instruction(op1, irb->current_basic_block); ir_ref_instruction(op2, irb->current_basic_block); ir_ref_instruction(op3, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_align_of(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type_value) { IrInstructionAlignOf *instruction = ir_build_instruction(irb, scope, source_node); instruction->type_value = type_value; ir_ref_instruction(type_value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_test_err_src(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *base_ptr, bool resolve_err_set, bool base_ptr_is_payload) { IrInstructionTestErrSrc *instruction = ir_build_instruction(irb, scope, source_node); instruction->base_ptr = base_ptr; instruction->resolve_err_set = resolve_err_set; instruction->base_ptr_is_payload = base_ptr_is_payload; ir_ref_instruction(base_ptr, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_test_err_gen(IrAnalyze *ira, IrInstruction *source_instruction, IrInstruction *err_union) { IrInstructionTestErrGen *instruction = ir_build_instruction( &ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = ira->codegen->builtin_types.entry_bool; instruction->err_union = err_union; ir_ref_instruction(err_union, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_unwrap_err_code(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *err_union_ptr) { IrInstructionUnwrapErrCode *instruction = ir_build_instruction(irb, scope, source_node); instruction->err_union_ptr = err_union_ptr; ir_ref_instruction(err_union_ptr, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_unwrap_err_payload(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *value, bool safety_check_on, bool initializing) { IrInstructionUnwrapErrPayload *instruction = ir_build_instruction(irb, scope, source_node); instruction->value = value; instruction->safety_check_on = safety_check_on; instruction->initializing = initializing; ir_ref_instruction(value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_fn_proto(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction **param_types, IrInstruction *align_value, IrInstruction *return_type, bool is_var_args) { IrInstructionFnProto *instruction = ir_build_instruction(irb, scope, source_node); instruction->param_types = param_types; instruction->align_value = align_value; instruction->return_type = return_type; instruction->is_var_args = is_var_args; assert(source_node->type == NodeTypeFnProto); size_t param_count = source_node->data.fn_proto.params.length; if (is_var_args) param_count -= 1; for (size_t i = 0; i < param_count; i += 1) { if (param_types[i] != nullptr) ir_ref_instruction(param_types[i], irb->current_basic_block); } if (align_value != nullptr) ir_ref_instruction(align_value, irb->current_basic_block); ir_ref_instruction(return_type, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_test_comptime(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *value) { IrInstructionTestComptime *instruction = ir_build_instruction(irb, scope, source_node); instruction->value = value; ir_ref_instruction(value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_ptr_cast_src(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_type, IrInstruction *ptr, bool safety_check_on) { IrInstructionPtrCastSrc *instruction = ir_build_instruction( irb, scope, source_node); instruction->dest_type = dest_type; instruction->ptr = ptr; instruction->safety_check_on = safety_check_on; ir_ref_instruction(dest_type, irb->current_basic_block); ir_ref_instruction(ptr, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_ptr_cast_gen(IrAnalyze *ira, IrInstruction *source_instruction, ZigType *ptr_type, IrInstruction *ptr, bool safety_check_on) { IrInstructionPtrCastGen *instruction = ir_build_instruction( &ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = ptr_type; instruction->ptr = ptr; instruction->safety_check_on = safety_check_on; ir_ref_instruction(ptr, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_load_ptr_gen(IrAnalyze *ira, IrInstruction *source_instruction, IrInstruction *ptr, ZigType *ty, IrInstruction *result_loc) { IrInstructionLoadPtrGen *instruction = ir_build_instruction( &ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = ty; instruction->ptr = ptr; instruction->result_loc = result_loc; ir_ref_instruction(ptr, ira->new_irb.current_basic_block); if (result_loc != nullptr) ir_ref_instruction(result_loc, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_bit_cast_src(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *operand, ResultLocBitCast *result_loc_bit_cast) { IrInstructionBitCastSrc *instruction = ir_build_instruction(irb, scope, source_node); instruction->operand = operand; instruction->result_loc_bit_cast = result_loc_bit_cast; ir_ref_instruction(operand, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_bit_cast_gen(IrAnalyze *ira, IrInstruction *source_instruction, IrInstruction *operand, ZigType *ty) { IrInstructionBitCastGen *instruction = ir_build_instruction( &ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = ty; instruction->operand = operand; ir_ref_instruction(operand, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_widen_or_shorten(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target) { IrInstructionWidenOrShorten *instruction = ir_build_instruction( irb, scope, source_node); instruction->target = target; ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_int_to_ptr(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_type, IrInstruction *target) { IrInstructionIntToPtr *instruction = ir_build_instruction( irb, scope, source_node); instruction->dest_type = dest_type; instruction->target = target; if (dest_type) ir_ref_instruction(dest_type, irb->current_basic_block); ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_ptr_to_int(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target) { IrInstructionPtrToInt *instruction = ir_build_instruction( irb, scope, source_node); instruction->target = target; ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_int_to_enum(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_type, IrInstruction *target) { IrInstructionIntToEnum *instruction = ir_build_instruction( irb, scope, source_node); instruction->dest_type = dest_type; instruction->target = target; if (dest_type) ir_ref_instruction(dest_type, irb->current_basic_block); ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_enum_to_int(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target) { IrInstructionEnumToInt *instruction = ir_build_instruction( irb, scope, source_node); instruction->target = target; ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_int_to_err(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target) { IrInstructionIntToErr *instruction = ir_build_instruction( irb, scope, source_node); instruction->target = target; ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_err_to_int(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target) { IrInstructionErrToInt *instruction = ir_build_instruction( irb, scope, source_node); instruction->target = target; ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_check_switch_prongs(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target_value, IrInstructionCheckSwitchProngsRange *ranges, size_t range_count, bool have_else_prong) { IrInstructionCheckSwitchProngs *instruction = ir_build_instruction( irb, scope, source_node); instruction->target_value = target_value; instruction->ranges = ranges; instruction->range_count = range_count; instruction->have_else_prong = have_else_prong; ir_ref_instruction(target_value, irb->current_basic_block); for (size_t i = 0; i < range_count; i += 1) { ir_ref_instruction(ranges[i].start, irb->current_basic_block); ir_ref_instruction(ranges[i].end, irb->current_basic_block); } return &instruction->base; } static IrInstruction *ir_build_check_statement_is_void(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction* statement_value) { IrInstructionCheckStatementIsVoid *instruction = ir_build_instruction( irb, scope, source_node); instruction->statement_value = statement_value; ir_ref_instruction(statement_value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_type_name(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type_value) { IrInstructionTypeName *instruction = ir_build_instruction( irb, scope, source_node); instruction->type_value = type_value; ir_ref_instruction(type_value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_decl_ref(IrBuilder *irb, Scope *scope, AstNode *source_node, Tld *tld, LVal lval) { IrInstructionDeclRef *instruction = ir_build_instruction(irb, scope, source_node); instruction->tld = tld; instruction->lval = lval; return &instruction->base; } static IrInstruction *ir_build_panic(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *msg) { IrInstructionPanic *instruction = ir_build_instruction(irb, scope, source_node); instruction->base.value.special = ConstValSpecialStatic; instruction->base.value.type = irb->codegen->builtin_types.entry_unreachable; instruction->msg = msg; ir_ref_instruction(msg, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_tag_name(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target) { IrInstructionTagName *instruction = ir_build_instruction(irb, scope, source_node); instruction->target = target; ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_tag_type(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *target) { IrInstructionTagType *instruction = ir_build_instruction(irb, scope, source_node); instruction->target = target; ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_field_parent_ptr(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type_value, IrInstruction *field_name, IrInstruction *field_ptr, TypeStructField *field) { IrInstructionFieldParentPtr *instruction = ir_build_instruction( irb, scope, source_node); instruction->type_value = type_value; instruction->field_name = field_name; instruction->field_ptr = field_ptr; instruction->field = field; ir_ref_instruction(type_value, irb->current_basic_block); ir_ref_instruction(field_name, irb->current_basic_block); ir_ref_instruction(field_ptr, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_byte_offset_of(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type_value, IrInstruction *field_name) { IrInstructionByteOffsetOf *instruction = ir_build_instruction(irb, scope, source_node); instruction->type_value = type_value; instruction->field_name = field_name; ir_ref_instruction(type_value, irb->current_basic_block); ir_ref_instruction(field_name, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_bit_offset_of(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type_value, IrInstruction *field_name) { IrInstructionBitOffsetOf *instruction = ir_build_instruction(irb, scope, source_node); instruction->type_value = type_value; instruction->field_name = field_name; ir_ref_instruction(type_value, irb->current_basic_block); ir_ref_instruction(field_name, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_type_info(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type_value) { IrInstructionTypeInfo *instruction = ir_build_instruction(irb, scope, source_node); instruction->type_value = type_value; ir_ref_instruction(type_value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_type_id(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type_value) { IrInstructionTypeId *instruction = ir_build_instruction(irb, scope, source_node); instruction->type_value = type_value; ir_ref_instruction(type_value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_set_eval_branch_quota(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *new_quota) { IrInstructionSetEvalBranchQuota *instruction = ir_build_instruction(irb, scope, source_node); instruction->new_quota = new_quota; ir_ref_instruction(new_quota, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_align_cast(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *align_bytes, IrInstruction *target) { IrInstructionAlignCast *instruction = ir_build_instruction(irb, scope, source_node); instruction->align_bytes = align_bytes; instruction->target = target; if (align_bytes) ir_ref_instruction(align_bytes, irb->current_basic_block); ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_implicit_cast(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *dest_type, IrInstruction *target, ResultLoc *result_loc) { IrInstructionImplicitCast *instruction = ir_build_instruction(irb, scope, source_node); instruction->dest_type = dest_type; instruction->target = target; instruction->result_loc = result_loc; ir_ref_instruction(dest_type, irb->current_basic_block); ir_ref_instruction(target, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_resolve_result(IrBuilder *irb, Scope *scope, AstNode *source_node, ResultLoc *result_loc, IrInstruction *ty) { IrInstructionResolveResult *instruction = ir_build_instruction(irb, scope, source_node); instruction->result_loc = result_loc; instruction->ty = ty; ir_ref_instruction(ty, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_reset_result(IrBuilder *irb, Scope *scope, AstNode *source_node, ResultLoc *result_loc) { IrInstructionResetResult *instruction = ir_build_instruction(irb, scope, source_node); instruction->result_loc = result_loc; return &instruction->base; } static IrInstruction *ir_build_opaque_type(IrBuilder *irb, Scope *scope, AstNode *source_node) { IrInstructionOpaqueType *instruction = ir_build_instruction(irb, scope, source_node); return &instruction->base; } static IrInstruction *ir_build_set_align_stack(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *align_bytes) { IrInstructionSetAlignStack *instruction = ir_build_instruction(irb, scope, source_node); instruction->align_bytes = align_bytes; ir_ref_instruction(align_bytes, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_arg_type(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *fn_type, IrInstruction *arg_index) { IrInstructionArgType *instruction = ir_build_instruction(irb, scope, source_node); instruction->fn_type = fn_type; instruction->arg_index = arg_index; ir_ref_instruction(fn_type, irb->current_basic_block); ir_ref_instruction(arg_index, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_error_return_trace(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstructionErrorReturnTrace::Optional optional) { IrInstructionErrorReturnTrace *instruction = ir_build_instruction(irb, scope, source_node); instruction->optional = optional; return &instruction->base; } static IrInstruction *ir_build_error_union(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *err_set, IrInstruction *payload) { IrInstructionErrorUnion *instruction = ir_build_instruction(irb, scope, source_node); instruction->err_set = err_set; instruction->payload = payload; ir_ref_instruction(err_set, irb->current_basic_block); ir_ref_instruction(payload, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_atomic_rmw(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *operand_type, IrInstruction *ptr, IrInstruction *op, IrInstruction *operand, IrInstruction *ordering, AtomicRmwOp resolved_op, AtomicOrder resolved_ordering) { IrInstructionAtomicRmw *instruction = ir_build_instruction(irb, scope, source_node); instruction->operand_type = operand_type; instruction->ptr = ptr; instruction->op = op; instruction->operand = operand; instruction->ordering = ordering; instruction->resolved_op = resolved_op; instruction->resolved_ordering = resolved_ordering; if (operand_type != nullptr) ir_ref_instruction(operand_type, irb->current_basic_block); ir_ref_instruction(ptr, irb->current_basic_block); if (op != nullptr) ir_ref_instruction(op, irb->current_basic_block); ir_ref_instruction(operand, irb->current_basic_block); if (ordering != nullptr) ir_ref_instruction(ordering, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_atomic_load(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *operand_type, IrInstruction *ptr, IrInstruction *ordering, AtomicOrder resolved_ordering) { IrInstructionAtomicLoad *instruction = ir_build_instruction(irb, scope, source_node); instruction->operand_type = operand_type; instruction->ptr = ptr; instruction->ordering = ordering; instruction->resolved_ordering = resolved_ordering; if (operand_type != nullptr) ir_ref_instruction(operand_type, irb->current_basic_block); ir_ref_instruction(ptr, irb->current_basic_block); if (ordering != nullptr) ir_ref_instruction(ordering, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_save_err_ret_addr(IrBuilder *irb, Scope *scope, AstNode *source_node) { IrInstructionSaveErrRetAddr *instruction = ir_build_instruction(irb, scope, source_node); return &instruction->base; } static IrInstruction *ir_build_add_implicit_return_type(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *value) { IrInstructionAddImplicitReturnType *instruction = ir_build_instruction(irb, scope, source_node); instruction->value = value; ir_ref_instruction(value, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_has_decl(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *container, IrInstruction *name) { IrInstructionHasDecl *instruction = ir_build_instruction(irb, scope, source_node); instruction->container = container; instruction->name = name; ir_ref_instruction(container, irb->current_basic_block); ir_ref_instruction(name, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_undeclared_identifier(IrBuilder *irb, Scope *scope, AstNode *source_node, Buf *name) { IrInstructionUndeclaredIdent *instruction = ir_build_instruction(irb, scope, source_node); instruction->name = name; return &instruction->base; } static IrInstruction *ir_build_check_runtime_scope(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *scope_is_comptime, IrInstruction *is_comptime) { IrInstructionCheckRuntimeScope *instruction = ir_build_instruction(irb, scope, source_node); instruction->scope_is_comptime = scope_is_comptime; instruction->is_comptime = is_comptime; ir_ref_instruction(scope_is_comptime, irb->current_basic_block); ir_ref_instruction(is_comptime, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_union_init_named_field(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *union_type, IrInstruction *field_name, IrInstruction *field_result_loc, IrInstruction *result_loc) { IrInstructionUnionInitNamedField *instruction = ir_build_instruction(irb, scope, source_node); instruction->union_type = union_type; instruction->field_name = field_name; instruction->field_result_loc = field_result_loc; instruction->result_loc = result_loc; ir_ref_instruction(union_type, irb->current_basic_block); ir_ref_instruction(field_name, irb->current_basic_block); ir_ref_instruction(field_result_loc, irb->current_basic_block); if (result_loc != nullptr) ir_ref_instruction(result_loc, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_vector_to_array(IrAnalyze *ira, IrInstruction *source_instruction, ZigType *result_type, IrInstruction *vector, IrInstruction *result_loc) { IrInstructionVectorToArray *instruction = ir_build_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = result_type; instruction->vector = vector; instruction->result_loc = result_loc; ir_ref_instruction(vector, ira->new_irb.current_basic_block); ir_ref_instruction(result_loc, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_ptr_of_array_to_slice(IrAnalyze *ira, IrInstruction *source_instruction, ZigType *result_type, IrInstruction *operand, IrInstruction *result_loc) { IrInstructionPtrOfArrayToSlice *instruction = ir_build_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = result_type; instruction->operand = operand; instruction->result_loc = result_loc; ir_ref_instruction(operand, ira->new_irb.current_basic_block); ir_ref_instruction(result_loc, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_array_to_vector(IrAnalyze *ira, IrInstruction *source_instruction, IrInstruction *array, ZigType *result_type) { IrInstructionArrayToVector *instruction = ir_build_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = result_type; instruction->array = array; ir_ref_instruction(array, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_assert_zero(IrAnalyze *ira, IrInstruction *source_instruction, IrInstruction *target) { IrInstructionAssertZero *instruction = ir_build_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = ira->codegen->builtin_types.entry_void; instruction->target = target; ir_ref_instruction(target, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_assert_non_null(IrAnalyze *ira, IrInstruction *source_instruction, IrInstruction *target) { IrInstructionAssertNonNull *instruction = ir_build_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = ira->codegen->builtin_types.entry_void; instruction->target = target; ir_ref_instruction(target, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_alloca_src(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *align, const char *name_hint, IrInstruction *is_comptime) { IrInstructionAllocaSrc *instruction = ir_build_instruction(irb, scope, source_node); instruction->base.is_gen = true; instruction->align = align; instruction->name_hint = name_hint; instruction->is_comptime = is_comptime; if (align != nullptr) ir_ref_instruction(align, irb->current_basic_block); if (is_comptime != nullptr) ir_ref_instruction(is_comptime, irb->current_basic_block); return &instruction->base; } static IrInstructionAllocaGen *ir_build_alloca_gen(IrAnalyze *ira, IrInstruction *source_instruction, uint32_t align, const char *name_hint) { IrInstructionAllocaGen *instruction = ir_create_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->align = align; instruction->name_hint = name_hint; return instruction; } static IrInstruction *ir_build_end_expr(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *value, ResultLoc *result_loc) { IrInstructionEndExpr *instruction = ir_build_instruction(irb, scope, source_node); instruction->base.is_gen = true; instruction->value = value; instruction->result_loc = result_loc; ir_ref_instruction(value, irb->current_basic_block); return &instruction->base; } static IrInstructionSuspendBegin *ir_build_suspend_begin(IrBuilder *irb, Scope *scope, AstNode *source_node) { IrInstructionSuspendBegin *instruction = ir_build_instruction(irb, scope, source_node); instruction->base.value.type = irb->codegen->builtin_types.entry_void; return instruction; } static IrInstruction *ir_build_suspend_finish(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstructionSuspendBegin *begin) { IrInstructionSuspendFinish *instruction = ir_build_instruction(irb, scope, source_node); instruction->base.value.type = irb->codegen->builtin_types.entry_void; instruction->begin = begin; ir_ref_instruction(&begin->base, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_await_src(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *frame, ResultLoc *result_loc) { IrInstructionAwaitSrc *instruction = ir_build_instruction(irb, scope, source_node); instruction->frame = frame; instruction->result_loc = result_loc; ir_ref_instruction(frame, irb->current_basic_block); return &instruction->base; } static IrInstruction *ir_build_await_gen(IrAnalyze *ira, IrInstruction *source_instruction, IrInstruction *frame, ZigType *result_type, IrInstruction *result_loc) { IrInstructionAwaitGen *instruction = ir_build_instruction(&ira->new_irb, source_instruction->scope, source_instruction->source_node); instruction->base.value.type = result_type; instruction->frame = frame; instruction->result_loc = result_loc; ir_ref_instruction(frame, ira->new_irb.current_basic_block); if (result_loc != nullptr) ir_ref_instruction(result_loc, ira->new_irb.current_basic_block); return &instruction->base; } static IrInstruction *ir_build_resume(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *frame) { IrInstructionResume *instruction = ir_build_instruction(irb, scope, source_node); instruction->base.value.type = irb->codegen->builtin_types.entry_void; instruction->frame = frame; ir_ref_instruction(frame, irb->current_basic_block); return &instruction->base; } static IrInstructionSpillBegin *ir_build_spill_begin(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *operand, SpillId spill_id) { IrInstructionSpillBegin *instruction = ir_build_instruction(irb, scope, source_node); instruction->base.value.special = ConstValSpecialStatic; instruction->base.value.type = irb->codegen->builtin_types.entry_void; instruction->operand = operand; instruction->spill_id = spill_id; ir_ref_instruction(operand, irb->current_basic_block); return instruction; } static IrInstruction *ir_build_spill_end(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstructionSpillBegin *begin) { IrInstructionSpillEnd *instruction = ir_build_instruction(irb, scope, source_node); instruction->begin = begin; ir_ref_instruction(&begin->base, irb->current_basic_block); return &instruction->base; } static void ir_count_defers(IrBuilder *irb, Scope *inner_scope, Scope *outer_scope, size_t *results) { results[ReturnKindUnconditional] = 0; results[ReturnKindError] = 0; Scope *scope = inner_scope; while (scope != outer_scope) { assert(scope); switch (scope->id) { case ScopeIdDefer: { AstNode *defer_node = scope->source_node; assert(defer_node->type == NodeTypeDefer); ReturnKind defer_kind = defer_node->data.defer.kind; results[defer_kind] += 1; scope = scope->parent; continue; } case ScopeIdDecls: case ScopeIdFnDef: return; case ScopeIdBlock: case ScopeIdVarDecl: case ScopeIdLoop: case ScopeIdSuspend: case ScopeIdCompTime: case ScopeIdRuntime: scope = scope->parent; continue; case ScopeIdDeferExpr: case ScopeIdCImport: zig_unreachable(); } } } static IrInstruction *ir_mark_gen(IrInstruction *instruction) { instruction->is_gen = true; return instruction; } static bool ir_gen_defers_for_block(IrBuilder *irb, Scope *inner_scope, Scope *outer_scope, bool gen_error_defers) { Scope *scope = inner_scope; bool is_noreturn = false; while (scope != outer_scope) { if (!scope) return is_noreturn; switch (scope->id) { case ScopeIdDefer: { AstNode *defer_node = scope->source_node; assert(defer_node->type == NodeTypeDefer); ReturnKind defer_kind = defer_node->data.defer.kind; if (defer_kind == ReturnKindUnconditional || (gen_error_defers && defer_kind == ReturnKindError)) { AstNode *defer_expr_node = defer_node->data.defer.expr; Scope *defer_expr_scope = defer_node->data.defer.expr_scope; IrInstruction *defer_expr_value = ir_gen_node(irb, defer_expr_node, defer_expr_scope); if (defer_expr_value != irb->codegen->invalid_instruction) { if (defer_expr_value->value.type != nullptr && defer_expr_value->value.type->id == ZigTypeIdUnreachable) { is_noreturn = true; } else { ir_mark_gen(ir_build_check_statement_is_void(irb, defer_expr_scope, defer_expr_node, defer_expr_value)); } } } scope = scope->parent; continue; } case ScopeIdDecls: case ScopeIdFnDef: return is_noreturn; case ScopeIdBlock: case ScopeIdVarDecl: case ScopeIdLoop: case ScopeIdSuspend: case ScopeIdCompTime: case ScopeIdRuntime: scope = scope->parent; continue; case ScopeIdDeferExpr: case ScopeIdCImport: zig_unreachable(); } } return is_noreturn; } static void ir_set_cursor_at_end(IrBuilder *irb, IrBasicBlock *basic_block) { assert(basic_block); irb->current_basic_block = basic_block; } static void ir_set_cursor_at_end_and_append_block(IrBuilder *irb, IrBasicBlock *basic_block) { basic_block->index = irb->exec->basic_block_list.length; irb->exec->basic_block_list.append(basic_block); ir_set_cursor_at_end(irb, basic_block); } static ScopeSuspend *get_scope_suspend(Scope *scope) { while (scope) { if (scope->id == ScopeIdSuspend) return (ScopeSuspend *)scope; if (scope->id == ScopeIdFnDef) return nullptr; scope = scope->parent; } return nullptr; } static ScopeDeferExpr *get_scope_defer_expr(Scope *scope) { while (scope) { if (scope->id == ScopeIdDeferExpr) return (ScopeDeferExpr *)scope; if (scope->id == ScopeIdFnDef) return nullptr; scope = scope->parent; } return nullptr; } static IrInstruction *ir_gen_return(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeReturnExpr); ZigFn *fn_entry = exec_fn_entry(irb->exec); if (!fn_entry) { add_node_error(irb->codegen, node, buf_sprintf("return expression outside function definition")); return irb->codegen->invalid_instruction; } ScopeDeferExpr *scope_defer_expr = get_scope_defer_expr(scope); if (scope_defer_expr) { if (!scope_defer_expr->reported_err) { add_node_error(irb->codegen, node, buf_sprintf("cannot return from defer expression")); scope_defer_expr->reported_err = true; } return irb->codegen->invalid_instruction; } Scope *outer_scope = irb->exec->begin_scope; AstNode *expr_node = node->data.return_expr.expr; switch (node->data.return_expr.kind) { case ReturnKindUnconditional: { ResultLocReturn *result_loc_ret = allocate(1); result_loc_ret->base.id = ResultLocIdReturn; ir_build_reset_result(irb, scope, node, &result_loc_ret->base); IrInstruction *return_value; if (expr_node) { // Temporarily set this so that if we return a type it gets the name of the function ZigFn *prev_name_fn = irb->exec->name_fn; irb->exec->name_fn = exec_fn_entry(irb->exec); return_value = ir_gen_node_extra(irb, expr_node, scope, LValNone, &result_loc_ret->base); irb->exec->name_fn = prev_name_fn; if (return_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; } else { return_value = ir_build_const_void(irb, scope, node); } ir_mark_gen(ir_build_add_implicit_return_type(irb, scope, node, return_value)); size_t defer_counts[2]; ir_count_defers(irb, scope, outer_scope, defer_counts); bool have_err_defers = defer_counts[ReturnKindError] > 0; if (!have_err_defers && !irb->codegen->have_err_ret_tracing) { // only generate unconditional defers ir_gen_defers_for_block(irb, scope, outer_scope, false); IrInstruction *result = ir_build_return(irb, scope, node, return_value); result_loc_ret->base.source_instruction = result; return result; } bool should_inline = ir_should_inline(irb->exec, scope); IrBasicBlock *err_block = ir_create_basic_block(irb, scope, "ErrRetErr"); IrBasicBlock *ok_block = ir_create_basic_block(irb, scope, "ErrRetOk"); if (!have_err_defers) { ir_gen_defers_for_block(irb, scope, outer_scope, false); } IrInstruction *is_err = ir_build_test_err_src(irb, scope, node, return_value, false, true); IrInstruction *is_comptime; if (should_inline) { is_comptime = ir_build_const_bool(irb, scope, node, should_inline); } else { is_comptime = ir_build_test_comptime(irb, scope, node, is_err); } ir_mark_gen(ir_build_cond_br(irb, scope, node, is_err, err_block, ok_block, is_comptime)); IrBasicBlock *ret_stmt_block = ir_create_basic_block(irb, scope, "RetStmt"); ir_set_cursor_at_end_and_append_block(irb, err_block); if (have_err_defers) { ir_gen_defers_for_block(irb, scope, outer_scope, true); } if (irb->codegen->have_err_ret_tracing && !should_inline) { ir_build_save_err_ret_addr(irb, scope, node); } ir_build_br(irb, scope, node, ret_stmt_block, is_comptime); ir_set_cursor_at_end_and_append_block(irb, ok_block); if (have_err_defers) { ir_gen_defers_for_block(irb, scope, outer_scope, false); } ir_build_br(irb, scope, node, ret_stmt_block, is_comptime); ir_set_cursor_at_end_and_append_block(irb, ret_stmt_block); IrInstruction *result = ir_build_return(irb, scope, node, return_value); result_loc_ret->base.source_instruction = result; return result; } case ReturnKindError: { assert(expr_node); IrInstruction *err_union_ptr = ir_gen_node_extra(irb, expr_node, scope, LValPtr, nullptr); if (err_union_ptr == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *is_err_val = ir_build_test_err_src(irb, scope, node, err_union_ptr, true, false); IrBasicBlock *return_block = ir_create_basic_block(irb, scope, "ErrRetReturn"); IrBasicBlock *continue_block = ir_create_basic_block(irb, scope, "ErrRetContinue"); IrInstruction *is_comptime; bool should_inline = ir_should_inline(irb->exec, scope); if (should_inline) { is_comptime = ir_build_const_bool(irb, scope, node, true); } else { is_comptime = ir_build_test_comptime(irb, scope, node, is_err_val); } ir_mark_gen(ir_build_cond_br(irb, scope, node, is_err_val, return_block, continue_block, is_comptime)); ir_set_cursor_at_end_and_append_block(irb, return_block); IrInstruction *err_val_ptr = ir_build_unwrap_err_code(irb, scope, node, err_union_ptr); IrInstruction *err_val = ir_build_load_ptr(irb, scope, node, err_val_ptr); ir_mark_gen(ir_build_add_implicit_return_type(irb, scope, node, err_val)); IrInstructionSpillBegin *spill_begin = ir_build_spill_begin(irb, scope, node, err_val, SpillIdRetErrCode); ResultLocReturn *result_loc_ret = allocate(1); result_loc_ret->base.id = ResultLocIdReturn; ir_build_reset_result(irb, scope, node, &result_loc_ret->base); ir_build_end_expr(irb, scope, node, err_val, &result_loc_ret->base); if (!ir_gen_defers_for_block(irb, scope, outer_scope, true)) { if (irb->codegen->have_err_ret_tracing && !should_inline) { ir_build_save_err_ret_addr(irb, scope, node); } err_val = ir_build_spill_end(irb, scope, node, spill_begin); IrInstruction *ret_inst = ir_build_return(irb, scope, node, err_val); result_loc_ret->base.source_instruction = ret_inst; } ir_set_cursor_at_end_and_append_block(irb, continue_block); IrInstruction *unwrapped_ptr = ir_build_unwrap_err_payload(irb, scope, node, err_union_ptr, false, false); if (lval == LValPtr) return unwrapped_ptr; else return ir_expr_wrap(irb, scope, ir_build_load_ptr(irb, scope, node, unwrapped_ptr), result_loc); } } zig_unreachable(); } static ZigVar *create_local_var(CodeGen *codegen, AstNode *node, Scope *parent_scope, Buf *name, bool src_is_const, bool gen_is_const, bool is_shadowable, IrInstruction *is_comptime, bool skip_name_check) { ZigVar *variable_entry = allocate(1); variable_entry->parent_scope = parent_scope; variable_entry->shadowable = is_shadowable; variable_entry->mem_slot_index = SIZE_MAX; variable_entry->is_comptime = is_comptime; variable_entry->src_arg_index = SIZE_MAX; variable_entry->const_value = create_const_vals(1); if (is_comptime != nullptr) { is_comptime->ref_count += 1; } if (name) { buf_init_from_buf(&variable_entry->name, name); if (!skip_name_check) { ZigVar *existing_var = find_variable(codegen, parent_scope, name, nullptr); if (existing_var && !existing_var->shadowable) { if (existing_var->var_type == nullptr || !type_is_invalid(existing_var->var_type)) { ErrorMsg *msg = add_node_error(codegen, node, buf_sprintf("redeclaration of variable '%s'", buf_ptr(name))); add_error_note(codegen, msg, existing_var->decl_node, buf_sprintf("previous declaration is here")); } variable_entry->var_type = codegen->builtin_types.entry_invalid; } else { ZigType *type; if (get_primitive_type(codegen, name, &type) != ErrorPrimitiveTypeNotFound) { add_node_error(codegen, node, buf_sprintf("variable shadows primitive type '%s'", buf_ptr(name))); variable_entry->var_type = codegen->builtin_types.entry_invalid; } else { Tld *tld = find_decl(codegen, parent_scope, name); if (tld != nullptr) { ErrorMsg *msg = add_node_error(codegen, node, buf_sprintf("redefinition of '%s'", buf_ptr(name))); add_error_note(codegen, msg, tld->source_node, buf_sprintf("previous definition is here")); variable_entry->var_type = codegen->builtin_types.entry_invalid; } } } } } else { assert(is_shadowable); // TODO make this name not actually be in scope. user should be able to make a variable called "_anon" // might already be solved, let's just make sure it has test coverage // maybe we put a prefix on this so the debug info doesn't clobber user debug info for same named variables buf_init_from_str(&variable_entry->name, "_anon"); } variable_entry->src_is_const = src_is_const; variable_entry->gen_is_const = gen_is_const; variable_entry->decl_node = node; variable_entry->child_scope = create_var_scope(codegen, node, parent_scope, variable_entry); return variable_entry; } // Set name to nullptr to make the variable anonymous (not visible to programmer). // After you call this function var->child_scope has the variable in scope static ZigVar *ir_create_var(IrBuilder *irb, AstNode *node, Scope *scope, Buf *name, bool src_is_const, bool gen_is_const, bool is_shadowable, IrInstruction *is_comptime) { bool is_underscored = name ? buf_eql_str(name, "_") : false; ZigVar *var = create_local_var(irb->codegen, node, scope, (is_underscored ? nullptr : name), src_is_const, gen_is_const, (is_underscored ? true : is_shadowable), is_comptime, false); if (is_comptime != nullptr || gen_is_const) { var->mem_slot_index = exec_next_mem_slot(irb->exec); var->owner_exec = irb->exec; } assert(var->child_scope); return var; } static ResultLocPeer *create_peer_result(ResultLocPeerParent *peer_parent) { ResultLocPeer *result = allocate(1); result->base.id = ResultLocIdPeer; result->base.source_instruction = peer_parent->base.source_instruction; result->parent = peer_parent; return result; } static IrInstruction *ir_gen_block(IrBuilder *irb, Scope *parent_scope, AstNode *block_node, LVal lval, ResultLoc *result_loc) { assert(block_node->type == NodeTypeBlock); ZigList incoming_values = {0}; ZigList incoming_blocks = {0}; ScopeBlock *scope_block = create_block_scope(irb->codegen, block_node, parent_scope); Scope *outer_block_scope = &scope_block->base; Scope *child_scope = outer_block_scope; ZigFn *fn_entry = scope_fn_entry(parent_scope); if (fn_entry && fn_entry->child_scope == parent_scope) { fn_entry->def_scope = scope_block; } if (block_node->data.block.statements.length == 0) { // {} return ir_lval_wrap(irb, parent_scope, ir_build_const_void(irb, child_scope, block_node), lval, result_loc); } if (block_node->data.block.name != nullptr) { scope_block->lval = lval; scope_block->incoming_blocks = &incoming_blocks; scope_block->incoming_values = &incoming_values; scope_block->end_block = ir_create_basic_block(irb, parent_scope, "BlockEnd"); scope_block->is_comptime = ir_build_const_bool(irb, parent_scope, block_node, ir_should_inline(irb->exec, parent_scope)); scope_block->peer_parent = allocate(1); scope_block->peer_parent->base.id = ResultLocIdPeerParent; scope_block->peer_parent->base.source_instruction = scope_block->is_comptime; scope_block->peer_parent->end_bb = scope_block->end_block; scope_block->peer_parent->is_comptime = scope_block->is_comptime; scope_block->peer_parent->parent = result_loc; ir_build_reset_result(irb, parent_scope, block_node, &scope_block->peer_parent->base); } bool is_continuation_unreachable = false; IrInstruction *noreturn_return_value = nullptr; for (size_t i = 0; i < block_node->data.block.statements.length; i += 1) { AstNode *statement_node = block_node->data.block.statements.at(i); IrInstruction *statement_value = ir_gen_node(irb, statement_node, child_scope); is_continuation_unreachable = instr_is_unreachable(statement_value); if (is_continuation_unreachable) { // keep the last noreturn statement value around in case we need to return it noreturn_return_value = statement_value; } // This logic must be kept in sync with // [STMT_EXPR_TEST_THING] <--- (search this token) if (statement_node->type == NodeTypeDefer && statement_value != irb->codegen->invalid_instruction) { // defer starts a new scope child_scope = statement_node->data.defer.child_scope; assert(child_scope); } else if (statement_value->id == IrInstructionIdDeclVarSrc) { // variable declarations start a new scope IrInstructionDeclVarSrc *decl_var_instruction = (IrInstructionDeclVarSrc *)statement_value; child_scope = decl_var_instruction->var->child_scope; } else if (statement_value != irb->codegen->invalid_instruction && !is_continuation_unreachable) { // this statement's value must be void ir_mark_gen(ir_build_check_statement_is_void(irb, child_scope, statement_node, statement_value)); } } if (is_continuation_unreachable) { assert(noreturn_return_value != nullptr); if (block_node->data.block.name == nullptr || incoming_blocks.length == 0) { return noreturn_return_value; } if (scope_block->peer_parent != nullptr && scope_block->peer_parent->peers.length != 0) { scope_block->peer_parent->peers.last()->next_bb = scope_block->end_block; } ir_set_cursor_at_end_and_append_block(irb, scope_block->end_block); IrInstruction *phi = ir_build_phi(irb, parent_scope, block_node, incoming_blocks.length, incoming_blocks.items, incoming_values.items, scope_block->peer_parent); return ir_expr_wrap(irb, parent_scope, phi, result_loc); } else { incoming_blocks.append(irb->current_basic_block); IrInstruction *else_expr_result = ir_mark_gen(ir_build_const_void(irb, parent_scope, block_node)); if (scope_block->peer_parent != nullptr) { ResultLocPeer *peer_result = create_peer_result(scope_block->peer_parent); scope_block->peer_parent->peers.append(peer_result); ir_build_end_expr(irb, parent_scope, block_node, else_expr_result, &peer_result->base); if (scope_block->peer_parent->peers.length != 0) { scope_block->peer_parent->peers.last()->next_bb = scope_block->end_block; } } incoming_values.append(else_expr_result); } bool is_return_from_fn = block_node == irb->main_block_node; if (!is_return_from_fn) { ir_gen_defers_for_block(irb, child_scope, outer_block_scope, false); } IrInstruction *result; if (block_node->data.block.name != nullptr) { ir_mark_gen(ir_build_br(irb, parent_scope, block_node, scope_block->end_block, scope_block->is_comptime)); ir_set_cursor_at_end_and_append_block(irb, scope_block->end_block); IrInstruction *phi = ir_build_phi(irb, parent_scope, block_node, incoming_blocks.length, incoming_blocks.items, incoming_values.items, scope_block->peer_parent); result = ir_expr_wrap(irb, parent_scope, phi, result_loc); } else { IrInstruction *void_inst = ir_mark_gen(ir_build_const_void(irb, child_scope, block_node)); result = ir_lval_wrap(irb, parent_scope, void_inst, lval, result_loc); } if (!is_return_from_fn) return result; // no need for save_err_ret_addr because this cannot return error // only generate unconditional defers ir_mark_gen(ir_build_add_implicit_return_type(irb, child_scope, block_node, result)); ir_gen_defers_for_block(irb, child_scope, outer_block_scope, false); return ir_mark_gen(ir_build_return(irb, child_scope, result->source_node, result)); } static IrInstruction *ir_gen_bin_op_id(IrBuilder *irb, Scope *scope, AstNode *node, IrBinOp op_id) { Scope *inner_scope = scope; if (op_id == IrBinOpArrayCat || op_id == IrBinOpArrayMult) { inner_scope = create_comptime_scope(irb->codegen, node, scope); } IrInstruction *op1 = ir_gen_node(irb, node->data.bin_op_expr.op1, inner_scope); IrInstruction *op2 = ir_gen_node(irb, node->data.bin_op_expr.op2, inner_scope); if (op1 == irb->codegen->invalid_instruction || op2 == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; return ir_build_bin_op(irb, scope, node, op_id, op1, op2, true); } static IrInstruction *ir_gen_assign(IrBuilder *irb, Scope *scope, AstNode *node) { IrInstruction *lvalue = ir_gen_node_extra(irb, node->data.bin_op_expr.op1, scope, LValPtr, nullptr); if (lvalue == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; ResultLocInstruction *result_loc_inst = allocate(1); result_loc_inst->base.id = ResultLocIdInstruction; result_loc_inst->base.source_instruction = lvalue; ir_ref_instruction(lvalue, irb->current_basic_block); ir_build_reset_result(irb, scope, node, &result_loc_inst->base); IrInstruction *rvalue = ir_gen_node_extra(irb, node->data.bin_op_expr.op2, scope, LValNone, &result_loc_inst->base); if (rvalue == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; return ir_build_const_void(irb, scope, node); } static IrInstruction *ir_gen_assign_op(IrBuilder *irb, Scope *scope, AstNode *node, IrBinOp op_id) { IrInstruction *lvalue = ir_gen_node_extra(irb, node->data.bin_op_expr.op1, scope, LValPtr, nullptr); if (lvalue == irb->codegen->invalid_instruction) return lvalue; IrInstruction *op1 = ir_build_load_ptr(irb, scope, node->data.bin_op_expr.op1, lvalue); IrInstruction *op2 = ir_gen_node(irb, node->data.bin_op_expr.op2, scope); if (op2 == irb->codegen->invalid_instruction) return op2; IrInstruction *result = ir_build_bin_op(irb, scope, node, op_id, op1, op2, true); ir_build_store_ptr(irb, scope, node, lvalue, result); return ir_build_const_void(irb, scope, node); } static IrInstruction *ir_gen_bool_or(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeBinOpExpr); IrInstruction *val1 = ir_gen_node(irb, node->data.bin_op_expr.op1, scope); if (val1 == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrBasicBlock *post_val1_block = irb->current_basic_block; IrInstruction *is_comptime; if (ir_should_inline(irb->exec, scope)) { is_comptime = ir_build_const_bool(irb, scope, node, true); } else { is_comptime = ir_build_test_comptime(irb, scope, node, val1); } // block for when val1 == false IrBasicBlock *false_block = ir_create_basic_block(irb, scope, "BoolOrFalse"); // block for when val1 == true (don't even evaluate the second part) IrBasicBlock *true_block = ir_create_basic_block(irb, scope, "BoolOrTrue"); ir_build_cond_br(irb, scope, node, val1, true_block, false_block, is_comptime); ir_set_cursor_at_end_and_append_block(irb, false_block); IrInstruction *val2 = ir_gen_node(irb, node->data.bin_op_expr.op2, scope); if (val2 == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrBasicBlock *post_val2_block = irb->current_basic_block; ir_build_br(irb, scope, node, true_block, is_comptime); ir_set_cursor_at_end_and_append_block(irb, true_block); IrInstruction **incoming_values = allocate(2); incoming_values[0] = val1; incoming_values[1] = val2; IrBasicBlock **incoming_blocks = allocate(2); incoming_blocks[0] = post_val1_block; incoming_blocks[1] = post_val2_block; return ir_build_phi(irb, scope, node, 2, incoming_blocks, incoming_values, nullptr); } static IrInstruction *ir_gen_bool_and(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeBinOpExpr); IrInstruction *val1 = ir_gen_node(irb, node->data.bin_op_expr.op1, scope); if (val1 == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrBasicBlock *post_val1_block = irb->current_basic_block; IrInstruction *is_comptime; if (ir_should_inline(irb->exec, scope)) { is_comptime = ir_build_const_bool(irb, scope, node, true); } else { is_comptime = ir_build_test_comptime(irb, scope, node, val1); } // block for when val1 == true IrBasicBlock *true_block = ir_create_basic_block(irb, scope, "BoolAndTrue"); // block for when val1 == false (don't even evaluate the second part) IrBasicBlock *false_block = ir_create_basic_block(irb, scope, "BoolAndFalse"); ir_build_cond_br(irb, scope, node, val1, true_block, false_block, is_comptime); ir_set_cursor_at_end_and_append_block(irb, true_block); IrInstruction *val2 = ir_gen_node(irb, node->data.bin_op_expr.op2, scope); if (val2 == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrBasicBlock *post_val2_block = irb->current_basic_block; ir_build_br(irb, scope, node, false_block, is_comptime); ir_set_cursor_at_end_and_append_block(irb, false_block); IrInstruction **incoming_values = allocate(2); incoming_values[0] = val1; incoming_values[1] = val2; IrBasicBlock **incoming_blocks = allocate(2); incoming_blocks[0] = post_val1_block; incoming_blocks[1] = post_val2_block; return ir_build_phi(irb, scope, node, 2, incoming_blocks, incoming_values, nullptr); } static ResultLocPeerParent *ir_build_result_peers(IrBuilder *irb, IrInstruction *cond_br_inst, IrBasicBlock *end_block, ResultLoc *parent, IrInstruction *is_comptime) { ResultLocPeerParent *peer_parent = allocate(1); peer_parent->base.id = ResultLocIdPeerParent; peer_parent->base.source_instruction = cond_br_inst; peer_parent->end_bb = end_block; peer_parent->is_comptime = is_comptime; peer_parent->parent = parent; IrInstruction *popped_inst = irb->current_basic_block->instruction_list.pop(); ir_assert(popped_inst == cond_br_inst, cond_br_inst); ir_build_reset_result(irb, cond_br_inst->scope, cond_br_inst->source_node, &peer_parent->base); irb->current_basic_block->instruction_list.append(popped_inst); return peer_parent; } static ResultLocPeerParent *ir_build_binary_result_peers(IrBuilder *irb, IrInstruction *cond_br_inst, IrBasicBlock *else_block, IrBasicBlock *end_block, ResultLoc *parent, IrInstruction *is_comptime) { ResultLocPeerParent *peer_parent = ir_build_result_peers(irb, cond_br_inst, end_block, parent, is_comptime); peer_parent->peers.append(create_peer_result(peer_parent)); peer_parent->peers.last()->next_bb = else_block; peer_parent->peers.append(create_peer_result(peer_parent)); peer_parent->peers.last()->next_bb = end_block; return peer_parent; } static IrInstruction *ir_gen_orelse(IrBuilder *irb, Scope *parent_scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeBinOpExpr); AstNode *op1_node = node->data.bin_op_expr.op1; AstNode *op2_node = node->data.bin_op_expr.op2; IrInstruction *maybe_ptr = ir_gen_node_extra(irb, op1_node, parent_scope, LValPtr, nullptr); if (maybe_ptr == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *maybe_val = ir_build_load_ptr(irb, parent_scope, node, maybe_ptr); IrInstruction *is_non_null = ir_build_test_nonnull(irb, parent_scope, node, maybe_val); IrInstruction *is_comptime; if (ir_should_inline(irb->exec, parent_scope)) { is_comptime = ir_build_const_bool(irb, parent_scope, node, true); } else { is_comptime = ir_build_test_comptime(irb, parent_scope, node, is_non_null); } IrBasicBlock *ok_block = ir_create_basic_block(irb, parent_scope, "OptionalNonNull"); IrBasicBlock *null_block = ir_create_basic_block(irb, parent_scope, "OptionalNull"); IrBasicBlock *end_block = ir_create_basic_block(irb, parent_scope, "OptionalEnd"); IrInstruction *cond_br_inst = ir_build_cond_br(irb, parent_scope, node, is_non_null, ok_block, null_block, is_comptime); ResultLocPeerParent *peer_parent = ir_build_binary_result_peers(irb, cond_br_inst, ok_block, end_block, result_loc, is_comptime); ir_set_cursor_at_end_and_append_block(irb, null_block); IrInstruction *null_result = ir_gen_node_extra(irb, op2_node, parent_scope, LValNone, &peer_parent->peers.at(0)->base); if (null_result == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrBasicBlock *after_null_block = irb->current_basic_block; if (!instr_is_unreachable(null_result)) ir_mark_gen(ir_build_br(irb, parent_scope, node, end_block, is_comptime)); ir_set_cursor_at_end_and_append_block(irb, ok_block); IrInstruction *unwrapped_ptr = ir_build_optional_unwrap_ptr(irb, parent_scope, node, maybe_ptr, false, false); IrInstruction *unwrapped_payload = ir_build_load_ptr(irb, parent_scope, node, unwrapped_ptr); ir_build_end_expr(irb, parent_scope, node, unwrapped_payload, &peer_parent->peers.at(1)->base); IrBasicBlock *after_ok_block = irb->current_basic_block; ir_build_br(irb, parent_scope, node, end_block, is_comptime); ir_set_cursor_at_end_and_append_block(irb, end_block); IrInstruction **incoming_values = allocate(2); incoming_values[0] = null_result; incoming_values[1] = unwrapped_payload; IrBasicBlock **incoming_blocks = allocate(2); incoming_blocks[0] = after_null_block; incoming_blocks[1] = after_ok_block; IrInstruction *phi = ir_build_phi(irb, parent_scope, node, 2, incoming_blocks, incoming_values, peer_parent); return ir_lval_wrap(irb, parent_scope, phi, lval, result_loc); } static IrInstruction *ir_gen_error_union(IrBuilder *irb, Scope *parent_scope, AstNode *node) { assert(node->type == NodeTypeBinOpExpr); AstNode *op1_node = node->data.bin_op_expr.op1; AstNode *op2_node = node->data.bin_op_expr.op2; IrInstruction *err_set = ir_gen_node(irb, op1_node, parent_scope); if (err_set == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *payload = ir_gen_node(irb, op2_node, parent_scope); if (payload == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; return ir_build_error_union(irb, parent_scope, node, err_set, payload); } static IrInstruction *ir_gen_bin_op(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeBinOpExpr); BinOpType bin_op_type = node->data.bin_op_expr.bin_op; switch (bin_op_type) { case BinOpTypeInvalid: zig_unreachable(); case BinOpTypeAssign: return ir_lval_wrap(irb, scope, ir_gen_assign(irb, scope, node), lval, result_loc); case BinOpTypeAssignTimes: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpMult), lval, result_loc); case BinOpTypeAssignTimesWrap: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpMultWrap), lval, result_loc); case BinOpTypeAssignDiv: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpDivUnspecified), lval, result_loc); case BinOpTypeAssignMod: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpRemUnspecified), lval, result_loc); case BinOpTypeAssignPlus: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpAdd), lval, result_loc); case BinOpTypeAssignPlusWrap: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpAddWrap), lval, result_loc); case BinOpTypeAssignMinus: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpSub), lval, result_loc); case BinOpTypeAssignMinusWrap: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpSubWrap), lval, result_loc); case BinOpTypeAssignBitShiftLeft: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpBitShiftLeftLossy), lval, result_loc); case BinOpTypeAssignBitShiftRight: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpBitShiftRightLossy), lval, result_loc); case BinOpTypeAssignBitAnd: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpBinAnd), lval, result_loc); case BinOpTypeAssignBitXor: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpBinXor), lval, result_loc); case BinOpTypeAssignBitOr: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpBinOr), lval, result_loc); case BinOpTypeAssignMergeErrorSets: return ir_lval_wrap(irb, scope, ir_gen_assign_op(irb, scope, node, IrBinOpMergeErrorSets), lval, result_loc); case BinOpTypeBoolOr: return ir_lval_wrap(irb, scope, ir_gen_bool_or(irb, scope, node), lval, result_loc); case BinOpTypeBoolAnd: return ir_lval_wrap(irb, scope, ir_gen_bool_and(irb, scope, node), lval, result_loc); case BinOpTypeCmpEq: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpCmpEq), lval, result_loc); case BinOpTypeCmpNotEq: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpCmpNotEq), lval, result_loc); case BinOpTypeCmpLessThan: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpCmpLessThan), lval, result_loc); case BinOpTypeCmpGreaterThan: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpCmpGreaterThan), lval, result_loc); case BinOpTypeCmpLessOrEq: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpCmpLessOrEq), lval, result_loc); case BinOpTypeCmpGreaterOrEq: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpCmpGreaterOrEq), lval, result_loc); case BinOpTypeBinOr: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpBinOr), lval, result_loc); case BinOpTypeBinXor: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpBinXor), lval, result_loc); case BinOpTypeBinAnd: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpBinAnd), lval, result_loc); case BinOpTypeBitShiftLeft: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpBitShiftLeftLossy), lval, result_loc); case BinOpTypeBitShiftRight: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpBitShiftRightLossy), lval, result_loc); case BinOpTypeAdd: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpAdd), lval, result_loc); case BinOpTypeAddWrap: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpAddWrap), lval, result_loc); case BinOpTypeSub: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpSub), lval, result_loc); case BinOpTypeSubWrap: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpSubWrap), lval, result_loc); case BinOpTypeMult: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpMult), lval, result_loc); case BinOpTypeMultWrap: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpMultWrap), lval, result_loc); case BinOpTypeDiv: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpDivUnspecified), lval, result_loc); case BinOpTypeMod: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpRemUnspecified), lval, result_loc); case BinOpTypeArrayCat: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpArrayCat), lval, result_loc); case BinOpTypeArrayMult: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpArrayMult), lval, result_loc); case BinOpTypeMergeErrorSets: return ir_lval_wrap(irb, scope, ir_gen_bin_op_id(irb, scope, node, IrBinOpMergeErrorSets), lval, result_loc); case BinOpTypeUnwrapOptional: return ir_gen_orelse(irb, scope, node, lval, result_loc); case BinOpTypeErrorUnion: return ir_lval_wrap(irb, scope, ir_gen_error_union(irb, scope, node), lval, result_loc); } zig_unreachable(); } static IrInstruction *ir_gen_int_lit(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeIntLiteral); return ir_build_const_bigint(irb, scope, node, node->data.int_literal.bigint); } static IrInstruction *ir_gen_float_lit(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeFloatLiteral); if (node->data.float_literal.overflow) { add_node_error(irb->codegen, node, buf_sprintf("float literal out of range of any type")); return irb->codegen->invalid_instruction; } return ir_build_const_bigfloat(irb, scope, node, node->data.float_literal.bigfloat); } static IrInstruction *ir_gen_char_lit(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeCharLiteral); return ir_build_const_uint(irb, scope, node, node->data.char_literal.value); } static IrInstruction *ir_gen_null_literal(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeNullLiteral); return ir_build_const_null(irb, scope, node); } static void populate_invalid_variable_in_scope(CodeGen *g, Scope *scope, AstNode *node, Buf *var_name) { ScopeDecls *scope_decls = nullptr; while (scope != nullptr) { if (scope->id == ScopeIdDecls) { scope_decls = reinterpret_cast(scope); } scope = scope->parent; } TldVar *tld_var = allocate(1); init_tld(&tld_var->base, TldIdVar, var_name, VisibModPub, node, &scope_decls->base); tld_var->base.resolution = TldResolutionInvalid; tld_var->var = add_variable(g, node, &scope_decls->base, var_name, false, &g->invalid_instruction->value, &tld_var->base, g->builtin_types.entry_invalid); scope_decls->decl_table.put(var_name, &tld_var->base); } static IrInstruction *ir_gen_symbol(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { Error err; assert(node->type == NodeTypeSymbol); Buf *variable_name = node->data.symbol_expr.symbol; if (buf_eql_str(variable_name, "_")) { if (lval == LValPtr) { IrInstructionConst *const_instruction = ir_build_instruction(irb, scope, node); const_instruction->base.value.type = get_pointer_to_type(irb->codegen, irb->codegen->builtin_types.entry_void, false); const_instruction->base.value.special = ConstValSpecialStatic; const_instruction->base.value.data.x_ptr.special = ConstPtrSpecialDiscard; return &const_instruction->base; } else { add_node_error(irb->codegen, node, buf_sprintf("`_` may only be used to assign things to")); return irb->codegen->invalid_instruction; } } ZigType *primitive_type; if ((err = get_primitive_type(irb->codegen, variable_name, &primitive_type))) { if (err == ErrorOverflow) { add_node_error(irb->codegen, node, buf_sprintf("primitive integer type '%s' exceeds maximum bit width of 65535", buf_ptr(variable_name))); return irb->codegen->invalid_instruction; } assert(err == ErrorPrimitiveTypeNotFound); } else { IrInstruction *value = ir_build_const_type(irb, scope, node, primitive_type); if (lval == LValPtr) { return ir_build_ref(irb, scope, node, value, false, false); } else { return ir_expr_wrap(irb, scope, value, result_loc); } } ScopeFnDef *crossed_fndef_scope; ZigVar *var = find_variable(irb->codegen, scope, variable_name, &crossed_fndef_scope); if (var) { IrInstruction *var_ptr = ir_build_var_ptr_x(irb, scope, node, var, crossed_fndef_scope); if (lval == LValPtr) { return var_ptr; } else { return ir_expr_wrap(irb, scope, ir_build_load_ptr(irb, scope, node, var_ptr), result_loc); } } Tld *tld = find_decl(irb->codegen, scope, variable_name); if (tld) { IrInstruction *decl_ref = ir_build_decl_ref(irb, scope, node, tld, lval); if (lval == LValPtr) { return decl_ref; } else { return ir_expr_wrap(irb, scope, decl_ref, result_loc); } } if (get_container_scope(node->owner)->any_imports_failed) { // skip the error message since we had a failing import in this file // if an import breaks we don't need redundant undeclared identifier errors return irb->codegen->invalid_instruction; } return ir_build_undeclared_identifier(irb, scope, node, variable_name); } static IrInstruction *ir_gen_array_access(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeArrayAccessExpr); AstNode *array_ref_node = node->data.array_access_expr.array_ref_expr; IrInstruction *array_ref_instruction = ir_gen_node_extra(irb, array_ref_node, scope, LValPtr, nullptr); if (array_ref_instruction == irb->codegen->invalid_instruction) return array_ref_instruction; AstNode *subscript_node = node->data.array_access_expr.subscript; IrInstruction *subscript_instruction = ir_gen_node(irb, subscript_node, scope); if (subscript_instruction == irb->codegen->invalid_instruction) return subscript_instruction; IrInstruction *ptr_instruction = ir_build_elem_ptr(irb, scope, node, array_ref_instruction, subscript_instruction, true, PtrLenSingle, nullptr); if (lval == LValPtr) return ptr_instruction; IrInstruction *load_ptr = ir_build_load_ptr(irb, scope, node, ptr_instruction); return ir_expr_wrap(irb, scope, load_ptr, result_loc); } static IrInstruction *ir_gen_field_access(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeFieldAccessExpr); AstNode *container_ref_node = node->data.field_access_expr.struct_expr; Buf *field_name = node->data.field_access_expr.field_name; IrInstruction *container_ref_instruction = ir_gen_node_extra(irb, container_ref_node, scope, LValPtr, nullptr); if (container_ref_instruction == irb->codegen->invalid_instruction) return container_ref_instruction; return ir_build_field_ptr(irb, scope, node, container_ref_instruction, field_name, false); } static IrInstruction *ir_gen_overflow_op(IrBuilder *irb, Scope *scope, AstNode *node, IrOverflowOp op) { assert(node->type == NodeTypeFnCallExpr); AstNode *type_node = node->data.fn_call_expr.params.at(0); AstNode *op1_node = node->data.fn_call_expr.params.at(1); AstNode *op2_node = node->data.fn_call_expr.params.at(2); AstNode *result_ptr_node = node->data.fn_call_expr.params.at(3); IrInstruction *type_value = ir_gen_node(irb, type_node, scope); if (type_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *op1 = ir_gen_node(irb, op1_node, scope); if (op1 == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *op2 = ir_gen_node(irb, op2_node, scope); if (op2 == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *result_ptr = ir_gen_node(irb, result_ptr_node, scope); if (result_ptr == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; return ir_build_overflow_op(irb, scope, node, op, type_value, op1, op2, result_ptr, nullptr); } static IrInstruction *ir_gen_mul_add(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeFnCallExpr); AstNode *type_node = node->data.fn_call_expr.params.at(0); AstNode *op1_node = node->data.fn_call_expr.params.at(1); AstNode *op2_node = node->data.fn_call_expr.params.at(2); AstNode *op3_node = node->data.fn_call_expr.params.at(3); IrInstruction *type_value = ir_gen_node(irb, type_node, scope); if (type_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *op1 = ir_gen_node(irb, op1_node, scope); if (op1 == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *op2 = ir_gen_node(irb, op2_node, scope); if (op2 == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *op3 = ir_gen_node(irb, op3_node, scope); if (op3 == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; return ir_build_mul_add(irb, scope, node, type_value, op1, op2, op3); } static IrInstruction *ir_gen_this(IrBuilder *irb, Scope *orig_scope, AstNode *node) { for (Scope *it_scope = orig_scope; it_scope != nullptr; it_scope = it_scope->parent) { if (it_scope->id == ScopeIdDecls) { ScopeDecls *decls_scope = (ScopeDecls *)it_scope; ZigType *container_type = decls_scope->container_type; if (container_type != nullptr) { return ir_build_const_type(irb, orig_scope, node, container_type); } else { return ir_build_const_import(irb, orig_scope, node, decls_scope->import); } } } zig_unreachable(); } static IrInstruction *ir_gen_builtin_fn_call(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeFnCallExpr); AstNode *fn_ref_expr = node->data.fn_call_expr.fn_ref_expr; Buf *name = fn_ref_expr->data.symbol_expr.symbol; auto entry = irb->codegen->builtin_fn_table.maybe_get(name); if (!entry) { // new built in not found add_node_error(irb->codegen, node, buf_sprintf("invalid builtin function: '%s'", buf_ptr(name))); return irb->codegen->invalid_instruction; } BuiltinFnEntry *builtin_fn = entry->value; size_t actual_param_count = node->data.fn_call_expr.params.length; if (builtin_fn->param_count != SIZE_MAX && builtin_fn->param_count != actual_param_count) { add_node_error(irb->codegen, node, buf_sprintf("expected %" ZIG_PRI_usize " arguments, found %" ZIG_PRI_usize, builtin_fn->param_count, actual_param_count)); return irb->codegen->invalid_instruction; } switch (builtin_fn->id) { case BuiltinFnIdInvalid: zig_unreachable(); case BuiltinFnIdTypeof: { AstNode *arg_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg = ir_gen_node(irb, arg_node, scope); if (arg == irb->codegen->invalid_instruction) return arg; IrInstruction *type_of = ir_build_typeof(irb, scope, node, arg); return ir_lval_wrap(irb, scope, type_of, lval, result_loc); } case BuiltinFnIdSetCold: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *set_cold = ir_build_set_cold(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, set_cold, lval, result_loc); } case BuiltinFnIdSetRuntimeSafety: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *set_safety = ir_build_set_runtime_safety(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, set_safety, lval, result_loc); } case BuiltinFnIdSetFloatMode: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *set_float_mode = ir_build_set_float_mode(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, set_float_mode, lval, result_loc); } case BuiltinFnIdSizeof: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *size_of = ir_build_size_of(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, size_of, lval, result_loc); } case BuiltinFnIdImport: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *import = ir_build_import(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, import, lval, result_loc); } case BuiltinFnIdCImport: { IrInstruction *c_import = ir_build_c_import(irb, scope, node); return ir_lval_wrap(irb, scope, c_import, lval, result_loc); } case BuiltinFnIdCInclude: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; if (!exec_c_import_buf(irb->exec)) { add_node_error(irb->codegen, node, buf_sprintf("C include valid only inside C import block")); return irb->codegen->invalid_instruction; } IrInstruction *c_include = ir_build_c_include(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, c_include, lval, result_loc); } case BuiltinFnIdCDefine: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; if (!exec_c_import_buf(irb->exec)) { add_node_error(irb->codegen, node, buf_sprintf("C define valid only inside C import block")); return irb->codegen->invalid_instruction; } IrInstruction *c_define = ir_build_c_define(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, c_define, lval, result_loc); } case BuiltinFnIdCUndef: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; if (!exec_c_import_buf(irb->exec)) { add_node_error(irb->codegen, node, buf_sprintf("C undef valid only inside C import block")); return irb->codegen->invalid_instruction; } IrInstruction *c_undef = ir_build_c_undef(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, c_undef, lval, result_loc); } case BuiltinFnIdCompileErr: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *compile_err = ir_build_compile_err(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, compile_err, lval, result_loc); } case BuiltinFnIdCompileLog: { IrInstruction **args = allocate(actual_param_count); for (size_t i = 0; i < actual_param_count; i += 1) { AstNode *arg_node = node->data.fn_call_expr.params.at(i); args[i] = ir_gen_node(irb, arg_node, scope); if (args[i] == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; } IrInstruction *compile_log = ir_build_compile_log(irb, scope, node, actual_param_count, args); return ir_lval_wrap(irb, scope, compile_log, lval, result_loc); } case BuiltinFnIdErrName: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *err_name = ir_build_err_name(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, err_name, lval, result_loc); } case BuiltinFnIdEmbedFile: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *embed_file = ir_build_embed_file(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, embed_file, lval, result_loc); } case BuiltinFnIdCmpxchgWeak: case BuiltinFnIdCmpxchgStrong: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; AstNode *arg2_node = node->data.fn_call_expr.params.at(2); IrInstruction *arg2_value = ir_gen_node(irb, arg2_node, scope); if (arg2_value == irb->codegen->invalid_instruction) return arg2_value; AstNode *arg3_node = node->data.fn_call_expr.params.at(3); IrInstruction *arg3_value = ir_gen_node(irb, arg3_node, scope); if (arg3_value == irb->codegen->invalid_instruction) return arg3_value; AstNode *arg4_node = node->data.fn_call_expr.params.at(4); IrInstruction *arg4_value = ir_gen_node(irb, arg4_node, scope); if (arg4_value == irb->codegen->invalid_instruction) return arg4_value; AstNode *arg5_node = node->data.fn_call_expr.params.at(5); IrInstruction *arg5_value = ir_gen_node(irb, arg5_node, scope); if (arg5_value == irb->codegen->invalid_instruction) return arg5_value; IrInstruction *cmpxchg = ir_build_cmpxchg_src(irb, scope, node, arg0_value, arg1_value, arg2_value, arg3_value, arg4_value, arg5_value, (builtin_fn->id == BuiltinFnIdCmpxchgWeak), result_loc); return ir_lval_wrap(irb, scope, cmpxchg, lval, result_loc); } case BuiltinFnIdFence: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *fence = ir_build_fence(irb, scope, node, arg0_value, AtomicOrderUnordered); return ir_lval_wrap(irb, scope, fence, lval, result_loc); } case BuiltinFnIdDivExact: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *bin_op = ir_build_bin_op(irb, scope, node, IrBinOpDivExact, arg0_value, arg1_value, true); return ir_lval_wrap(irb, scope, bin_op, lval, result_loc); } case BuiltinFnIdDivTrunc: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *bin_op = ir_build_bin_op(irb, scope, node, IrBinOpDivTrunc, arg0_value, arg1_value, true); return ir_lval_wrap(irb, scope, bin_op, lval, result_loc); } case BuiltinFnIdDivFloor: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *bin_op = ir_build_bin_op(irb, scope, node, IrBinOpDivFloor, arg0_value, arg1_value, true); return ir_lval_wrap(irb, scope, bin_op, lval, result_loc); } case BuiltinFnIdRem: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *bin_op = ir_build_bin_op(irb, scope, node, IrBinOpRemRem, arg0_value, arg1_value, true); return ir_lval_wrap(irb, scope, bin_op, lval, result_loc); } case BuiltinFnIdMod: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *bin_op = ir_build_bin_op(irb, scope, node, IrBinOpRemMod, arg0_value, arg1_value, true); return ir_lval_wrap(irb, scope, bin_op, lval, result_loc); } case BuiltinFnIdSqrt: case BuiltinFnIdSin: case BuiltinFnIdCos: case BuiltinFnIdExp: case BuiltinFnIdExp2: case BuiltinFnIdLn: case BuiltinFnIdLog2: case BuiltinFnIdLog10: case BuiltinFnIdFabs: case BuiltinFnIdFloor: case BuiltinFnIdCeil: case BuiltinFnIdTrunc: case BuiltinFnIdNearbyInt: case BuiltinFnIdRound: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *ir_sqrt = ir_build_float_op(irb, scope, node, arg0_value, arg1_value, builtin_fn->id); return ir_lval_wrap(irb, scope, ir_sqrt, lval, result_loc); } case BuiltinFnIdTruncate: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *truncate = ir_build_truncate(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, truncate, lval, result_loc); } case BuiltinFnIdIntCast: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *result = ir_build_int_cast(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdFloatCast: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *result = ir_build_float_cast(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdErrSetCast: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *result = ir_build_err_set_cast(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdFromBytes: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *result = ir_build_from_bytes(irb, scope, node, arg0_value, arg1_value, result_loc); return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdToBytes: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *result = ir_build_to_bytes(irb, scope, node, arg0_value, result_loc); return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdIntToFloat: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *result = ir_build_int_to_float(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdFloatToInt: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *result = ir_build_float_to_int(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdErrToInt: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *result = ir_build_err_to_int(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdIntToErr: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *result = ir_build_int_to_err(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdBoolToInt: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *result = ir_build_bool_to_int(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdIntType: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *int_type = ir_build_int_type(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, int_type, lval, result_loc); } case BuiltinFnIdVectorType: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *vector_type = ir_build_vector_type(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, vector_type, lval, result_loc); } case BuiltinFnIdMemcpy: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; AstNode *arg2_node = node->data.fn_call_expr.params.at(2); IrInstruction *arg2_value = ir_gen_node(irb, arg2_node, scope); if (arg2_value == irb->codegen->invalid_instruction) return arg2_value; IrInstruction *ir_memcpy = ir_build_memcpy(irb, scope, node, arg0_value, arg1_value, arg2_value); return ir_lval_wrap(irb, scope, ir_memcpy, lval, result_loc); } case BuiltinFnIdMemset: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; AstNode *arg2_node = node->data.fn_call_expr.params.at(2); IrInstruction *arg2_value = ir_gen_node(irb, arg2_node, scope); if (arg2_value == irb->codegen->invalid_instruction) return arg2_value; IrInstruction *ir_memset = ir_build_memset(irb, scope, node, arg0_value, arg1_value, arg2_value); return ir_lval_wrap(irb, scope, ir_memset, lval, result_loc); } case BuiltinFnIdMemberCount: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *member_count = ir_build_member_count(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, member_count, lval, result_loc); } case BuiltinFnIdMemberType: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *member_type = ir_build_member_type(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, member_type, lval, result_loc); } case BuiltinFnIdMemberName: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *member_name = ir_build_member_name(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, member_name, lval, result_loc); } case BuiltinFnIdField: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node_extra(irb, arg0_node, scope, LValPtr, nullptr); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *ptr_instruction = ir_build_field_ptr_instruction(irb, scope, node, arg0_value, arg1_value, false); if (lval == LValPtr) return ptr_instruction; IrInstruction *load_ptr = ir_build_load_ptr(irb, scope, node, ptr_instruction); return ir_expr_wrap(irb, scope, load_ptr, result_loc); } case BuiltinFnIdHasField: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *type_info = ir_build_has_field(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, type_info, lval, result_loc); } case BuiltinFnIdTypeInfo: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *type_info = ir_build_type_info(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, type_info, lval, result_loc); } case BuiltinFnIdBreakpoint: return ir_lval_wrap(irb, scope, ir_build_breakpoint(irb, scope, node), lval, result_loc); case BuiltinFnIdReturnAddress: return ir_lval_wrap(irb, scope, ir_build_return_address(irb, scope, node), lval, result_loc); case BuiltinFnIdFrameAddress: return ir_lval_wrap(irb, scope, ir_build_frame_address(irb, scope, node), lval, result_loc); case BuiltinFnIdFrameHandle: if (!irb->exec->fn_entry) { add_node_error(irb->codegen, node, buf_sprintf("@frame() called outside of function definition")); return irb->codegen->invalid_instruction; } return ir_lval_wrap(irb, scope, ir_build_handle(irb, scope, node), lval, result_loc); case BuiltinFnIdFrameType: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *frame_type = ir_build_frame_type(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, frame_type, lval, result_loc); } case BuiltinFnIdFrameSize: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *frame_size = ir_build_frame_size_src(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, frame_size, lval, result_loc); } case BuiltinFnIdAlignOf: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *align_of = ir_build_align_of(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, align_of, lval, result_loc); } case BuiltinFnIdAddWithOverflow: return ir_lval_wrap(irb, scope, ir_gen_overflow_op(irb, scope, node, IrOverflowOpAdd), lval, result_loc); case BuiltinFnIdSubWithOverflow: return ir_lval_wrap(irb, scope, ir_gen_overflow_op(irb, scope, node, IrOverflowOpSub), lval, result_loc); case BuiltinFnIdMulWithOverflow: return ir_lval_wrap(irb, scope, ir_gen_overflow_op(irb, scope, node, IrOverflowOpMul), lval, result_loc); case BuiltinFnIdShlWithOverflow: return ir_lval_wrap(irb, scope, ir_gen_overflow_op(irb, scope, node, IrOverflowOpShl), lval, result_loc); case BuiltinFnIdMulAdd: return ir_lval_wrap(irb, scope, ir_gen_mul_add(irb, scope, node), lval, result_loc); case BuiltinFnIdTypeName: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *type_name = ir_build_type_name(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, type_name, lval, result_loc); } case BuiltinFnIdPanic: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *panic = ir_build_panic(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, panic, lval, result_loc); } case BuiltinFnIdPtrCast: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *ptr_cast = ir_build_ptr_cast_src(irb, scope, node, arg0_value, arg1_value, true); return ir_lval_wrap(irb, scope, ptr_cast, lval, result_loc); } case BuiltinFnIdBitCast: { AstNode *dest_type_node = node->data.fn_call_expr.params.at(0); IrInstruction *dest_type = ir_gen_node(irb, dest_type_node, scope); if (dest_type == irb->codegen->invalid_instruction) return dest_type; ResultLocBitCast *result_loc_bit_cast = allocate(1); result_loc_bit_cast->base.id = ResultLocIdBitCast; result_loc_bit_cast->base.source_instruction = dest_type; ir_ref_instruction(dest_type, irb->current_basic_block); result_loc_bit_cast->parent = result_loc; ir_build_reset_result(irb, scope, node, &result_loc_bit_cast->base); AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node_extra(irb, arg1_node, scope, LValNone, &result_loc_bit_cast->base); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *bitcast = ir_build_bit_cast_src(irb, scope, arg1_node, arg1_value, result_loc_bit_cast); return ir_lval_wrap(irb, scope, bitcast, lval, result_loc); } case BuiltinFnIdIntToPtr: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *int_to_ptr = ir_build_int_to_ptr(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, int_to_ptr, lval, result_loc); } case BuiltinFnIdPtrToInt: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *ptr_to_int = ir_build_ptr_to_int(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, ptr_to_int, lval, result_loc); } case BuiltinFnIdTagName: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *actual_tag = ir_build_union_tag(irb, scope, node, arg0_value); IrInstruction *tag_name = ir_build_tag_name(irb, scope, node, actual_tag); return ir_lval_wrap(irb, scope, tag_name, lval, result_loc); } case BuiltinFnIdTagType: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *tag_type = ir_build_tag_type(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, tag_type, lval, result_loc); } case BuiltinFnIdFieldParentPtr: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; AstNode *arg2_node = node->data.fn_call_expr.params.at(2); IrInstruction *arg2_value = ir_gen_node(irb, arg2_node, scope); if (arg2_value == irb->codegen->invalid_instruction) return arg2_value; IrInstruction *field_parent_ptr = ir_build_field_parent_ptr(irb, scope, node, arg0_value, arg1_value, arg2_value, nullptr); return ir_lval_wrap(irb, scope, field_parent_ptr, lval, result_loc); } case BuiltinFnIdByteOffsetOf: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *offset_of = ir_build_byte_offset_of(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, offset_of, lval, result_loc); } case BuiltinFnIdBitOffsetOf: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *offset_of = ir_build_bit_offset_of(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, offset_of, lval, result_loc); } case BuiltinFnIdInlineCall: case BuiltinFnIdNoInlineCall: { if (node->data.fn_call_expr.params.length == 0) { add_node_error(irb->codegen, node, buf_sprintf("expected at least 1 argument, found 0")); return irb->codegen->invalid_instruction; } AstNode *fn_ref_node = node->data.fn_call_expr.params.at(0); IrInstruction *fn_ref = ir_gen_node(irb, fn_ref_node, scope); if (fn_ref == irb->codegen->invalid_instruction) return fn_ref; size_t arg_count = node->data.fn_call_expr.params.length - 1; IrInstruction **args = allocate(arg_count); for (size_t i = 0; i < arg_count; i += 1) { AstNode *arg_node = node->data.fn_call_expr.params.at(i + 1); args[i] = ir_gen_node(irb, arg_node, scope); if (args[i] == irb->codegen->invalid_instruction) return args[i]; } FnInline fn_inline = (builtin_fn->id == BuiltinFnIdInlineCall) ? FnInlineAlways : FnInlineNever; IrInstruction *call = ir_build_call_src(irb, scope, node, nullptr, fn_ref, arg_count, args, false, fn_inline, false, nullptr, result_loc); return ir_lval_wrap(irb, scope, call, lval, result_loc); } case BuiltinFnIdNewStackCall: { if (node->data.fn_call_expr.params.length < 2) { add_node_error(irb->codegen, node, buf_sprintf("expected at least 2 arguments, found %" ZIG_PRI_usize, node->data.fn_call_expr.params.length)); return irb->codegen->invalid_instruction; } AstNode *new_stack_node = node->data.fn_call_expr.params.at(0); IrInstruction *new_stack = ir_gen_node(irb, new_stack_node, scope); if (new_stack == irb->codegen->invalid_instruction) return new_stack; AstNode *fn_ref_node = node->data.fn_call_expr.params.at(1); IrInstruction *fn_ref = ir_gen_node(irb, fn_ref_node, scope); if (fn_ref == irb->codegen->invalid_instruction) return fn_ref; size_t arg_count = node->data.fn_call_expr.params.length - 2; IrInstruction **args = allocate(arg_count); for (size_t i = 0; i < arg_count; i += 1) { AstNode *arg_node = node->data.fn_call_expr.params.at(i + 2); args[i] = ir_gen_node(irb, arg_node, scope); if (args[i] == irb->codegen->invalid_instruction) return args[i]; } IrInstruction *call = ir_build_call_src(irb, scope, node, nullptr, fn_ref, arg_count, args, false, FnInlineAuto, false, new_stack, result_loc); return ir_lval_wrap(irb, scope, call, lval, result_loc); } case BuiltinFnIdAsyncCall: { size_t arg_offset = 3; if (node->data.fn_call_expr.params.length < arg_offset) { add_node_error(irb->codegen, node, buf_sprintf("expected at least %" ZIG_PRI_usize " arguments, found %" ZIG_PRI_usize, arg_offset, node->data.fn_call_expr.params.length)); return irb->codegen->invalid_instruction; } AstNode *bytes_node = node->data.fn_call_expr.params.at(0); IrInstruction *bytes = ir_gen_node(irb, bytes_node, scope); if (bytes == irb->codegen->invalid_instruction) return bytes; AstNode *ret_ptr_node = node->data.fn_call_expr.params.at(1); IrInstruction *ret_ptr = ir_gen_node(irb, ret_ptr_node, scope); if (ret_ptr == irb->codegen->invalid_instruction) return ret_ptr; AstNode *fn_ref_node = node->data.fn_call_expr.params.at(2); IrInstruction *fn_ref = ir_gen_node(irb, fn_ref_node, scope); if (fn_ref == irb->codegen->invalid_instruction) return fn_ref; size_t arg_count = node->data.fn_call_expr.params.length - arg_offset; // last "arg" is return pointer IrInstruction **args = allocate(arg_count + 1); for (size_t i = 0; i < arg_count; i += 1) { AstNode *arg_node = node->data.fn_call_expr.params.at(i + arg_offset); IrInstruction *arg = ir_gen_node(irb, arg_node, scope); if (arg == irb->codegen->invalid_instruction) return arg; args[i] = arg; } args[arg_count] = ret_ptr; IrInstruction *call = ir_build_call_src(irb, scope, node, nullptr, fn_ref, arg_count, args, false, FnInlineAuto, true, bytes, result_loc); return ir_lval_wrap(irb, scope, call, lval, result_loc); } case BuiltinFnIdTypeId: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *type_id = ir_build_type_id(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, type_id, lval, result_loc); } case BuiltinFnIdShlExact: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *bin_op = ir_build_bin_op(irb, scope, node, IrBinOpBitShiftLeftExact, arg0_value, arg1_value, true); return ir_lval_wrap(irb, scope, bin_op, lval, result_loc); } case BuiltinFnIdShrExact: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *bin_op = ir_build_bin_op(irb, scope, node, IrBinOpBitShiftRightExact, arg0_value, arg1_value, true); return ir_lval_wrap(irb, scope, bin_op, lval, result_loc); } case BuiltinFnIdSetEvalBranchQuota: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *set_eval_branch_quota = ir_build_set_eval_branch_quota(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, set_eval_branch_quota, lval, result_loc); } case BuiltinFnIdAlignCast: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *align_cast = ir_build_align_cast(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, align_cast, lval, result_loc); } case BuiltinFnIdOpaqueType: { IrInstruction *opaque_type = ir_build_opaque_type(irb, scope, node); return ir_lval_wrap(irb, scope, opaque_type, lval, result_loc); } case BuiltinFnIdThis: { IrInstruction *this_inst = ir_gen_this(irb, scope, node); return ir_lval_wrap(irb, scope, this_inst, lval, result_loc); } case BuiltinFnIdSetAlignStack: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *set_align_stack = ir_build_set_align_stack(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, set_align_stack, lval, result_loc); } case BuiltinFnIdArgType: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *arg_type = ir_build_arg_type(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, arg_type, lval, result_loc); } case BuiltinFnIdExport: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; AstNode *arg2_node = node->data.fn_call_expr.params.at(2); IrInstruction *arg2_value = ir_gen_node(irb, arg2_node, scope); if (arg2_value == irb->codegen->invalid_instruction) return arg2_value; IrInstruction *ir_export = ir_build_export(irb, scope, node, arg0_value, arg1_value, arg2_value); return ir_lval_wrap(irb, scope, ir_export, lval, result_loc); } case BuiltinFnIdErrorReturnTrace: { IrInstruction *error_return_trace = ir_build_error_return_trace(irb, scope, node, IrInstructionErrorReturnTrace::Null); return ir_lval_wrap(irb, scope, error_return_trace, lval, result_loc); } case BuiltinFnIdAtomicRmw: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; AstNode *arg2_node = node->data.fn_call_expr.params.at(2); IrInstruction *arg2_value = ir_gen_node(irb, arg2_node, scope); if (arg2_value == irb->codegen->invalid_instruction) return arg2_value; AstNode *arg3_node = node->data.fn_call_expr.params.at(3); IrInstruction *arg3_value = ir_gen_node(irb, arg3_node, scope); if (arg3_value == irb->codegen->invalid_instruction) return arg3_value; AstNode *arg4_node = node->data.fn_call_expr.params.at(4); IrInstruction *arg4_value = ir_gen_node(irb, arg4_node, scope); if (arg4_value == irb->codegen->invalid_instruction) return arg4_value; IrInstruction *inst = ir_build_atomic_rmw(irb, scope, node, arg0_value, arg1_value, arg2_value, arg3_value, arg4_value, // these 2 values don't mean anything since we passed non-null values for other args AtomicRmwOp_xchg, AtomicOrderMonotonic); return ir_lval_wrap(irb, scope, inst, lval, result_loc); } case BuiltinFnIdAtomicLoad: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; AstNode *arg2_node = node->data.fn_call_expr.params.at(2); IrInstruction *arg2_value = ir_gen_node(irb, arg2_node, scope); if (arg2_value == irb->codegen->invalid_instruction) return arg2_value; IrInstruction *inst = ir_build_atomic_load(irb, scope, node, arg0_value, arg1_value, arg2_value, // this value does not mean anything since we passed non-null values for other arg AtomicOrderMonotonic); return ir_lval_wrap(irb, scope, inst, lval, result_loc); } case BuiltinFnIdIntToEnum: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *result = ir_build_int_to_enum(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdEnumToInt: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; IrInstruction *result = ir_build_enum_to_int(irb, scope, node, arg0_value); return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdCtz: case BuiltinFnIdPopCount: case BuiltinFnIdClz: case BuiltinFnIdBswap: case BuiltinFnIdBitReverse: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *result; switch (builtin_fn->id) { case BuiltinFnIdCtz: result = ir_build_ctz(irb, scope, node, arg0_value, arg1_value); break; case BuiltinFnIdPopCount: result = ir_build_pop_count(irb, scope, node, arg0_value, arg1_value); break; case BuiltinFnIdClz: result = ir_build_clz(irb, scope, node, arg0_value, arg1_value); break; case BuiltinFnIdBswap: result = ir_build_bswap(irb, scope, node, arg0_value, arg1_value); break; case BuiltinFnIdBitReverse: result = ir_build_bit_reverse(irb, scope, node, arg0_value, arg1_value); break; default: zig_unreachable(); } return ir_lval_wrap(irb, scope, result, lval, result_loc); } case BuiltinFnIdHasDecl: { AstNode *arg0_node = node->data.fn_call_expr.params.at(0); IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope); if (arg0_value == irb->codegen->invalid_instruction) return arg0_value; AstNode *arg1_node = node->data.fn_call_expr.params.at(1); IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope); if (arg1_value == irb->codegen->invalid_instruction) return arg1_value; IrInstruction *has_decl = ir_build_has_decl(irb, scope, node, arg0_value, arg1_value); return ir_lval_wrap(irb, scope, has_decl, lval, result_loc); } case BuiltinFnIdUnionInit: { AstNode *union_type_node = node->data.fn_call_expr.params.at(0); IrInstruction *union_type_inst = ir_gen_node(irb, union_type_node, scope); if (union_type_inst == irb->codegen->invalid_instruction) return union_type_inst; AstNode *name_node = node->data.fn_call_expr.params.at(1); IrInstruction *name_inst = ir_gen_node(irb, name_node, scope); if (name_inst == irb->codegen->invalid_instruction) return name_inst; AstNode *init_node = node->data.fn_call_expr.params.at(2); return ir_gen_union_init_expr(irb, scope, node, union_type_inst, name_inst, init_node, lval, result_loc); } } zig_unreachable(); } static IrInstruction *ir_gen_fn_call(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeFnCallExpr); if (node->data.fn_call_expr.is_builtin) return ir_gen_builtin_fn_call(irb, scope, node, lval, result_loc); AstNode *fn_ref_node = node->data.fn_call_expr.fn_ref_expr; IrInstruction *fn_ref = ir_gen_node(irb, fn_ref_node, scope); if (fn_ref == irb->codegen->invalid_instruction) return fn_ref; size_t arg_count = node->data.fn_call_expr.params.length; IrInstruction **args = allocate(arg_count); for (size_t i = 0; i < arg_count; i += 1) { AstNode *arg_node = node->data.fn_call_expr.params.at(i); args[i] = ir_gen_node(irb, arg_node, scope); if (args[i] == irb->codegen->invalid_instruction) return args[i]; } bool is_async = node->data.fn_call_expr.is_async; IrInstruction *fn_call = ir_build_call_src(irb, scope, node, nullptr, fn_ref, arg_count, args, false, FnInlineAuto, is_async, nullptr, result_loc); return ir_lval_wrap(irb, scope, fn_call, lval, result_loc); } static IrInstruction *ir_gen_if_bool_expr(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeIfBoolExpr); IrInstruction *condition = ir_gen_node(irb, node->data.if_bool_expr.condition, scope); if (condition == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *is_comptime; if (ir_should_inline(irb->exec, scope)) { is_comptime = ir_build_const_bool(irb, scope, node, true); } else { is_comptime = ir_build_test_comptime(irb, scope, node, condition); } AstNode *then_node = node->data.if_bool_expr.then_block; AstNode *else_node = node->data.if_bool_expr.else_node; IrBasicBlock *then_block = ir_create_basic_block(irb, scope, "Then"); IrBasicBlock *else_block = ir_create_basic_block(irb, scope, "Else"); IrBasicBlock *endif_block = ir_create_basic_block(irb, scope, "EndIf"); IrInstruction *cond_br_inst = ir_build_cond_br(irb, scope, node, condition, then_block, else_block, is_comptime); ResultLocPeerParent *peer_parent = ir_build_binary_result_peers(irb, cond_br_inst, else_block, endif_block, result_loc, is_comptime); ir_set_cursor_at_end_and_append_block(irb, then_block); Scope *subexpr_scope = create_runtime_scope(irb->codegen, node, scope, is_comptime); IrInstruction *then_expr_result = ir_gen_node_extra(irb, then_node, subexpr_scope, lval, &peer_parent->peers.at(0)->base); if (then_expr_result == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrBasicBlock *after_then_block = irb->current_basic_block; if (!instr_is_unreachable(then_expr_result)) ir_mark_gen(ir_build_br(irb, scope, node, endif_block, is_comptime)); ir_set_cursor_at_end_and_append_block(irb, else_block); IrInstruction *else_expr_result; if (else_node) { else_expr_result = ir_gen_node_extra(irb, else_node, subexpr_scope, lval, &peer_parent->peers.at(1)->base); if (else_expr_result == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; } else { else_expr_result = ir_build_const_void(irb, scope, node); ir_build_end_expr(irb, scope, node, else_expr_result, &peer_parent->peers.at(1)->base); } IrBasicBlock *after_else_block = irb->current_basic_block; if (!instr_is_unreachable(else_expr_result)) ir_mark_gen(ir_build_br(irb, scope, node, endif_block, is_comptime)); ir_set_cursor_at_end_and_append_block(irb, endif_block); IrInstruction **incoming_values = allocate(2); incoming_values[0] = then_expr_result; incoming_values[1] = else_expr_result; IrBasicBlock **incoming_blocks = allocate(2); incoming_blocks[0] = after_then_block; incoming_blocks[1] = after_else_block; IrInstruction *phi = ir_build_phi(irb, scope, node, 2, incoming_blocks, incoming_values, peer_parent); return ir_expr_wrap(irb, scope, phi, result_loc); } static IrInstruction *ir_gen_prefix_op_id_lval(IrBuilder *irb, Scope *scope, AstNode *node, IrUnOp op_id, LVal lval) { assert(node->type == NodeTypePrefixOpExpr); AstNode *expr_node = node->data.prefix_op_expr.primary_expr; IrInstruction *value = ir_gen_node_extra(irb, expr_node, scope, lval, nullptr); if (value == irb->codegen->invalid_instruction) return value; return ir_build_un_op(irb, scope, node, op_id, value); } static IrInstruction *ir_gen_prefix_op_id(IrBuilder *irb, Scope *scope, AstNode *node, IrUnOp op_id) { return ir_gen_prefix_op_id_lval(irb, scope, node, op_id, LValNone); } static IrInstruction *ir_expr_wrap(IrBuilder *irb, Scope *scope, IrInstruction *inst, ResultLoc *result_loc) { ir_build_end_expr(irb, scope, inst->source_node, inst, result_loc); return inst; } static IrInstruction *ir_lval_wrap(IrBuilder *irb, Scope *scope, IrInstruction *value, LVal lval, ResultLoc *result_loc) { // This logic must be kept in sync with // [STMT_EXPR_TEST_THING] <--- (search this token) if (value == irb->codegen->invalid_instruction || instr_is_unreachable(value) || value->source_node->type == NodeTypeDefer || value->id == IrInstructionIdDeclVarSrc) { return value; } if (lval == LValPtr) { // We needed a pointer to a value, but we got a value. So we create // an instruction which just makes a pointer of it. return ir_build_ref(irb, scope, value->source_node, value, false, false); } else if (result_loc != nullptr) { return ir_expr_wrap(irb, scope, value, result_loc); } else { return value; } } static PtrLen star_token_to_ptr_len(TokenId token_id) { switch (token_id) { case TokenIdStar: case TokenIdStarStar: return PtrLenSingle; case TokenIdBracketStarBracket: return PtrLenUnknown; case TokenIdBracketStarCBracket: return PtrLenC; default: zig_unreachable(); } } static IrInstruction *ir_gen_pointer_type(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypePointerType); PtrLen ptr_len = star_token_to_ptr_len(node->data.pointer_type.star_token->id); bool is_const = node->data.pointer_type.is_const; bool is_volatile = node->data.pointer_type.is_volatile; bool is_allow_zero = node->data.pointer_type.allow_zero_token != nullptr; AstNode *expr_node = node->data.pointer_type.op_expr; AstNode *align_expr = node->data.pointer_type.align_expr; IrInstruction *align_value; if (align_expr != nullptr) { align_value = ir_gen_node(irb, align_expr, scope); if (align_value == irb->codegen->invalid_instruction) return align_value; } else { align_value = nullptr; } IrInstruction *child_type = ir_gen_node(irb, expr_node, scope); if (child_type == irb->codegen->invalid_instruction) return child_type; uint32_t bit_offset_start = 0; if (node->data.pointer_type.bit_offset_start != nullptr) { if (!bigint_fits_in_bits(node->data.pointer_type.bit_offset_start, 32, false)) { Buf *val_buf = buf_alloc(); bigint_append_buf(val_buf, node->data.pointer_type.bit_offset_start, 10); exec_add_error_node(irb->codegen, irb->exec, node, buf_sprintf("value %s too large for u32 bit offset", buf_ptr(val_buf))); return irb->codegen->invalid_instruction; } bit_offset_start = bigint_as_u32(node->data.pointer_type.bit_offset_start); } uint32_t host_int_bytes = 0; if (node->data.pointer_type.host_int_bytes != nullptr) { if (!bigint_fits_in_bits(node->data.pointer_type.host_int_bytes, 32, false)) { Buf *val_buf = buf_alloc(); bigint_append_buf(val_buf, node->data.pointer_type.host_int_bytes, 10); exec_add_error_node(irb->codegen, irb->exec, node, buf_sprintf("value %s too large for u32 byte count", buf_ptr(val_buf))); return irb->codegen->invalid_instruction; } host_int_bytes = bigint_as_u32(node->data.pointer_type.host_int_bytes); } if (host_int_bytes != 0 && bit_offset_start >= host_int_bytes * 8) { exec_add_error_node(irb->codegen, irb->exec, node, buf_sprintf("bit offset starts after end of host integer")); return irb->codegen->invalid_instruction; } return ir_build_ptr_type(irb, scope, node, child_type, is_const, is_volatile, ptr_len, align_value, bit_offset_start, host_int_bytes, is_allow_zero); } static IrInstruction *ir_gen_catch_unreachable(IrBuilder *irb, Scope *scope, AstNode *source_node, AstNode *expr_node, LVal lval, ResultLoc *result_loc) { IrInstruction *err_union_ptr = ir_gen_node_extra(irb, expr_node, scope, LValPtr, nullptr); if (err_union_ptr == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *payload_ptr = ir_build_unwrap_err_payload(irb, scope, source_node, err_union_ptr, true, false); if (payload_ptr == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; if (lval == LValPtr) return payload_ptr; IrInstruction *load_ptr = ir_build_load_ptr(irb, scope, source_node, payload_ptr); return ir_expr_wrap(irb, scope, load_ptr, result_loc); } static IrInstruction *ir_gen_bool_not(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypePrefixOpExpr); AstNode *expr_node = node->data.prefix_op_expr.primary_expr; IrInstruction *value = ir_gen_node(irb, expr_node, scope); if (value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; return ir_build_bool_not(irb, scope, node, value); } static IrInstruction *ir_gen_prefix_op_expr(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypePrefixOpExpr); PrefixOp prefix_op = node->data.prefix_op_expr.prefix_op; switch (prefix_op) { case PrefixOpInvalid: zig_unreachable(); case PrefixOpBoolNot: return ir_lval_wrap(irb, scope, ir_gen_bool_not(irb, scope, node), lval, result_loc); case PrefixOpBinNot: return ir_lval_wrap(irb, scope, ir_gen_prefix_op_id(irb, scope, node, IrUnOpBinNot), lval, result_loc); case PrefixOpNegation: return ir_lval_wrap(irb, scope, ir_gen_prefix_op_id(irb, scope, node, IrUnOpNegation), lval, result_loc); case PrefixOpNegationWrap: return ir_lval_wrap(irb, scope, ir_gen_prefix_op_id(irb, scope, node, IrUnOpNegationWrap), lval, result_loc); case PrefixOpOptional: return ir_lval_wrap(irb, scope, ir_gen_prefix_op_id(irb, scope, node, IrUnOpOptional), lval, result_loc); case PrefixOpAddrOf: { AstNode *expr_node = node->data.prefix_op_expr.primary_expr; return ir_lval_wrap(irb, scope, ir_gen_node_extra(irb, expr_node, scope, LValPtr, nullptr), lval, result_loc); } } zig_unreachable(); } static IrInstruction *ir_gen_union_init_expr(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *union_type, IrInstruction *field_name, AstNode *expr_node, LVal lval, ResultLoc *parent_result_loc) { IrInstruction *container_ptr = ir_build_resolve_result(irb, scope, source_node, parent_result_loc, union_type); IrInstruction *field_ptr = ir_build_field_ptr_instruction(irb, scope, source_node, container_ptr, field_name, true); ResultLocInstruction *result_loc_inst = allocate(1); result_loc_inst->base.id = ResultLocIdInstruction; result_loc_inst->base.source_instruction = field_ptr; ir_ref_instruction(field_ptr, irb->current_basic_block); ir_build_reset_result(irb, scope, expr_node, &result_loc_inst->base); IrInstruction *expr_value = ir_gen_node_extra(irb, expr_node, scope, LValNone, &result_loc_inst->base); if (expr_value == irb->codegen->invalid_instruction) return expr_value; IrInstruction *init_union = ir_build_union_init_named_field(irb, scope, source_node, union_type, field_name, field_ptr, container_ptr); return ir_lval_wrap(irb, scope, init_union, lval, parent_result_loc); } static IrInstruction *ir_gen_container_init_expr(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *parent_result_loc) { assert(node->type == NodeTypeContainerInitExpr); AstNodeContainerInitExpr *container_init_expr = &node->data.container_init_expr; ContainerInitKind kind = container_init_expr->kind; IrInstruction *container_type = nullptr; IrInstruction *elem_type = nullptr; if (container_init_expr->type->type == NodeTypeInferredArrayType) { elem_type = ir_gen_node(irb, container_init_expr->type->data.inferred_array_type.child_type, scope); if (elem_type == irb->codegen->invalid_instruction) return elem_type; } else { container_type = ir_gen_node(irb, container_init_expr->type, scope); if (container_type == irb->codegen->invalid_instruction) return container_type; } switch (kind) { case ContainerInitKindStruct: { if (elem_type != nullptr) { add_node_error(irb->codegen, container_init_expr->type, buf_sprintf("initializing array with struct syntax")); return irb->codegen->invalid_instruction; } IrInstruction *container_ptr = ir_build_resolve_result(irb, scope, node, parent_result_loc, container_type); size_t field_count = container_init_expr->entries.length; IrInstructionContainerInitFieldsField *fields = allocate(field_count); for (size_t i = 0; i < field_count; i += 1) { AstNode *entry_node = container_init_expr->entries.at(i); assert(entry_node->type == NodeTypeStructValueField); Buf *name = entry_node->data.struct_val_field.name; AstNode *expr_node = entry_node->data.struct_val_field.expr; IrInstruction *field_ptr = ir_build_field_ptr(irb, scope, entry_node, container_ptr, name, true); ResultLocInstruction *result_loc_inst = allocate(1); result_loc_inst->base.id = ResultLocIdInstruction; result_loc_inst->base.source_instruction = field_ptr; result_loc_inst->base.allow_write_through_const = true; ir_ref_instruction(field_ptr, irb->current_basic_block); ir_build_reset_result(irb, scope, expr_node, &result_loc_inst->base); IrInstruction *expr_value = ir_gen_node_extra(irb, expr_node, scope, LValNone, &result_loc_inst->base); if (expr_value == irb->codegen->invalid_instruction) return expr_value; fields[i].name = name; fields[i].source_node = entry_node; fields[i].result_loc = field_ptr; } IrInstruction *init_fields = ir_build_container_init_fields(irb, scope, node, container_type, field_count, fields, container_ptr); return ir_lval_wrap(irb, scope, init_fields, lval, parent_result_loc); } case ContainerInitKindArray: { size_t item_count = container_init_expr->entries.length; if (container_type == nullptr) { IrInstruction *item_count_inst = ir_build_const_usize(irb, scope, node, item_count); container_type = ir_build_array_type(irb, scope, node, item_count_inst, elem_type); } IrInstruction *container_ptr = ir_build_resolve_result(irb, scope, node, parent_result_loc, container_type); IrInstruction **result_locs = allocate(item_count); for (size_t i = 0; i < item_count; i += 1) { AstNode *expr_node = container_init_expr->entries.at(i); IrInstruction *elem_index = ir_build_const_usize(irb, scope, expr_node, i); IrInstruction *elem_ptr = ir_build_elem_ptr(irb, scope, expr_node, container_ptr, elem_index, false, PtrLenSingle, container_type); ResultLocInstruction *result_loc_inst = allocate(1); result_loc_inst->base.id = ResultLocIdInstruction; result_loc_inst->base.source_instruction = elem_ptr; result_loc_inst->base.allow_write_through_const = true; ir_ref_instruction(elem_ptr, irb->current_basic_block); ir_build_reset_result(irb, scope, expr_node, &result_loc_inst->base); IrInstruction *expr_value = ir_gen_node_extra(irb, expr_node, scope, LValNone, &result_loc_inst->base); if (expr_value == irb->codegen->invalid_instruction) return expr_value; result_locs[i] = elem_ptr; } IrInstruction *init_list = ir_build_container_init_list(irb, scope, node, container_type, item_count, result_locs, container_ptr); return ir_lval_wrap(irb, scope, init_list, lval, parent_result_loc); } } zig_unreachable(); } static ResultLocVar *ir_build_var_result_loc(IrBuilder *irb, IrInstruction *alloca, ZigVar *var) { ResultLocVar *result_loc_var = allocate(1); result_loc_var->base.id = ResultLocIdVar; result_loc_var->base.source_instruction = alloca; result_loc_var->var = var; ir_build_reset_result(irb, alloca->scope, alloca->source_node, &result_loc_var->base); return result_loc_var; } static void build_decl_var_and_init(IrBuilder *irb, Scope *scope, AstNode *source_node, ZigVar *var, IrInstruction *init, const char *name_hint, IrInstruction *is_comptime) { IrInstruction *alloca = ir_build_alloca_src(irb, scope, source_node, nullptr, name_hint, is_comptime); ResultLocVar *var_result_loc = ir_build_var_result_loc(irb, alloca, var); ir_build_end_expr(irb, scope, source_node, init, &var_result_loc->base); ir_build_var_decl_src(irb, scope, source_node, var, nullptr, alloca); } static IrInstruction *ir_gen_var_decl(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeVariableDeclaration); AstNodeVariableDeclaration *variable_declaration = &node->data.variable_declaration; if (buf_eql_str(variable_declaration->symbol, "_")) { add_node_error(irb->codegen, node, buf_sprintf("`_` is not a declarable symbol")); return irb->codegen->invalid_instruction; } // Used for the type expr and the align expr Scope *comptime_scope = create_comptime_scope(irb->codegen, node, scope); IrInstruction *type_instruction; if (variable_declaration->type != nullptr) { type_instruction = ir_gen_node(irb, variable_declaration->type, comptime_scope); if (type_instruction == irb->codegen->invalid_instruction) return type_instruction; } else { type_instruction = nullptr; } bool is_shadowable = false; bool is_const = variable_declaration->is_const; bool is_extern = variable_declaration->is_extern; bool is_comptime_scalar = ir_should_inline(irb->exec, scope) || variable_declaration->is_comptime; IrInstruction *is_comptime = ir_build_const_bool(irb, scope, node, is_comptime_scalar); ZigVar *var = ir_create_var(irb, node, scope, variable_declaration->symbol, is_const, is_const, is_shadowable, is_comptime); // we detect IrInstructionIdDeclVarSrc in gen_block to make sure the next node // is inside var->child_scope if (!is_extern && !variable_declaration->expr) { var->var_type = irb->codegen->builtin_types.entry_invalid; add_node_error(irb->codegen, node, buf_sprintf("variables must be initialized")); return irb->codegen->invalid_instruction; } IrInstruction *align_value = nullptr; if (variable_declaration->align_expr != nullptr) { align_value = ir_gen_node(irb, variable_declaration->align_expr, comptime_scope); if (align_value == irb->codegen->invalid_instruction) return align_value; } if (variable_declaration->section_expr != nullptr) { add_node_error(irb->codegen, variable_declaration->section_expr, buf_sprintf("cannot set section of local variable '%s'", buf_ptr(variable_declaration->symbol))); } // Parser should ensure that this never happens assert(variable_declaration->threadlocal_tok == nullptr); IrInstruction *alloca = ir_build_alloca_src(irb, scope, node, align_value, buf_ptr(variable_declaration->symbol), is_comptime); // Create a result location for the initialization expression. ResultLocVar *result_loc_var = ir_build_var_result_loc(irb, alloca, var); ResultLoc *init_result_loc = (type_instruction == nullptr) ? &result_loc_var->base : nullptr; Scope *init_scope = is_comptime_scalar ? create_comptime_scope(irb->codegen, variable_declaration->expr, scope) : scope; // Temporarily set the name of the IrExecutable to the VariableDeclaration // so that the struct or enum from the init expression inherits the name. Buf *old_exec_name = irb->exec->name; irb->exec->name = variable_declaration->symbol; IrInstruction *init_value = ir_gen_node_extra(irb, variable_declaration->expr, init_scope, LValNone, init_result_loc); irb->exec->name = old_exec_name; if (init_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; if (type_instruction != nullptr) { IrInstruction *implicit_cast = ir_build_implicit_cast(irb, scope, node, type_instruction, init_value, &result_loc_var->base); ir_build_end_expr(irb, scope, node, implicit_cast, &result_loc_var->base); } return ir_build_var_decl_src(irb, scope, node, var, align_value, alloca); } static IrInstruction *ir_gen_while_expr(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeWhileExpr); AstNode *continue_expr_node = node->data.while_expr.continue_expr; AstNode *else_node = node->data.while_expr.else_node; IrBasicBlock *cond_block = ir_create_basic_block(irb, scope, "WhileCond"); IrBasicBlock *body_block = ir_create_basic_block(irb, scope, "WhileBody"); IrBasicBlock *continue_block = continue_expr_node ? ir_create_basic_block(irb, scope, "WhileContinue") : cond_block; IrBasicBlock *end_block = ir_create_basic_block(irb, scope, "WhileEnd"); IrBasicBlock *else_block = else_node ? ir_create_basic_block(irb, scope, "WhileElse") : end_block; IrInstruction *is_comptime = ir_build_const_bool(irb, scope, node, ir_should_inline(irb->exec, scope) || node->data.while_expr.is_inline); ir_build_br(irb, scope, node, cond_block, is_comptime); Scope *subexpr_scope = create_runtime_scope(irb->codegen, node, scope, is_comptime); Buf *var_symbol = node->data.while_expr.var_symbol; Buf *err_symbol = node->data.while_expr.err_symbol; if (err_symbol != nullptr) { ir_set_cursor_at_end_and_append_block(irb, cond_block); Scope *payload_scope; AstNode *symbol_node = node; // TODO make more accurate ZigVar *payload_var; if (var_symbol) { // TODO make it an error to write to payload variable payload_var = ir_create_var(irb, symbol_node, subexpr_scope, var_symbol, true, false, false, is_comptime); payload_scope = payload_var->child_scope; } else { payload_scope = subexpr_scope; } IrInstruction *err_val_ptr = ir_gen_node_extra(irb, node->data.while_expr.condition, subexpr_scope, LValPtr, nullptr); if (err_val_ptr == irb->codegen->invalid_instruction) return err_val_ptr; IrInstruction *is_err = ir_build_test_err_src(irb, scope, node->data.while_expr.condition, err_val_ptr, true, false); IrBasicBlock *after_cond_block = irb->current_basic_block; IrInstruction *void_else_result = else_node ? nullptr : ir_mark_gen(ir_build_const_void(irb, scope, node)); IrInstruction *cond_br_inst; if (!instr_is_unreachable(is_err)) { cond_br_inst = ir_build_cond_br(irb, scope, node->data.while_expr.condition, is_err, else_block, body_block, is_comptime); cond_br_inst->is_gen = true; } else { // for the purposes of the source instruction to ir_build_result_peers cond_br_inst = irb->current_basic_block->instruction_list.last(); } ResultLocPeerParent *peer_parent = ir_build_result_peers(irb, cond_br_inst, end_block, result_loc, is_comptime); ir_set_cursor_at_end_and_append_block(irb, body_block); if (var_symbol) { IrInstruction *payload_ptr = ir_build_unwrap_err_payload(irb, payload_scope, symbol_node, err_val_ptr, false, false); IrInstruction *var_ptr = node->data.while_expr.var_is_ptr ? ir_build_ref(irb, payload_scope, symbol_node, payload_ptr, true, false) : payload_ptr; ir_build_var_decl_src(irb, payload_scope, symbol_node, payload_var, nullptr, var_ptr); } ZigList incoming_values = {0}; ZigList incoming_blocks = {0}; ScopeLoop *loop_scope = create_loop_scope(irb->codegen, node, payload_scope); loop_scope->break_block = end_block; loop_scope->continue_block = continue_block; loop_scope->is_comptime = is_comptime; loop_scope->incoming_blocks = &incoming_blocks; loop_scope->incoming_values = &incoming_values; loop_scope->lval = lval; loop_scope->peer_parent = peer_parent; // Note the body block of the loop is not the place that lval and result_loc are used - // it's actually in break statements, handled similarly to return statements. // That is why we set those values in loop_scope above and not in this ir_gen_node call. IrInstruction *body_result = ir_gen_node(irb, node->data.while_expr.body, &loop_scope->base); if (body_result == irb->codegen->invalid_instruction) return body_result; if (!instr_is_unreachable(body_result)) { ir_mark_gen(ir_build_check_statement_is_void(irb, payload_scope, node->data.while_expr.body, body_result)); ir_mark_gen(ir_build_br(irb, payload_scope, node, continue_block, is_comptime)); } if (continue_expr_node) { ir_set_cursor_at_end_and_append_block(irb, continue_block); IrInstruction *expr_result = ir_gen_node(irb, continue_expr_node, payload_scope); if (expr_result == irb->codegen->invalid_instruction) return expr_result; if (!instr_is_unreachable(expr_result)) { ir_mark_gen(ir_build_check_statement_is_void(irb, payload_scope, continue_expr_node, expr_result)); ir_mark_gen(ir_build_br(irb, payload_scope, node, cond_block, is_comptime)); } } ir_set_cursor_at_end_and_append_block(irb, else_block); assert(else_node != nullptr); // TODO make it an error to write to error variable AstNode *err_symbol_node = else_node; // TODO make more accurate ZigVar *err_var = ir_create_var(irb, err_symbol_node, scope, err_symbol, true, false, false, is_comptime); Scope *err_scope = err_var->child_scope; IrInstruction *err_ptr = ir_build_unwrap_err_code(irb, err_scope, err_symbol_node, err_val_ptr); ir_build_var_decl_src(irb, err_scope, symbol_node, err_var, nullptr, err_ptr); if (peer_parent->peers.length != 0) { peer_parent->peers.last()->next_bb = else_block; } ResultLocPeer *peer_result = create_peer_result(peer_parent); peer_parent->peers.append(peer_result); IrInstruction *else_result = ir_gen_node_extra(irb, else_node, err_scope, lval, &peer_result->base); if (else_result == irb->codegen->invalid_instruction) return else_result; if (!instr_is_unreachable(else_result)) ir_mark_gen(ir_build_br(irb, scope, node, end_block, is_comptime)); IrBasicBlock *after_else_block = irb->current_basic_block; ir_set_cursor_at_end_and_append_block(irb, end_block); if (else_result) { incoming_blocks.append(after_else_block); incoming_values.append(else_result); } else { incoming_blocks.append(after_cond_block); incoming_values.append(void_else_result); } if (peer_parent->peers.length != 0) { peer_parent->peers.last()->next_bb = end_block; } IrInstruction *phi = ir_build_phi(irb, scope, node, incoming_blocks.length, incoming_blocks.items, incoming_values.items, peer_parent); return ir_expr_wrap(irb, scope, phi, result_loc); } else if (var_symbol != nullptr) { ir_set_cursor_at_end_and_append_block(irb, cond_block); Scope *subexpr_scope = create_runtime_scope(irb->codegen, node, scope, is_comptime); // TODO make it an error to write to payload variable AstNode *symbol_node = node; // TODO make more accurate ZigVar *payload_var = ir_create_var(irb, symbol_node, subexpr_scope, var_symbol, true, false, false, is_comptime); Scope *child_scope = payload_var->child_scope; IrInstruction *maybe_val_ptr = ir_gen_node_extra(irb, node->data.while_expr.condition, subexpr_scope, LValPtr, nullptr); if (maybe_val_ptr == irb->codegen->invalid_instruction) return maybe_val_ptr; IrInstruction *maybe_val = ir_build_load_ptr(irb, scope, node->data.while_expr.condition, maybe_val_ptr); IrInstruction *is_non_null = ir_build_test_nonnull(irb, scope, node->data.while_expr.condition, maybe_val); IrBasicBlock *after_cond_block = irb->current_basic_block; IrInstruction *void_else_result = else_node ? nullptr : ir_mark_gen(ir_build_const_void(irb, scope, node)); IrInstruction *cond_br_inst; if (!instr_is_unreachable(is_non_null)) { cond_br_inst = ir_build_cond_br(irb, scope, node->data.while_expr.condition, is_non_null, body_block, else_block, is_comptime); cond_br_inst->is_gen = true; } else { // for the purposes of the source instruction to ir_build_result_peers cond_br_inst = irb->current_basic_block->instruction_list.last(); } ResultLocPeerParent *peer_parent = ir_build_result_peers(irb, cond_br_inst, end_block, result_loc, is_comptime); ir_set_cursor_at_end_and_append_block(irb, body_block); IrInstruction *payload_ptr = ir_build_optional_unwrap_ptr(irb, child_scope, symbol_node, maybe_val_ptr, false, false); IrInstruction *var_ptr = node->data.while_expr.var_is_ptr ? ir_build_ref(irb, child_scope, symbol_node, payload_ptr, true, false) : payload_ptr; ir_build_var_decl_src(irb, child_scope, symbol_node, payload_var, nullptr, var_ptr); ZigList incoming_values = {0}; ZigList incoming_blocks = {0}; ScopeLoop *loop_scope = create_loop_scope(irb->codegen, node, child_scope); loop_scope->break_block = end_block; loop_scope->continue_block = continue_block; loop_scope->is_comptime = is_comptime; loop_scope->incoming_blocks = &incoming_blocks; loop_scope->incoming_values = &incoming_values; loop_scope->lval = lval; loop_scope->peer_parent = peer_parent; // Note the body block of the loop is not the place that lval and result_loc are used - // it's actually in break statements, handled similarly to return statements. // That is why we set those values in loop_scope above and not in this ir_gen_node call. IrInstruction *body_result = ir_gen_node(irb, node->data.while_expr.body, &loop_scope->base); if (body_result == irb->codegen->invalid_instruction) return body_result; if (!instr_is_unreachable(body_result)) { ir_mark_gen(ir_build_check_statement_is_void(irb, child_scope, node->data.while_expr.body, body_result)); ir_mark_gen(ir_build_br(irb, child_scope, node, continue_block, is_comptime)); } if (continue_expr_node) { ir_set_cursor_at_end_and_append_block(irb, continue_block); IrInstruction *expr_result = ir_gen_node(irb, continue_expr_node, child_scope); if (expr_result == irb->codegen->invalid_instruction) return expr_result; if (!instr_is_unreachable(expr_result)) { ir_mark_gen(ir_build_check_statement_is_void(irb, child_scope, continue_expr_node, expr_result)); ir_mark_gen(ir_build_br(irb, child_scope, node, cond_block, is_comptime)); } } IrInstruction *else_result = nullptr; if (else_node) { ir_set_cursor_at_end_and_append_block(irb, else_block); if (peer_parent->peers.length != 0) { peer_parent->peers.last()->next_bb = else_block; } ResultLocPeer *peer_result = create_peer_result(peer_parent); peer_parent->peers.append(peer_result); else_result = ir_gen_node_extra(irb, else_node, scope, lval, &peer_result->base); if (else_result == irb->codegen->invalid_instruction) return else_result; if (!instr_is_unreachable(else_result)) ir_mark_gen(ir_build_br(irb, scope, node, end_block, is_comptime)); } IrBasicBlock *after_else_block = irb->current_basic_block; ir_set_cursor_at_end_and_append_block(irb, end_block); if (else_result) { incoming_blocks.append(after_else_block); incoming_values.append(else_result); } else { incoming_blocks.append(after_cond_block); incoming_values.append(void_else_result); } if (peer_parent->peers.length != 0) { peer_parent->peers.last()->next_bb = end_block; } IrInstruction *phi = ir_build_phi(irb, scope, node, incoming_blocks.length, incoming_blocks.items, incoming_values.items, peer_parent); return ir_expr_wrap(irb, scope, phi, result_loc); } else { ir_set_cursor_at_end_and_append_block(irb, cond_block); IrInstruction *cond_val = ir_gen_node(irb, node->data.while_expr.condition, scope); if (cond_val == irb->codegen->invalid_instruction) return cond_val; IrBasicBlock *after_cond_block = irb->current_basic_block; IrInstruction *void_else_result = else_node ? nullptr : ir_mark_gen(ir_build_const_void(irb, scope, node)); IrInstruction *cond_br_inst; if (!instr_is_unreachable(cond_val)) { cond_br_inst = ir_build_cond_br(irb, scope, node->data.while_expr.condition, cond_val, body_block, else_block, is_comptime); cond_br_inst->is_gen = true; } else { // for the purposes of the source instruction to ir_build_result_peers cond_br_inst = irb->current_basic_block->instruction_list.last(); } ResultLocPeerParent *peer_parent = ir_build_result_peers(irb, cond_br_inst, end_block, result_loc, is_comptime); ir_set_cursor_at_end_and_append_block(irb, body_block); ZigList incoming_values = {0}; ZigList incoming_blocks = {0}; Scope *subexpr_scope = create_runtime_scope(irb->codegen, node, scope, is_comptime); ScopeLoop *loop_scope = create_loop_scope(irb->codegen, node, subexpr_scope); loop_scope->break_block = end_block; loop_scope->continue_block = continue_block; loop_scope->is_comptime = is_comptime; loop_scope->incoming_blocks = &incoming_blocks; loop_scope->incoming_values = &incoming_values; loop_scope->lval = lval; loop_scope->peer_parent = peer_parent; // Note the body block of the loop is not the place that lval and result_loc are used - // it's actually in break statements, handled similarly to return statements. // That is why we set those values in loop_scope above and not in this ir_gen_node call. IrInstruction *body_result = ir_gen_node(irb, node->data.while_expr.body, &loop_scope->base); if (body_result == irb->codegen->invalid_instruction) return body_result; if (!instr_is_unreachable(body_result)) { ir_mark_gen(ir_build_check_statement_is_void(irb, scope, node->data.while_expr.body, body_result)); ir_mark_gen(ir_build_br(irb, scope, node, continue_block, is_comptime)); } if (continue_expr_node) { ir_set_cursor_at_end_and_append_block(irb, continue_block); IrInstruction *expr_result = ir_gen_node(irb, continue_expr_node, subexpr_scope); if (expr_result == irb->codegen->invalid_instruction) return expr_result; if (!instr_is_unreachable(expr_result)) { ir_mark_gen(ir_build_check_statement_is_void(irb, scope, continue_expr_node, expr_result)); ir_mark_gen(ir_build_br(irb, scope, node, cond_block, is_comptime)); } } IrInstruction *else_result = nullptr; if (else_node) { ir_set_cursor_at_end_and_append_block(irb, else_block); if (peer_parent->peers.length != 0) { peer_parent->peers.last()->next_bb = else_block; } ResultLocPeer *peer_result = create_peer_result(peer_parent); peer_parent->peers.append(peer_result); else_result = ir_gen_node_extra(irb, else_node, subexpr_scope, lval, &peer_result->base); if (else_result == irb->codegen->invalid_instruction) return else_result; if (!instr_is_unreachable(else_result)) ir_mark_gen(ir_build_br(irb, scope, node, end_block, is_comptime)); } IrBasicBlock *after_else_block = irb->current_basic_block; ir_set_cursor_at_end_and_append_block(irb, end_block); if (else_result) { incoming_blocks.append(after_else_block); incoming_values.append(else_result); } else { incoming_blocks.append(after_cond_block); incoming_values.append(void_else_result); } if (peer_parent->peers.length != 0) { peer_parent->peers.last()->next_bb = end_block; } IrInstruction *phi = ir_build_phi(irb, scope, node, incoming_blocks.length, incoming_blocks.items, incoming_values.items, peer_parent); return ir_expr_wrap(irb, scope, phi, result_loc); } } static IrInstruction *ir_gen_for_expr(IrBuilder *irb, Scope *parent_scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeForExpr); AstNode *array_node = node->data.for_expr.array_expr; AstNode *elem_node = node->data.for_expr.elem_node; AstNode *index_node = node->data.for_expr.index_node; AstNode *body_node = node->data.for_expr.body; AstNode *else_node = node->data.for_expr.else_node; if (!elem_node) { add_node_error(irb->codegen, node, buf_sprintf("for loop expression missing element parameter")); return irb->codegen->invalid_instruction; } assert(elem_node->type == NodeTypeSymbol); IrInstruction *array_val_ptr = ir_gen_node_extra(irb, array_node, parent_scope, LValPtr, nullptr); if (array_val_ptr == irb->codegen->invalid_instruction) return array_val_ptr; IrInstruction *is_comptime = ir_build_const_bool(irb, parent_scope, node, ir_should_inline(irb->exec, parent_scope) || node->data.for_expr.is_inline); AstNode *index_var_source_node; ZigVar *index_var; const char *index_var_name; if (index_node) { index_var_source_node = index_node; Buf *index_var_name_buf = index_node->data.symbol_expr.symbol; index_var = ir_create_var(irb, index_node, parent_scope, index_var_name_buf, true, false, false, is_comptime); index_var_name = buf_ptr(index_var_name_buf); } else { index_var_source_node = node; index_var = ir_create_var(irb, node, parent_scope, nullptr, true, false, true, is_comptime); index_var_name = "i"; } IrInstruction *zero = ir_build_const_usize(irb, parent_scope, node, 0); build_decl_var_and_init(irb, parent_scope, index_var_source_node, index_var, zero, index_var_name, is_comptime); parent_scope = index_var->child_scope; IrInstruction *one = ir_build_const_usize(irb, parent_scope, node, 1); IrInstruction *index_ptr = ir_build_var_ptr(irb, parent_scope, node, index_var); IrBasicBlock *cond_block = ir_create_basic_block(irb, parent_scope, "ForCond"); IrBasicBlock *body_block = ir_create_basic_block(irb, parent_scope, "ForBody"); IrBasicBlock *end_block = ir_create_basic_block(irb, parent_scope, "ForEnd"); IrBasicBlock *else_block = else_node ? ir_create_basic_block(irb, parent_scope, "ForElse") : end_block; IrBasicBlock *continue_block = ir_create_basic_block(irb, parent_scope, "ForContinue"); Buf *len_field_name = buf_create_from_str("len"); IrInstruction *len_ref = ir_build_field_ptr(irb, parent_scope, node, array_val_ptr, len_field_name, false); IrInstruction *len_val = ir_build_load_ptr(irb, parent_scope, node, len_ref); ir_build_br(irb, parent_scope, node, cond_block, is_comptime); ir_set_cursor_at_end_and_append_block(irb, cond_block); IrInstruction *index_val = ir_build_load_ptr(irb, parent_scope, node, index_ptr); IrInstruction *cond = ir_build_bin_op(irb, parent_scope, node, IrBinOpCmpLessThan, index_val, len_val, false); IrBasicBlock *after_cond_block = irb->current_basic_block; IrInstruction *void_else_value = else_node ? nullptr : ir_mark_gen(ir_build_const_void(irb, parent_scope, node)); IrInstruction *cond_br_inst = ir_mark_gen(ir_build_cond_br(irb, parent_scope, node, cond, body_block, else_block, is_comptime)); ResultLocPeerParent *peer_parent = ir_build_result_peers(irb, cond_br_inst, end_block, result_loc, is_comptime); ir_set_cursor_at_end_and_append_block(irb, body_block); IrInstruction *elem_ptr = ir_build_elem_ptr(irb, parent_scope, node, array_val_ptr, index_val, false, PtrLenSingle, nullptr); // TODO make it an error to write to element variable or i variable. Buf *elem_var_name = elem_node->data.symbol_expr.symbol; ZigVar *elem_var = ir_create_var(irb, elem_node, parent_scope, elem_var_name, true, false, false, is_comptime); Scope *child_scope = elem_var->child_scope; IrInstruction *var_ptr = node->data.for_expr.elem_is_ptr ? ir_build_ref(irb, parent_scope, elem_node, elem_ptr, true, false) : elem_ptr; ir_build_var_decl_src(irb, parent_scope, elem_node, elem_var, nullptr, var_ptr); ZigList incoming_values = {0}; ZigList incoming_blocks = {0}; ScopeLoop *loop_scope = create_loop_scope(irb->codegen, node, child_scope); loop_scope->break_block = end_block; loop_scope->continue_block = continue_block; loop_scope->is_comptime = is_comptime; loop_scope->incoming_blocks = &incoming_blocks; loop_scope->incoming_values = &incoming_values; loop_scope->lval = LValNone; loop_scope->peer_parent = peer_parent; // Note the body block of the loop is not the place that lval and result_loc are used - // it's actually in break statements, handled similarly to return statements. // That is why we set those values in loop_scope above and not in this ir_gen_node call. IrInstruction *body_result = ir_gen_node(irb, body_node, &loop_scope->base); if (!instr_is_unreachable(body_result)) { ir_mark_gen(ir_build_check_statement_is_void(irb, child_scope, node->data.for_expr.body, body_result)); ir_mark_gen(ir_build_br(irb, child_scope, node, continue_block, is_comptime)); } ir_set_cursor_at_end_and_append_block(irb, continue_block); IrInstruction *new_index_val = ir_build_bin_op(irb, child_scope, node, IrBinOpAdd, index_val, one, false); ir_build_store_ptr(irb, child_scope, node, index_ptr, new_index_val)->allow_write_through_const = true; ir_build_br(irb, child_scope, node, cond_block, is_comptime); IrInstruction *else_result = nullptr; if (else_node) { ir_set_cursor_at_end_and_append_block(irb, else_block); if (peer_parent->peers.length != 0) { peer_parent->peers.last()->next_bb = else_block; } ResultLocPeer *peer_result = create_peer_result(peer_parent); peer_parent->peers.append(peer_result); else_result = ir_gen_node_extra(irb, else_node, parent_scope, LValNone, &peer_result->base); if (else_result == irb->codegen->invalid_instruction) return else_result; if (!instr_is_unreachable(else_result)) ir_mark_gen(ir_build_br(irb, parent_scope, node, end_block, is_comptime)); } IrBasicBlock *after_else_block = irb->current_basic_block; ir_set_cursor_at_end_and_append_block(irb, end_block); if (else_result) { incoming_blocks.append(after_else_block); incoming_values.append(else_result); } else { incoming_blocks.append(after_cond_block); incoming_values.append(void_else_value); } if (peer_parent->peers.length != 0) { peer_parent->peers.last()->next_bb = end_block; } IrInstruction *phi = ir_build_phi(irb, parent_scope, node, incoming_blocks.length, incoming_blocks.items, incoming_values.items, peer_parent); return ir_lval_wrap(irb, parent_scope, phi, lval, result_loc); } static IrInstruction *ir_gen_bool_literal(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeBoolLiteral); return ir_build_const_bool(irb, scope, node, node->data.bool_literal.value); } static IrInstruction *ir_gen_enum_literal(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeEnumLiteral); Buf *name = &node->data.enum_literal.identifier->data.str_lit.str; return ir_build_const_enum_literal(irb, scope, node, name); } static IrInstruction *ir_gen_string_literal(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeStringLiteral); if (node->data.string_literal.c) { return ir_build_const_c_str_lit(irb, scope, node, node->data.string_literal.buf); } else { return ir_build_const_str_lit(irb, scope, node, node->data.string_literal.buf); } } static IrInstruction *ir_gen_array_type(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeArrayType); AstNode *size_node = node->data.array_type.size; AstNode *child_type_node = node->data.array_type.child_type; bool is_const = node->data.array_type.is_const; bool is_volatile = node->data.array_type.is_volatile; bool is_allow_zero = node->data.array_type.allow_zero_token != nullptr; AstNode *align_expr = node->data.array_type.align_expr; Scope *comptime_scope = create_comptime_scope(irb->codegen, node, scope); if (size_node) { if (is_const) { add_node_error(irb->codegen, node, buf_create_from_str("const qualifier invalid on array type")); return irb->codegen->invalid_instruction; } if (is_volatile) { add_node_error(irb->codegen, node, buf_create_from_str("volatile qualifier invalid on array type")); return irb->codegen->invalid_instruction; } if (is_allow_zero) { add_node_error(irb->codegen, node, buf_create_from_str("allowzero qualifier invalid on array type")); return irb->codegen->invalid_instruction; } if (align_expr != nullptr) { add_node_error(irb->codegen, node, buf_create_from_str("align qualifier invalid on array type")); return irb->codegen->invalid_instruction; } IrInstruction *size_value = ir_gen_node(irb, size_node, comptime_scope); if (size_value == irb->codegen->invalid_instruction) return size_value; IrInstruction *child_type = ir_gen_node(irb, child_type_node, comptime_scope); if (child_type == irb->codegen->invalid_instruction) return child_type; return ir_build_array_type(irb, scope, node, size_value, child_type); } else { IrInstruction *align_value; if (align_expr != nullptr) { align_value = ir_gen_node(irb, align_expr, comptime_scope); if (align_value == irb->codegen->invalid_instruction) return align_value; } else { align_value = nullptr; } IrInstruction *child_type = ir_gen_node(irb, child_type_node, comptime_scope); if (child_type == irb->codegen->invalid_instruction) return child_type; return ir_build_slice_type(irb, scope, node, child_type, is_const, is_volatile, align_value, is_allow_zero); } } static IrInstruction *ir_gen_anyframe_type(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeAnyFrameType); AstNode *payload_type_node = node->data.anyframe_type.payload_type; IrInstruction *payload_type_value = nullptr; if (payload_type_node != nullptr) { payload_type_value = ir_gen_node(irb, payload_type_node, scope); if (payload_type_value == irb->codegen->invalid_instruction) return payload_type_value; } return ir_build_anyframe_type(irb, scope, node, payload_type_value); } static IrInstruction *ir_gen_undefined_literal(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeUndefinedLiteral); return ir_build_const_undefined(irb, scope, node); } static Error parse_asm_template(IrBuilder *irb, AstNode *source_node, Buf *asm_template, ZigList *tok_list) { // TODO Connect the errors in this function back up to the actual source location // rather than just the token. https://github.com/ziglang/zig/issues/2080 enum State { StateStart, StatePercent, StateTemplate, StateVar, }; assert(tok_list->length == 0); AsmToken *cur_tok = nullptr; enum State state = StateStart; for (size_t i = 0; i < buf_len(asm_template); i += 1) { uint8_t c = *((uint8_t*)buf_ptr(asm_template) + i); switch (state) { case StateStart: if (c == '%') { tok_list->add_one(); cur_tok = &tok_list->last(); cur_tok->id = AsmTokenIdPercent; cur_tok->start = i; state = StatePercent; } else { tok_list->add_one(); cur_tok = &tok_list->last(); cur_tok->id = AsmTokenIdTemplate; cur_tok->start = i; state = StateTemplate; } break; case StatePercent: if (c == '%') { cur_tok->end = i; state = StateStart; } else if (c == '[') { cur_tok->id = AsmTokenIdVar; state = StateVar; } else if (c == '=') { cur_tok->id = AsmTokenIdUniqueId; cur_tok->end = i; state = StateStart; } else { add_node_error(irb->codegen, source_node, buf_create_from_str("expected a '%' or '['")); return ErrorSemanticAnalyzeFail; } break; case StateTemplate: if (c == '%') { cur_tok->end = i; i -= 1; cur_tok = nullptr; state = StateStart; } break; case StateVar: if (c == ']') { cur_tok->end = i; state = StateStart; } else if ((c >= 'a' && c <= 'z') || (c >= '0' && c <= '9') || (c == '_')) { // do nothing } else { add_node_error(irb->codegen, source_node, buf_sprintf("invalid substitution character: '%c'", c)); return ErrorSemanticAnalyzeFail; } break; } } switch (state) { case StateStart: break; case StatePercent: case StateVar: add_node_error(irb->codegen, source_node, buf_sprintf("unexpected end of assembly template")); return ErrorSemanticAnalyzeFail; case StateTemplate: cur_tok->end = buf_len(asm_template); break; } return ErrorNone; } static size_t find_asm_index(CodeGen *g, AstNode *node, AsmToken *tok, Buf *src_template) { const char *ptr = buf_ptr(src_template) + tok->start + 2; size_t len = tok->end - tok->start - 2; size_t result = 0; for (size_t i = 0; i < node->data.asm_expr.output_list.length; i += 1, result += 1) { AsmOutput *asm_output = node->data.asm_expr.output_list.at(i); if (buf_eql_mem(asm_output->asm_symbolic_name, ptr, len)) { return result; } } for (size_t i = 0; i < node->data.asm_expr.input_list.length; i += 1, result += 1) { AsmInput *asm_input = node->data.asm_expr.input_list.at(i); if (buf_eql_mem(asm_input->asm_symbolic_name, ptr, len)) { return result; } } return SIZE_MAX; } static IrInstruction *ir_gen_asm_expr(IrBuilder *irb, Scope *scope, AstNode *node) { Error err; assert(node->type == NodeTypeAsmExpr); AstNodeAsmExpr *asm_expr = &node->data.asm_expr; bool is_volatile = asm_expr->volatile_token != nullptr; bool in_fn_scope = (scope_fn_entry(scope) != nullptr); Buf *template_buf = &asm_expr->asm_template->data.str_lit.str; if (!in_fn_scope) { if (is_volatile) { add_token_error(irb->codegen, node->owner, asm_expr->volatile_token, buf_sprintf("volatile is meaningless on global assembly")); return irb->codegen->invalid_instruction; } if (asm_expr->output_list.length != 0 || asm_expr->input_list.length != 0 || asm_expr->clobber_list.length != 0) { add_node_error(irb->codegen, node, buf_sprintf("global assembly cannot have inputs, outputs, or clobbers")); return irb->codegen->invalid_instruction; } return ir_build_global_asm(irb, scope, node, template_buf); } ZigList tok_list = {}; if ((err = parse_asm_template(irb, node, template_buf, &tok_list))) { return irb->codegen->invalid_instruction; } IrInstruction **input_list = allocate(asm_expr->input_list.length); IrInstruction **output_types = allocate(asm_expr->output_list.length); ZigVar **output_vars = allocate(asm_expr->output_list.length); size_t return_count = 0; if (!is_volatile && asm_expr->output_list.length == 0) { add_node_error(irb->codegen, node, buf_sprintf("assembly expression with no output must be marked volatile")); return irb->codegen->invalid_instruction; } for (size_t i = 0; i < asm_expr->output_list.length; i += 1) { AsmOutput *asm_output = asm_expr->output_list.at(i); if (asm_output->return_type) { return_count += 1; IrInstruction *return_type = ir_gen_node(irb, asm_output->return_type, scope); if (return_type == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; if (return_count > 1) { add_node_error(irb->codegen, node, buf_sprintf("inline assembly allows up to one output value")); return irb->codegen->invalid_instruction; } output_types[i] = return_type; } else { Buf *variable_name = asm_output->variable_name; // TODO there is some duplication here with ir_gen_symbol. I need to do a full audit of how // inline assembly works. https://github.com/ziglang/zig/issues/215 ZigVar *var = find_variable(irb->codegen, scope, variable_name, nullptr); if (var) { output_vars[i] = var; } else { add_node_error(irb->codegen, node, buf_sprintf("use of undeclared identifier '%s'", buf_ptr(variable_name))); return irb->codegen->invalid_instruction; } } const char modifier = *buf_ptr(asm_output->constraint); if (modifier != '=') { add_node_error(irb->codegen, node, buf_sprintf("invalid modifier starting output constraint for '%s': '%c', only '=' is supported" " Compiler TODO: see https://github.com/ziglang/zig/issues/215", buf_ptr(asm_output->asm_symbolic_name), modifier)); return irb->codegen->invalid_instruction; } } for (size_t i = 0; i < asm_expr->input_list.length; i += 1) { AsmInput *asm_input = asm_expr->input_list.at(i); IrInstruction *input_value = ir_gen_node(irb, asm_input->expr, scope); if (input_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; input_list[i] = input_value; } for (size_t token_i = 0; token_i < tok_list.length; token_i += 1) { AsmToken asm_token = tok_list.at(token_i); if (asm_token.id == AsmTokenIdVar) { size_t index = find_asm_index(irb->codegen, node, &asm_token, template_buf); if (index == SIZE_MAX) { const char *ptr = buf_ptr(template_buf) + asm_token.start + 2; uint32_t len = asm_token.end - asm_token.start - 2; add_node_error(irb->codegen, node, buf_sprintf("could not find '%.*s' in the inputs or outputs", len, ptr)); return irb->codegen->invalid_instruction; } } } return ir_build_asm(irb, scope, node, template_buf, tok_list.items, tok_list.length, input_list, output_types, output_vars, return_count, is_volatile); } static IrInstruction *ir_gen_if_optional_expr(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeIfOptional); Buf *var_symbol = node->data.test_expr.var_symbol; AstNode *expr_node = node->data.test_expr.target_node; AstNode *then_node = node->data.test_expr.then_node; AstNode *else_node = node->data.test_expr.else_node; bool var_is_ptr = node->data.test_expr.var_is_ptr; IrInstruction *maybe_val_ptr = ir_gen_node_extra(irb, expr_node, scope, LValPtr, nullptr); if (maybe_val_ptr == irb->codegen->invalid_instruction) return maybe_val_ptr; IrInstruction *maybe_val = ir_build_load_ptr(irb, scope, node, maybe_val_ptr); IrInstruction *is_non_null = ir_build_test_nonnull(irb, scope, node, maybe_val); IrBasicBlock *then_block = ir_create_basic_block(irb, scope, "OptionalThen"); IrBasicBlock *else_block = ir_create_basic_block(irb, scope, "OptionalElse"); IrBasicBlock *endif_block = ir_create_basic_block(irb, scope, "OptionalEndIf"); IrInstruction *is_comptime; if (ir_should_inline(irb->exec, scope)) { is_comptime = ir_build_const_bool(irb, scope, node, true); } else { is_comptime = ir_build_test_comptime(irb, scope, node, is_non_null); } IrInstruction *cond_br_inst = ir_build_cond_br(irb, scope, node, is_non_null, then_block, else_block, is_comptime); ResultLocPeerParent *peer_parent = ir_build_binary_result_peers(irb, cond_br_inst, else_block, endif_block, result_loc, is_comptime); ir_set_cursor_at_end_and_append_block(irb, then_block); Scope *subexpr_scope = create_runtime_scope(irb->codegen, node, scope, is_comptime); Scope *var_scope; if (var_symbol) { bool is_shadowable = false; bool is_const = true; ZigVar *var = ir_create_var(irb, node, subexpr_scope, var_symbol, is_const, is_const, is_shadowable, is_comptime); IrInstruction *payload_ptr = ir_build_optional_unwrap_ptr(irb, subexpr_scope, node, maybe_val_ptr, false, false); IrInstruction *var_ptr = var_is_ptr ? ir_build_ref(irb, subexpr_scope, node, payload_ptr, true, false) : payload_ptr; ir_build_var_decl_src(irb, subexpr_scope, node, var, nullptr, var_ptr); var_scope = var->child_scope; } else { var_scope = subexpr_scope; } IrInstruction *then_expr_result = ir_gen_node_extra(irb, then_node, var_scope, lval, &peer_parent->peers.at(0)->base); if (then_expr_result == irb->codegen->invalid_instruction) return then_expr_result; IrBasicBlock *after_then_block = irb->current_basic_block; if (!instr_is_unreachable(then_expr_result)) ir_mark_gen(ir_build_br(irb, scope, node, endif_block, is_comptime)); ir_set_cursor_at_end_and_append_block(irb, else_block); IrInstruction *else_expr_result; if (else_node) { else_expr_result = ir_gen_node_extra(irb, else_node, subexpr_scope, lval, &peer_parent->peers.at(1)->base); if (else_expr_result == irb->codegen->invalid_instruction) return else_expr_result; } else { else_expr_result = ir_build_const_void(irb, scope, node); ir_build_end_expr(irb, scope, node, else_expr_result, &peer_parent->peers.at(1)->base); } IrBasicBlock *after_else_block = irb->current_basic_block; if (!instr_is_unreachable(else_expr_result)) ir_mark_gen(ir_build_br(irb, scope, node, endif_block, is_comptime)); ir_set_cursor_at_end_and_append_block(irb, endif_block); IrInstruction **incoming_values = allocate(2); incoming_values[0] = then_expr_result; incoming_values[1] = else_expr_result; IrBasicBlock **incoming_blocks = allocate(2); incoming_blocks[0] = after_then_block; incoming_blocks[1] = after_else_block; IrInstruction *phi = ir_build_phi(irb, scope, node, 2, incoming_blocks, incoming_values, peer_parent); return ir_expr_wrap(irb, scope, phi, result_loc); } static IrInstruction *ir_gen_if_err_expr(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeIfErrorExpr); AstNode *target_node = node->data.if_err_expr.target_node; AstNode *then_node = node->data.if_err_expr.then_node; AstNode *else_node = node->data.if_err_expr.else_node; bool var_is_ptr = node->data.if_err_expr.var_is_ptr; bool var_is_const = true; Buf *var_symbol = node->data.if_err_expr.var_symbol; Buf *err_symbol = node->data.if_err_expr.err_symbol; IrInstruction *err_val_ptr = ir_gen_node_extra(irb, target_node, scope, LValPtr, nullptr); if (err_val_ptr == irb->codegen->invalid_instruction) return err_val_ptr; IrInstruction *err_val = ir_build_load_ptr(irb, scope, node, err_val_ptr); IrInstruction *is_err = ir_build_test_err_src(irb, scope, node, err_val_ptr, true, false); IrBasicBlock *ok_block = ir_create_basic_block(irb, scope, "TryOk"); IrBasicBlock *else_block = ir_create_basic_block(irb, scope, "TryElse"); IrBasicBlock *endif_block = ir_create_basic_block(irb, scope, "TryEnd"); bool force_comptime = ir_should_inline(irb->exec, scope); IrInstruction *is_comptime = force_comptime ? ir_build_const_bool(irb, scope, node, true) : ir_build_test_comptime(irb, scope, node, is_err); IrInstruction *cond_br_inst = ir_build_cond_br(irb, scope, node, is_err, else_block, ok_block, is_comptime); ResultLocPeerParent *peer_parent = ir_build_binary_result_peers(irb, cond_br_inst, else_block, endif_block, result_loc, is_comptime); ir_set_cursor_at_end_and_append_block(irb, ok_block); Scope *subexpr_scope = create_runtime_scope(irb->codegen, node, scope, is_comptime); Scope *var_scope; if (var_symbol) { bool is_shadowable = false; IrInstruction *var_is_comptime = force_comptime ? ir_build_const_bool(irb, subexpr_scope, node, true) : ir_build_test_comptime(irb, subexpr_scope, node, err_val); ZigVar *var = ir_create_var(irb, node, subexpr_scope, var_symbol, var_is_const, var_is_const, is_shadowable, var_is_comptime); IrInstruction *payload_ptr = ir_build_unwrap_err_payload(irb, subexpr_scope, node, err_val_ptr, false, false); IrInstruction *var_ptr = var_is_ptr ? ir_build_ref(irb, subexpr_scope, node, payload_ptr, true, false) : payload_ptr; ir_build_var_decl_src(irb, subexpr_scope, node, var, nullptr, var_ptr); var_scope = var->child_scope; } else { var_scope = subexpr_scope; } IrInstruction *then_expr_result = ir_gen_node_extra(irb, then_node, var_scope, lval, &peer_parent->peers.at(0)->base); if (then_expr_result == irb->codegen->invalid_instruction) return then_expr_result; IrBasicBlock *after_then_block = irb->current_basic_block; if (!instr_is_unreachable(then_expr_result)) ir_mark_gen(ir_build_br(irb, scope, node, endif_block, is_comptime)); ir_set_cursor_at_end_and_append_block(irb, else_block); IrInstruction *else_expr_result; if (else_node) { Scope *err_var_scope; if (err_symbol) { bool is_shadowable = false; bool is_const = true; ZigVar *var = ir_create_var(irb, node, subexpr_scope, err_symbol, is_const, is_const, is_shadowable, is_comptime); IrInstruction *err_ptr = ir_build_unwrap_err_code(irb, subexpr_scope, node, err_val_ptr); ir_build_var_decl_src(irb, subexpr_scope, node, var, nullptr, err_ptr); err_var_scope = var->child_scope; } else { err_var_scope = subexpr_scope; } else_expr_result = ir_gen_node_extra(irb, else_node, err_var_scope, lval, &peer_parent->peers.at(1)->base); if (else_expr_result == irb->codegen->invalid_instruction) return else_expr_result; } else { else_expr_result = ir_build_const_void(irb, scope, node); ir_build_end_expr(irb, scope, node, else_expr_result, &peer_parent->peers.at(1)->base); } IrBasicBlock *after_else_block = irb->current_basic_block; if (!instr_is_unreachable(else_expr_result)) ir_mark_gen(ir_build_br(irb, scope, node, endif_block, is_comptime)); ir_set_cursor_at_end_and_append_block(irb, endif_block); IrInstruction **incoming_values = allocate(2); incoming_values[0] = then_expr_result; incoming_values[1] = else_expr_result; IrBasicBlock **incoming_blocks = allocate(2); incoming_blocks[0] = after_then_block; incoming_blocks[1] = after_else_block; IrInstruction *phi = ir_build_phi(irb, scope, node, 2, incoming_blocks, incoming_values, peer_parent); return ir_expr_wrap(irb, scope, phi, result_loc); } static bool ir_gen_switch_prong_expr(IrBuilder *irb, Scope *scope, AstNode *switch_node, AstNode *prong_node, IrBasicBlock *end_block, IrInstruction *is_comptime, IrInstruction *var_is_comptime, IrInstruction *target_value_ptr, IrInstruction **prong_values, size_t prong_values_len, ZigList *incoming_blocks, ZigList *incoming_values, IrInstructionSwitchElseVar **out_switch_else_var, LVal lval, ResultLoc *result_loc) { assert(switch_node->type == NodeTypeSwitchExpr); assert(prong_node->type == NodeTypeSwitchProng); AstNode *expr_node = prong_node->data.switch_prong.expr; AstNode *var_symbol_node = prong_node->data.switch_prong.var_symbol; Scope *child_scope; if (var_symbol_node) { assert(var_symbol_node->type == NodeTypeSymbol); Buf *var_name = var_symbol_node->data.symbol_expr.symbol; bool var_is_ptr = prong_node->data.switch_prong.var_is_ptr; bool is_shadowable = false; bool is_const = true; ZigVar *var = ir_create_var(irb, var_symbol_node, scope, var_name, is_const, is_const, is_shadowable, var_is_comptime); child_scope = var->child_scope; IrInstruction *var_ptr; if (out_switch_else_var != nullptr) { IrInstructionSwitchElseVar *switch_else_var = ir_build_switch_else_var(irb, scope, var_symbol_node, target_value_ptr); *out_switch_else_var = switch_else_var; IrInstruction *payload_ptr = &switch_else_var->base; var_ptr = var_is_ptr ? ir_build_ref(irb, scope, var_symbol_node, payload_ptr, true, false) : payload_ptr; } else if (prong_values != nullptr) { IrInstruction *payload_ptr = ir_build_switch_var(irb, scope, var_symbol_node, target_value_ptr, prong_values, prong_values_len); var_ptr = var_is_ptr ? ir_build_ref(irb, scope, var_symbol_node, payload_ptr, true, false) : payload_ptr; } else { var_ptr = var_is_ptr ? ir_build_ref(irb, scope, var_symbol_node, target_value_ptr, true, false) : target_value_ptr; } ir_build_var_decl_src(irb, scope, var_symbol_node, var, nullptr, var_ptr); } else { child_scope = scope; } IrInstruction *expr_result = ir_gen_node_extra(irb, expr_node, child_scope, lval, result_loc); if (expr_result == irb->codegen->invalid_instruction) return false; if (!instr_is_unreachable(expr_result)) ir_mark_gen(ir_build_br(irb, scope, switch_node, end_block, is_comptime)); incoming_blocks->append(irb->current_basic_block); incoming_values->append(expr_result); return true; } static IrInstruction *ir_gen_switch_expr(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeSwitchExpr); AstNode *target_node = node->data.switch_expr.expr; IrInstruction *target_value_ptr = ir_gen_node_extra(irb, target_node, scope, LValPtr, nullptr); if (target_value_ptr == irb->codegen->invalid_instruction) return target_value_ptr; IrInstruction *target_value = ir_build_switch_target(irb, scope, node, target_value_ptr); IrBasicBlock *else_block = ir_create_basic_block(irb, scope, "SwitchElse"); IrBasicBlock *end_block = ir_create_basic_block(irb, scope, "SwitchEnd"); size_t prong_count = node->data.switch_expr.prongs.length; ZigList cases = {0}; IrInstruction *is_comptime; IrInstruction *var_is_comptime; if (ir_should_inline(irb->exec, scope)) { is_comptime = ir_build_const_bool(irb, scope, node, true); var_is_comptime = is_comptime; } else { is_comptime = ir_build_test_comptime(irb, scope, node, target_value); var_is_comptime = ir_build_test_comptime(irb, scope, node, target_value_ptr); } ZigList incoming_values = {0}; ZigList incoming_blocks = {0}; ZigList check_ranges = {0}; IrInstructionSwitchElseVar *switch_else_var = nullptr; ResultLocPeerParent *peer_parent = allocate(1); peer_parent->base.id = ResultLocIdPeerParent; peer_parent->end_bb = end_block; peer_parent->is_comptime = is_comptime; peer_parent->parent = result_loc; ir_build_reset_result(irb, scope, node, &peer_parent->base); // First do the else and the ranges Scope *subexpr_scope = create_runtime_scope(irb->codegen, node, scope, is_comptime); Scope *comptime_scope = create_comptime_scope(irb->codegen, node, scope); AstNode *else_prong = nullptr; for (size_t prong_i = 0; prong_i < prong_count; prong_i += 1) { AstNode *prong_node = node->data.switch_expr.prongs.at(prong_i); size_t prong_item_count = prong_node->data.switch_prong.items.length; if (prong_item_count == 0) { ResultLocPeer *this_peer_result_loc = create_peer_result(peer_parent); if (else_prong) { ErrorMsg *msg = add_node_error(irb->codegen, prong_node, buf_sprintf("multiple else prongs in switch expression")); add_error_note(irb->codegen, msg, else_prong, buf_sprintf("previous else prong is here")); return irb->codegen->invalid_instruction; } else_prong = prong_node; IrBasicBlock *prev_block = irb->current_basic_block; if (peer_parent->peers.length > 0) { peer_parent->peers.last()->next_bb = else_block; } peer_parent->peers.append(this_peer_result_loc); ir_set_cursor_at_end_and_append_block(irb, else_block); if (!ir_gen_switch_prong_expr(irb, subexpr_scope, node, prong_node, end_block, is_comptime, var_is_comptime, target_value_ptr, nullptr, 0, &incoming_blocks, &incoming_values, &switch_else_var, LValNone, &this_peer_result_loc->base)) { return irb->codegen->invalid_instruction; } ir_set_cursor_at_end(irb, prev_block); } else if (prong_node->data.switch_prong.any_items_are_range) { ResultLocPeer *this_peer_result_loc = create_peer_result(peer_parent); IrInstruction *ok_bit = nullptr; AstNode *last_item_node = nullptr; for (size_t item_i = 0; item_i < prong_item_count; item_i += 1) { AstNode *item_node = prong_node->data.switch_prong.items.at(item_i); last_item_node = item_node; if (item_node->type == NodeTypeSwitchRange) { AstNode *start_node = item_node->data.switch_range.start; AstNode *end_node = item_node->data.switch_range.end; IrInstruction *start_value = ir_gen_node(irb, start_node, comptime_scope); if (start_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *end_value = ir_gen_node(irb, end_node, comptime_scope); if (end_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstructionCheckSwitchProngsRange *check_range = check_ranges.add_one(); check_range->start = start_value; check_range->end = end_value; IrInstruction *lower_range_ok = ir_build_bin_op(irb, scope, item_node, IrBinOpCmpGreaterOrEq, target_value, start_value, false); IrInstruction *upper_range_ok = ir_build_bin_op(irb, scope, item_node, IrBinOpCmpLessOrEq, target_value, end_value, false); IrInstruction *both_ok = ir_build_bin_op(irb, scope, item_node, IrBinOpBoolAnd, lower_range_ok, upper_range_ok, false); if (ok_bit) { ok_bit = ir_build_bin_op(irb, scope, item_node, IrBinOpBoolOr, both_ok, ok_bit, false); } else { ok_bit = both_ok; } } else { IrInstruction *item_value = ir_gen_node(irb, item_node, comptime_scope); if (item_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstructionCheckSwitchProngsRange *check_range = check_ranges.add_one(); check_range->start = item_value; check_range->end = item_value; IrInstruction *cmp_ok = ir_build_bin_op(irb, scope, item_node, IrBinOpCmpEq, item_value, target_value, false); if (ok_bit) { ok_bit = ir_build_bin_op(irb, scope, item_node, IrBinOpBoolOr, cmp_ok, ok_bit, false); } else { ok_bit = cmp_ok; } } } IrBasicBlock *range_block_yes = ir_create_basic_block(irb, scope, "SwitchRangeYes"); IrBasicBlock *range_block_no = ir_create_basic_block(irb, scope, "SwitchRangeNo"); assert(ok_bit); assert(last_item_node); IrInstruction *br_inst = ir_mark_gen(ir_build_cond_br(irb, scope, last_item_node, ok_bit, range_block_yes, range_block_no, is_comptime)); if (peer_parent->base.source_instruction == nullptr) { peer_parent->base.source_instruction = br_inst; } if (peer_parent->peers.length > 0) { peer_parent->peers.last()->next_bb = range_block_yes; } peer_parent->peers.append(this_peer_result_loc); ir_set_cursor_at_end_and_append_block(irb, range_block_yes); if (!ir_gen_switch_prong_expr(irb, subexpr_scope, node, prong_node, end_block, is_comptime, var_is_comptime, target_value_ptr, nullptr, 0, &incoming_blocks, &incoming_values, nullptr, LValNone, &this_peer_result_loc->base)) { return irb->codegen->invalid_instruction; } ir_set_cursor_at_end_and_append_block(irb, range_block_no); } } // next do the non-else non-ranges for (size_t prong_i = 0; prong_i < prong_count; prong_i += 1) { AstNode *prong_node = node->data.switch_expr.prongs.at(prong_i); size_t prong_item_count = prong_node->data.switch_prong.items.length; if (prong_item_count == 0) continue; if (prong_node->data.switch_prong.any_items_are_range) continue; ResultLocPeer *this_peer_result_loc = create_peer_result(peer_parent); IrBasicBlock *prong_block = ir_create_basic_block(irb, scope, "SwitchProng"); IrInstruction **items = allocate(prong_item_count); for (size_t item_i = 0; item_i < prong_item_count; item_i += 1) { AstNode *item_node = prong_node->data.switch_prong.items.at(item_i); assert(item_node->type != NodeTypeSwitchRange); IrInstruction *item_value = ir_gen_node(irb, item_node, comptime_scope); if (item_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstructionCheckSwitchProngsRange *check_range = check_ranges.add_one(); check_range->start = item_value; check_range->end = item_value; IrInstructionSwitchBrCase *this_case = cases.add_one(); this_case->value = item_value; this_case->block = prong_block; items[item_i] = item_value; } IrBasicBlock *prev_block = irb->current_basic_block; if (peer_parent->peers.length > 0) { peer_parent->peers.last()->next_bb = prong_block; } peer_parent->peers.append(this_peer_result_loc); ir_set_cursor_at_end_and_append_block(irb, prong_block); if (!ir_gen_switch_prong_expr(irb, subexpr_scope, node, prong_node, end_block, is_comptime, var_is_comptime, target_value_ptr, items, prong_item_count, &incoming_blocks, &incoming_values, nullptr, LValNone, &this_peer_result_loc->base)) { return irb->codegen->invalid_instruction; } ir_set_cursor_at_end(irb, prev_block); } IrInstruction *switch_prongs_void = ir_build_check_switch_prongs(irb, scope, node, target_value, check_ranges.items, check_ranges.length, else_prong != nullptr); IrInstruction *br_instruction; if (cases.length == 0) { br_instruction = ir_build_br(irb, scope, node, else_block, is_comptime); } else { IrInstructionSwitchBr *switch_br = ir_build_switch_br(irb, scope, node, target_value, else_block, cases.length, cases.items, is_comptime, switch_prongs_void); if (switch_else_var != nullptr) { switch_else_var->switch_br = switch_br; } br_instruction = &switch_br->base; } if (peer_parent->base.source_instruction == nullptr) { peer_parent->base.source_instruction = br_instruction; } for (size_t i = 0; i < peer_parent->peers.length; i += 1) { peer_parent->peers.at(i)->base.source_instruction = peer_parent->base.source_instruction; } if (!else_prong) { if (peer_parent->peers.length != 0) { peer_parent->peers.last()->next_bb = else_block; } ir_set_cursor_at_end_and_append_block(irb, else_block); ir_build_unreachable(irb, scope, node); } else { if (peer_parent->peers.length != 0) { peer_parent->peers.last()->next_bb = end_block; } } ir_set_cursor_at_end_and_append_block(irb, end_block); assert(incoming_blocks.length == incoming_values.length); IrInstruction *result_instruction; if (incoming_blocks.length == 0) { result_instruction = ir_build_const_void(irb, scope, node); } else { result_instruction = ir_build_phi(irb, scope, node, incoming_blocks.length, incoming_blocks.items, incoming_values.items, peer_parent); } return ir_lval_wrap(irb, scope, result_instruction, lval, result_loc); } static IrInstruction *ir_gen_comptime(IrBuilder *irb, Scope *parent_scope, AstNode *node, LVal lval) { assert(node->type == NodeTypeCompTime); Scope *child_scope = create_comptime_scope(irb->codegen, node, parent_scope); // purposefully pass null for result_loc and let EndExpr handle it return ir_gen_node_extra(irb, node->data.comptime_expr.expr, child_scope, lval, nullptr); } static IrInstruction *ir_gen_return_from_block(IrBuilder *irb, Scope *break_scope, AstNode *node, ScopeBlock *block_scope) { IrInstruction *is_comptime; if (ir_should_inline(irb->exec, break_scope)) { is_comptime = ir_build_const_bool(irb, break_scope, node, true); } else { is_comptime = block_scope->is_comptime; } IrInstruction *result_value; if (node->data.break_expr.expr) { ResultLocPeer *peer_result = create_peer_result(block_scope->peer_parent); block_scope->peer_parent->peers.append(peer_result); result_value = ir_gen_node_extra(irb, node->data.break_expr.expr, break_scope, block_scope->lval, &peer_result->base); if (result_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; } else { result_value = ir_build_const_void(irb, break_scope, node); } IrBasicBlock *dest_block = block_scope->end_block; ir_gen_defers_for_block(irb, break_scope, dest_block->scope, false); block_scope->incoming_blocks->append(irb->current_basic_block); block_scope->incoming_values->append(result_value); return ir_build_br(irb, break_scope, node, dest_block, is_comptime); } static IrInstruction *ir_gen_break(IrBuilder *irb, Scope *break_scope, AstNode *node) { assert(node->type == NodeTypeBreak); // Search up the scope. We'll find one of these things first: // * function definition scope or global scope => error, break outside loop // * defer expression scope => error, cannot break out of defer expression // * loop scope => OK // * (if it's a labeled break) labeled block => OK Scope *search_scope = break_scope; ScopeLoop *loop_scope; for (;;) { if (search_scope == nullptr || search_scope->id == ScopeIdFnDef) { if (node->data.break_expr.name != nullptr) { add_node_error(irb->codegen, node, buf_sprintf("label not found: '%s'", buf_ptr(node->data.break_expr.name))); return irb->codegen->invalid_instruction; } else { add_node_error(irb->codegen, node, buf_sprintf("break expression outside loop")); return irb->codegen->invalid_instruction; } } else if (search_scope->id == ScopeIdDeferExpr) { add_node_error(irb->codegen, node, buf_sprintf("cannot break out of defer expression")); return irb->codegen->invalid_instruction; } else if (search_scope->id == ScopeIdLoop) { ScopeLoop *this_loop_scope = (ScopeLoop *)search_scope; if (node->data.break_expr.name == nullptr || (this_loop_scope->name != nullptr && buf_eql_buf(node->data.break_expr.name, this_loop_scope->name))) { loop_scope = this_loop_scope; break; } } else if (search_scope->id == ScopeIdBlock) { ScopeBlock *this_block_scope = (ScopeBlock *)search_scope; if (node->data.break_expr.name != nullptr && (this_block_scope->name != nullptr && buf_eql_buf(node->data.break_expr.name, this_block_scope->name))) { assert(this_block_scope->end_block != nullptr); return ir_gen_return_from_block(irb, break_scope, node, this_block_scope); } } else if (search_scope->id == ScopeIdSuspend) { add_node_error(irb->codegen, node, buf_sprintf("cannot break out of suspend block")); return irb->codegen->invalid_instruction; } search_scope = search_scope->parent; } IrInstruction *is_comptime; if (ir_should_inline(irb->exec, break_scope)) { is_comptime = ir_build_const_bool(irb, break_scope, node, true); } else { is_comptime = loop_scope->is_comptime; } IrInstruction *result_value; if (node->data.break_expr.expr) { ResultLocPeer *peer_result = create_peer_result(loop_scope->peer_parent); loop_scope->peer_parent->peers.append(peer_result); result_value = ir_gen_node_extra(irb, node->data.break_expr.expr, break_scope, loop_scope->lval, &peer_result->base); if (result_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; } else { result_value = ir_build_const_void(irb, break_scope, node); } IrBasicBlock *dest_block = loop_scope->break_block; ir_gen_defers_for_block(irb, break_scope, dest_block->scope, false); loop_scope->incoming_blocks->append(irb->current_basic_block); loop_scope->incoming_values->append(result_value); return ir_build_br(irb, break_scope, node, dest_block, is_comptime); } static IrInstruction *ir_gen_continue(IrBuilder *irb, Scope *continue_scope, AstNode *node) { assert(node->type == NodeTypeContinue); // Search up the scope. We'll find one of these things first: // * function definition scope or global scope => error, break outside loop // * defer expression scope => error, cannot break out of defer expression // * loop scope => OK ZigList runtime_scopes = {}; Scope *search_scope = continue_scope; ScopeLoop *loop_scope; for (;;) { if (search_scope == nullptr || search_scope->id == ScopeIdFnDef) { if (node->data.continue_expr.name != nullptr) { add_node_error(irb->codegen, node, buf_sprintf("labeled loop not found: '%s'", buf_ptr(node->data.continue_expr.name))); return irb->codegen->invalid_instruction; } else { add_node_error(irb->codegen, node, buf_sprintf("continue expression outside loop")); return irb->codegen->invalid_instruction; } } else if (search_scope->id == ScopeIdDeferExpr) { add_node_error(irb->codegen, node, buf_sprintf("cannot continue out of defer expression")); return irb->codegen->invalid_instruction; } else if (search_scope->id == ScopeIdLoop) { ScopeLoop *this_loop_scope = (ScopeLoop *)search_scope; if (node->data.continue_expr.name == nullptr || (this_loop_scope->name != nullptr && buf_eql_buf(node->data.continue_expr.name, this_loop_scope->name))) { loop_scope = this_loop_scope; break; } } else if (search_scope->id == ScopeIdRuntime) { ScopeRuntime *scope_runtime = (ScopeRuntime *)search_scope; runtime_scopes.append(scope_runtime); } search_scope = search_scope->parent; } IrInstruction *is_comptime; if (ir_should_inline(irb->exec, continue_scope)) { is_comptime = ir_build_const_bool(irb, continue_scope, node, true); } else { is_comptime = loop_scope->is_comptime; } for (size_t i = 0; i < runtime_scopes.length; i += 1) { ScopeRuntime *scope_runtime = runtime_scopes.at(i); ir_mark_gen(ir_build_check_runtime_scope(irb, continue_scope, node, scope_runtime->is_comptime, is_comptime)); } IrBasicBlock *dest_block = loop_scope->continue_block; ir_gen_defers_for_block(irb, continue_scope, dest_block->scope, false); return ir_mark_gen(ir_build_br(irb, continue_scope, node, dest_block, is_comptime)); } static IrInstruction *ir_gen_error_type(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeErrorType); return ir_build_const_type(irb, scope, node, irb->codegen->builtin_types.entry_global_error_set); } static IrInstruction *ir_gen_defer(IrBuilder *irb, Scope *parent_scope, AstNode *node) { assert(node->type == NodeTypeDefer); ScopeDefer *defer_child_scope = create_defer_scope(irb->codegen, node, parent_scope); node->data.defer.child_scope = &defer_child_scope->base; ScopeDeferExpr *defer_expr_scope = create_defer_expr_scope(irb->codegen, node, parent_scope); node->data.defer.expr_scope = &defer_expr_scope->base; return ir_build_const_void(irb, parent_scope, node); } static IrInstruction *ir_gen_slice(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeSliceExpr); AstNodeSliceExpr *slice_expr = &node->data.slice_expr; AstNode *array_node = slice_expr->array_ref_expr; AstNode *start_node = slice_expr->start; AstNode *end_node = slice_expr->end; IrInstruction *ptr_value = ir_gen_node_extra(irb, array_node, scope, LValPtr, nullptr); if (ptr_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *start_value = ir_gen_node(irb, start_node, scope); if (start_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *end_value; if (end_node) { end_value = ir_gen_node(irb, end_node, scope); if (end_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; } else { end_value = nullptr; } IrInstruction *slice = ir_build_slice_src(irb, scope, node, ptr_value, start_value, end_value, true, result_loc); return ir_lval_wrap(irb, scope, slice, lval, result_loc); } static IrInstruction *ir_gen_catch(IrBuilder *irb, Scope *parent_scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeCatchExpr); AstNode *op1_node = node->data.unwrap_err_expr.op1; AstNode *op2_node = node->data.unwrap_err_expr.op2; AstNode *var_node = node->data.unwrap_err_expr.symbol; if (op2_node->type == NodeTypeUnreachable) { if (var_node != nullptr) { assert(var_node->type == NodeTypeSymbol); Buf *var_name = var_node->data.symbol_expr.symbol; add_node_error(irb->codegen, var_node, buf_sprintf("unused variable: '%s'", buf_ptr(var_name))); return irb->codegen->invalid_instruction; } return ir_gen_catch_unreachable(irb, parent_scope, node, op1_node, lval, result_loc); } IrInstruction *err_union_ptr = ir_gen_node_extra(irb, op1_node, parent_scope, LValPtr, nullptr); if (err_union_ptr == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *is_err = ir_build_test_err_src(irb, parent_scope, node, err_union_ptr, true, false); IrInstruction *is_comptime; if (ir_should_inline(irb->exec, parent_scope)) { is_comptime = ir_build_const_bool(irb, parent_scope, node, true); } else { is_comptime = ir_build_test_comptime(irb, parent_scope, node, is_err); } IrBasicBlock *ok_block = ir_create_basic_block(irb, parent_scope, "UnwrapErrOk"); IrBasicBlock *err_block = ir_create_basic_block(irb, parent_scope, "UnwrapErrError"); IrBasicBlock *end_block = ir_create_basic_block(irb, parent_scope, "UnwrapErrEnd"); IrInstruction *cond_br_inst = ir_build_cond_br(irb, parent_scope, node, is_err, err_block, ok_block, is_comptime); ResultLocPeerParent *peer_parent = ir_build_binary_result_peers(irb, cond_br_inst, ok_block, end_block, result_loc, is_comptime); ir_set_cursor_at_end_and_append_block(irb, err_block); Scope *subexpr_scope = create_runtime_scope(irb->codegen, node, parent_scope, is_comptime); Scope *err_scope; if (var_node) { assert(var_node->type == NodeTypeSymbol); Buf *var_name = var_node->data.symbol_expr.symbol; bool is_const = true; bool is_shadowable = false; ZigVar *var = ir_create_var(irb, node, subexpr_scope, var_name, is_const, is_const, is_shadowable, is_comptime); err_scope = var->child_scope; IrInstruction *err_ptr = ir_build_unwrap_err_code(irb, err_scope, node, err_union_ptr); ir_build_var_decl_src(irb, err_scope, var_node, var, nullptr, err_ptr); } else { err_scope = subexpr_scope; } IrInstruction *err_result = ir_gen_node_extra(irb, op2_node, err_scope, LValNone, &peer_parent->peers.at(0)->base); if (err_result == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrBasicBlock *after_err_block = irb->current_basic_block; if (!instr_is_unreachable(err_result)) ir_mark_gen(ir_build_br(irb, parent_scope, node, end_block, is_comptime)); ir_set_cursor_at_end_and_append_block(irb, ok_block); IrInstruction *unwrapped_ptr = ir_build_unwrap_err_payload(irb, parent_scope, node, err_union_ptr, false, false); IrInstruction *unwrapped_payload = ir_build_load_ptr(irb, parent_scope, node, unwrapped_ptr); ir_build_end_expr(irb, parent_scope, node, unwrapped_payload, &peer_parent->peers.at(1)->base); IrBasicBlock *after_ok_block = irb->current_basic_block; ir_build_br(irb, parent_scope, node, end_block, is_comptime); ir_set_cursor_at_end_and_append_block(irb, end_block); IrInstruction **incoming_values = allocate(2); incoming_values[0] = err_result; incoming_values[1] = unwrapped_payload; IrBasicBlock **incoming_blocks = allocate(2); incoming_blocks[0] = after_err_block; incoming_blocks[1] = after_ok_block; IrInstruction *phi = ir_build_phi(irb, parent_scope, node, 2, incoming_blocks, incoming_values, peer_parent); return ir_lval_wrap(irb, parent_scope, phi, lval, result_loc); } static bool render_instance_name_recursive(CodeGen *codegen, Buf *name, Scope *outer_scope, Scope *inner_scope) { if (inner_scope == nullptr || inner_scope == outer_scope) return false; bool need_comma = render_instance_name_recursive(codegen, name, outer_scope, inner_scope->parent); if (inner_scope->id != ScopeIdVarDecl) return need_comma; ScopeVarDecl *var_scope = (ScopeVarDecl *)inner_scope; if (need_comma) buf_append_char(name, ','); // TODO: const ptr reinterpret here to make the var type agree with the value? render_const_value(codegen, name, var_scope->var->const_value); return true; } static Buf *get_anon_type_name(CodeGen *codegen, IrExecutable *exec, const char *kind_name, Scope *scope, AstNode *source_node, Buf *out_bare_name) { if (exec->name) { ZigType *import = get_scope_import(scope); Buf *namespace_name = buf_create_from_buf(&import->name); if (buf_len(namespace_name) != 0) buf_append_char(namespace_name, NAMESPACE_SEP_CHAR); buf_append_buf(namespace_name, exec->name); buf_init_from_buf(out_bare_name, exec->name); return namespace_name; } else if (exec->name_fn != nullptr) { Buf *name = buf_alloc(); buf_append_buf(name, &exec->name_fn->symbol_name); buf_appendf(name, "("); render_instance_name_recursive(codegen, name, &exec->name_fn->fndef_scope->base, exec->begin_scope); buf_appendf(name, ")"); buf_init_from_buf(out_bare_name, name); return name; } else { ZigType *import = get_scope_import(scope); Buf *namespace_name = buf_create_from_buf(&import->name); if (buf_len(namespace_name) != 0) buf_append_char(namespace_name, NAMESPACE_SEP_CHAR); buf_appendf(namespace_name, "%s:%" ZIG_PRI_usize ":%" ZIG_PRI_usize, kind_name, source_node->line + 1, source_node->column + 1); buf_init_from_buf(out_bare_name, namespace_name); return namespace_name; } } static IrInstruction *ir_gen_container_decl(IrBuilder *irb, Scope *parent_scope, AstNode *node) { assert(node->type == NodeTypeContainerDecl); ContainerKind kind = node->data.container_decl.kind; Buf *bare_name = buf_alloc(); Buf *name = get_anon_type_name(irb->codegen, irb->exec, container_string(kind), parent_scope, node, bare_name); ContainerLayout layout = node->data.container_decl.layout; ZigType *container_type = get_partial_container_type(irb->codegen, parent_scope, kind, node, buf_ptr(name), bare_name, layout); ScopeDecls *child_scope = get_container_scope(container_type); for (size_t i = 0; i < node->data.container_decl.decls.length; i += 1) { AstNode *child_node = node->data.container_decl.decls.at(i); scan_decls(irb->codegen, child_scope, child_node); } TldContainer *tld_container = allocate(1); init_tld(&tld_container->base, TldIdContainer, bare_name, VisibModPub, node, parent_scope); tld_container->type_entry = container_type; tld_container->decls_scope = child_scope; irb->codegen->resolve_queue.append(&tld_container->base); // Add this to the list to mark as invalid if analyzing this exec fails. irb->exec->tld_list.append(&tld_container->base); return ir_build_const_type(irb, parent_scope, node, container_type); } // errors should be populated with set1's values static ZigType *get_error_set_union(CodeGen *g, ErrorTableEntry **errors, ZigType *set1, ZigType *set2) { assert(set1->id == ZigTypeIdErrorSet); assert(set2->id == ZigTypeIdErrorSet); ZigType *err_set_type = new_type_table_entry(ZigTypeIdErrorSet); err_set_type->size_in_bits = g->builtin_types.entry_global_error_set->size_in_bits; err_set_type->abi_align = g->builtin_types.entry_global_error_set->abi_align; err_set_type->abi_size = g->builtin_types.entry_global_error_set->abi_size; buf_resize(&err_set_type->name, 0); buf_appendf(&err_set_type->name, "error{"); for (uint32_t i = 0, count = set1->data.error_set.err_count; i < count; i += 1) { assert(errors[set1->data.error_set.errors[i]->value] == set1->data.error_set.errors[i]); } uint32_t count = set1->data.error_set.err_count; for (uint32_t i = 0; i < set2->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = set2->data.error_set.errors[i]; if (errors[error_entry->value] == nullptr) { count += 1; } } err_set_type->data.error_set.err_count = count; err_set_type->data.error_set.errors = allocate(count); for (uint32_t i = 0; i < set1->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = set1->data.error_set.errors[i]; buf_appendf(&err_set_type->name, "%s,", buf_ptr(&error_entry->name)); err_set_type->data.error_set.errors[i] = error_entry; } uint32_t index = set1->data.error_set.err_count; for (uint32_t i = 0; i < set2->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = set2->data.error_set.errors[i]; if (errors[error_entry->value] == nullptr) { errors[error_entry->value] = error_entry; buf_appendf(&err_set_type->name, "%s,", buf_ptr(&error_entry->name)); err_set_type->data.error_set.errors[index] = error_entry; index += 1; } } assert(index == count); assert(count != 0); buf_appendf(&err_set_type->name, "}"); return err_set_type; } static ZigType *make_err_set_with_one_item(CodeGen *g, Scope *parent_scope, AstNode *node, ErrorTableEntry *err_entry) { ZigType *err_set_type = new_type_table_entry(ZigTypeIdErrorSet); buf_resize(&err_set_type->name, 0); buf_appendf(&err_set_type->name, "error{%s}", buf_ptr(&err_entry->name)); err_set_type->size_in_bits = g->builtin_types.entry_global_error_set->size_in_bits; err_set_type->abi_align = g->builtin_types.entry_global_error_set->abi_align; err_set_type->abi_size = g->builtin_types.entry_global_error_set->abi_size; err_set_type->data.error_set.err_count = 1; err_set_type->data.error_set.errors = allocate(1); err_set_type->data.error_set.errors[0] = err_entry; return err_set_type; } static IrInstruction *ir_gen_err_set_decl(IrBuilder *irb, Scope *parent_scope, AstNode *node) { assert(node->type == NodeTypeErrorSetDecl); uint32_t err_count = node->data.err_set_decl.decls.length; Buf bare_name = BUF_INIT; Buf *type_name = get_anon_type_name(irb->codegen, irb->exec, "error", parent_scope, node, &bare_name); ZigType *err_set_type = new_type_table_entry(ZigTypeIdErrorSet); buf_init_from_buf(&err_set_type->name, type_name); err_set_type->data.error_set.err_count = err_count; err_set_type->size_in_bits = irb->codegen->builtin_types.entry_global_error_set->size_in_bits; err_set_type->abi_align = irb->codegen->builtin_types.entry_global_error_set->abi_align; err_set_type->abi_size = irb->codegen->builtin_types.entry_global_error_set->abi_size; err_set_type->data.error_set.errors = allocate(err_count); ErrorTableEntry **errors = allocate(irb->codegen->errors_by_index.length + err_count); for (uint32_t i = 0; i < err_count; i += 1) { AstNode *symbol_node = node->data.err_set_decl.decls.at(i); assert(symbol_node->type == NodeTypeSymbol); Buf *err_name = symbol_node->data.symbol_expr.symbol; ErrorTableEntry *err = allocate(1); err->decl_node = symbol_node; buf_init_from_buf(&err->name, err_name); auto existing_entry = irb->codegen->error_table.put_unique(err_name, err); if (existing_entry) { err->value = existing_entry->value->value; } else { size_t error_value_count = irb->codegen->errors_by_index.length; assert((uint32_t)error_value_count < (((uint32_t)1) << (uint32_t)irb->codegen->err_tag_type->data.integral.bit_count)); err->value = error_value_count; irb->codegen->errors_by_index.append(err); } err_set_type->data.error_set.errors[i] = err; ErrorTableEntry *prev_err = errors[err->value]; if (prev_err != nullptr) { ErrorMsg *msg = add_node_error(irb->codegen, err->decl_node, buf_sprintf("duplicate error: '%s'", buf_ptr(&err->name))); add_error_note(irb->codegen, msg, prev_err->decl_node, buf_sprintf("other error here")); return irb->codegen->invalid_instruction; } errors[err->value] = err; } free(errors); return ir_build_const_type(irb, parent_scope, node, err_set_type); } static IrInstruction *ir_gen_fn_proto(IrBuilder *irb, Scope *parent_scope, AstNode *node) { assert(node->type == NodeTypeFnProto); size_t param_count = node->data.fn_proto.params.length; IrInstruction **param_types = allocate(param_count); bool is_var_args = false; for (size_t i = 0; i < param_count; i += 1) { AstNode *param_node = node->data.fn_proto.params.at(i); if (param_node->data.param_decl.is_var_args) { is_var_args = true; break; } if (param_node->data.param_decl.var_token == nullptr) { AstNode *type_node = param_node->data.param_decl.type; IrInstruction *type_value = ir_gen_node(irb, type_node, parent_scope); if (type_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; param_types[i] = type_value; } else { param_types[i] = nullptr; } } IrInstruction *align_value = nullptr; if (node->data.fn_proto.align_expr != nullptr) { align_value = ir_gen_node(irb, node->data.fn_proto.align_expr, parent_scope); if (align_value == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; } IrInstruction *return_type; if (node->data.fn_proto.return_var_token == nullptr) { if (node->data.fn_proto.return_type == nullptr) { return_type = ir_build_const_type(irb, parent_scope, node, irb->codegen->builtin_types.entry_void); } else { return_type = ir_gen_node(irb, node->data.fn_proto.return_type, parent_scope); if (return_type == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; } } else { add_node_error(irb->codegen, node, buf_sprintf("TODO implement inferred return types https://github.com/ziglang/zig/issues/447")); return irb->codegen->invalid_instruction; //return_type = nullptr; } return ir_build_fn_proto(irb, parent_scope, node, param_types, align_value, return_type, is_var_args); } static IrInstruction *ir_gen_resume(IrBuilder *irb, Scope *scope, AstNode *node) { assert(node->type == NodeTypeResume); IrInstruction *target_inst = ir_gen_node_extra(irb, node->data.resume_expr.expr, scope, LValPtr, nullptr); if (target_inst == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; return ir_build_resume(irb, scope, node, target_inst); } static IrInstruction *ir_gen_await_expr(IrBuilder *irb, Scope *scope, AstNode *node, LVal lval, ResultLoc *result_loc) { assert(node->type == NodeTypeAwaitExpr); ZigFn *fn_entry = exec_fn_entry(irb->exec); if (!fn_entry) { add_node_error(irb->codegen, node, buf_sprintf("await outside function definition")); return irb->codegen->invalid_instruction; } ScopeSuspend *existing_suspend_scope = get_scope_suspend(scope); if (existing_suspend_scope) { if (!existing_suspend_scope->reported_err) { ErrorMsg *msg = add_node_error(irb->codegen, node, buf_sprintf("cannot await inside suspend block")); add_error_note(irb->codegen, msg, existing_suspend_scope->base.source_node, buf_sprintf("suspend block here")); existing_suspend_scope->reported_err = true; } return irb->codegen->invalid_instruction; } IrInstruction *target_inst = ir_gen_node_extra(irb, node->data.await_expr.expr, scope, LValPtr, nullptr); if (target_inst == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *await_inst = ir_build_await_src(irb, scope, node, target_inst, result_loc); return ir_lval_wrap(irb, scope, await_inst, lval, result_loc); } static IrInstruction *ir_gen_suspend(IrBuilder *irb, Scope *parent_scope, AstNode *node) { assert(node->type == NodeTypeSuspend); ZigFn *fn_entry = exec_fn_entry(irb->exec); if (!fn_entry) { add_node_error(irb->codegen, node, buf_sprintf("suspend outside function definition")); return irb->codegen->invalid_instruction; } ScopeSuspend *existing_suspend_scope = get_scope_suspend(parent_scope); if (existing_suspend_scope) { if (!existing_suspend_scope->reported_err) { ErrorMsg *msg = add_node_error(irb->codegen, node, buf_sprintf("cannot suspend inside suspend block")); add_error_note(irb->codegen, msg, existing_suspend_scope->base.source_node, buf_sprintf("other suspend block here")); existing_suspend_scope->reported_err = true; } return irb->codegen->invalid_instruction; } IrInstructionSuspendBegin *begin = ir_build_suspend_begin(irb, parent_scope, node); if (node->data.suspend.block != nullptr) { ScopeSuspend *suspend_scope = create_suspend_scope(irb->codegen, node, parent_scope); Scope *child_scope = &suspend_scope->base; IrInstruction *susp_res = ir_gen_node(irb, node->data.suspend.block, child_scope); ir_mark_gen(ir_build_check_statement_is_void(irb, child_scope, node->data.suspend.block, susp_res)); } return ir_mark_gen(ir_build_suspend_finish(irb, parent_scope, node, begin)); } static IrInstruction *ir_gen_node_raw(IrBuilder *irb, AstNode *node, Scope *scope, LVal lval, ResultLoc *result_loc) { assert(scope); switch (node->type) { case NodeTypeStructValueField: case NodeTypeParamDecl: case NodeTypeUsingNamespace: case NodeTypeSwitchProng: case NodeTypeSwitchRange: case NodeTypeStructField: case NodeTypeFnDef: case NodeTypeTestDecl: zig_unreachable(); case NodeTypeBlock: return ir_gen_block(irb, scope, node, lval, result_loc); case NodeTypeGroupedExpr: return ir_gen_node_raw(irb, node->data.grouped_expr, scope, lval, result_loc); case NodeTypeBinOpExpr: return ir_gen_bin_op(irb, scope, node, lval, result_loc); case NodeTypeIntLiteral: return ir_lval_wrap(irb, scope, ir_gen_int_lit(irb, scope, node), lval, result_loc); case NodeTypeFloatLiteral: return ir_lval_wrap(irb, scope, ir_gen_float_lit(irb, scope, node), lval, result_loc); case NodeTypeCharLiteral: return ir_lval_wrap(irb, scope, ir_gen_char_lit(irb, scope, node), lval, result_loc); case NodeTypeSymbol: return ir_gen_symbol(irb, scope, node, lval, result_loc); case NodeTypeFnCallExpr: return ir_gen_fn_call(irb, scope, node, lval, result_loc); case NodeTypeIfBoolExpr: return ir_gen_if_bool_expr(irb, scope, node, lval, result_loc); case NodeTypePrefixOpExpr: return ir_gen_prefix_op_expr(irb, scope, node, lval, result_loc); case NodeTypeContainerInitExpr: return ir_gen_container_init_expr(irb, scope, node, lval, result_loc); case NodeTypeVariableDeclaration: return ir_gen_var_decl(irb, scope, node); case NodeTypeWhileExpr: return ir_gen_while_expr(irb, scope, node, lval, result_loc); case NodeTypeForExpr: return ir_gen_for_expr(irb, scope, node, lval, result_loc); case NodeTypeArrayAccessExpr: return ir_gen_array_access(irb, scope, node, lval, result_loc); case NodeTypeReturnExpr: return ir_gen_return(irb, scope, node, lval, result_loc); case NodeTypeFieldAccessExpr: { IrInstruction *ptr_instruction = ir_gen_field_access(irb, scope, node); if (ptr_instruction == irb->codegen->invalid_instruction) return ptr_instruction; if (lval == LValPtr) return ptr_instruction; IrInstruction *load_ptr = ir_build_load_ptr(irb, scope, node, ptr_instruction); return ir_expr_wrap(irb, scope, load_ptr, result_loc); } case NodeTypePtrDeref: { AstNode *expr_node = node->data.ptr_deref_expr.target; IrInstruction *value = ir_gen_node_extra(irb, expr_node, scope, lval, nullptr); if (value == irb->codegen->invalid_instruction) return value; // We essentially just converted any lvalue from &(x.*) to (&x).*; // this inhibits checking that x is a pointer later, so we directly // record whether the pointer check is needed IrInstruction *un_op = ir_build_un_op_lval(irb, scope, node, IrUnOpDereference, value, lval, result_loc); return ir_expr_wrap(irb, scope, un_op, result_loc); } case NodeTypeUnwrapOptional: { AstNode *expr_node = node->data.unwrap_optional.expr; IrInstruction *maybe_ptr = ir_gen_node_extra(irb, expr_node, scope, LValPtr, nullptr); if (maybe_ptr == irb->codegen->invalid_instruction) return irb->codegen->invalid_instruction; IrInstruction *unwrapped_ptr = ir_build_optional_unwrap_ptr(irb, scope, node, maybe_ptr, true, false); if (lval == LValPtr) return unwrapped_ptr; IrInstruction *load_ptr = ir_build_load_ptr(irb, scope, node, unwrapped_ptr); return ir_expr_wrap(irb, scope, load_ptr, result_loc); } case NodeTypeBoolLiteral: return ir_lval_wrap(irb, scope, ir_gen_bool_literal(irb, scope, node), lval, result_loc); case NodeTypeArrayType: return ir_lval_wrap(irb, scope, ir_gen_array_type(irb, scope, node), lval, result_loc); case NodeTypePointerType: return ir_lval_wrap(irb, scope, ir_gen_pointer_type(irb, scope, node), lval, result_loc); case NodeTypeAnyFrameType: return ir_lval_wrap(irb, scope, ir_gen_anyframe_type(irb, scope, node), lval, result_loc); case NodeTypeStringLiteral: return ir_lval_wrap(irb, scope, ir_gen_string_literal(irb, scope, node), lval, result_loc); case NodeTypeUndefinedLiteral: return ir_lval_wrap(irb, scope, ir_gen_undefined_literal(irb, scope, node), lval, result_loc); case NodeTypeAsmExpr: return ir_lval_wrap(irb, scope, ir_gen_asm_expr(irb, scope, node), lval, result_loc); case NodeTypeNullLiteral: return ir_lval_wrap(irb, scope, ir_gen_null_literal(irb, scope, node), lval, result_loc); case NodeTypeIfErrorExpr: return ir_gen_if_err_expr(irb, scope, node, lval, result_loc); case NodeTypeIfOptional: return ir_gen_if_optional_expr(irb, scope, node, lval, result_loc); case NodeTypeSwitchExpr: return ir_gen_switch_expr(irb, scope, node, lval, result_loc); case NodeTypeCompTime: return ir_expr_wrap(irb, scope, ir_gen_comptime(irb, scope, node, lval), result_loc); case NodeTypeErrorType: return ir_lval_wrap(irb, scope, ir_gen_error_type(irb, scope, node), lval, result_loc); case NodeTypeBreak: return ir_lval_wrap(irb, scope, ir_gen_break(irb, scope, node), lval, result_loc); case NodeTypeContinue: return ir_lval_wrap(irb, scope, ir_gen_continue(irb, scope, node), lval, result_loc); case NodeTypeUnreachable: return ir_build_unreachable(irb, scope, node); case NodeTypeDefer: return ir_lval_wrap(irb, scope, ir_gen_defer(irb, scope, node), lval, result_loc); case NodeTypeSliceExpr: return ir_gen_slice(irb, scope, node, lval, result_loc); case NodeTypeCatchExpr: return ir_gen_catch(irb, scope, node, lval, result_loc); case NodeTypeContainerDecl: return ir_lval_wrap(irb, scope, ir_gen_container_decl(irb, scope, node), lval, result_loc); case NodeTypeFnProto: return ir_lval_wrap(irb, scope, ir_gen_fn_proto(irb, scope, node), lval, result_loc); case NodeTypeErrorSetDecl: return ir_lval_wrap(irb, scope, ir_gen_err_set_decl(irb, scope, node), lval, result_loc); case NodeTypeResume: return ir_lval_wrap(irb, scope, ir_gen_resume(irb, scope, node), lval, result_loc); case NodeTypeAwaitExpr: return ir_gen_await_expr(irb, scope, node, lval, result_loc); case NodeTypeSuspend: return ir_lval_wrap(irb, scope, ir_gen_suspend(irb, scope, node), lval, result_loc); case NodeTypeEnumLiteral: return ir_lval_wrap(irb, scope, ir_gen_enum_literal(irb, scope, node), lval, result_loc); case NodeTypeInferredArrayType: add_node_error(irb->codegen, node, buf_sprintf("inferred array size invalid here")); return irb->codegen->invalid_instruction; } zig_unreachable(); } static ResultLoc *no_result_loc(void) { ResultLocNone *result_loc_none = allocate(1); result_loc_none->base.id = ResultLocIdNone; return &result_loc_none->base; } static IrInstruction *ir_gen_node_extra(IrBuilder *irb, AstNode *node, Scope *scope, LVal lval, ResultLoc *result_loc) { if (result_loc == nullptr) { // Create a result location indicating there is none - but if one gets created // it will be properly distributed. result_loc = no_result_loc(); ir_build_reset_result(irb, scope, node, result_loc); } IrInstruction *result = ir_gen_node_raw(irb, node, scope, lval, result_loc); if (result == irb->codegen->invalid_instruction) { if (irb->exec->first_err_trace_msg == nullptr) { irb->exec->first_err_trace_msg = irb->codegen->trace_err; } src_assert(irb->exec->first_err_trace_msg != nullptr, node); } return result; } static IrInstruction *ir_gen_node(IrBuilder *irb, AstNode *node, Scope *scope) { return ir_gen_node_extra(irb, node, scope, LValNone, nullptr); } static void invalidate_exec(IrExecutable *exec, ErrorMsg *msg) { if (exec->first_err_trace_msg != nullptr) return; exec->first_err_trace_msg = msg; for (size_t i = 0; i < exec->tld_list.length; i += 1) { exec->tld_list.items[i]->resolution = TldResolutionInvalid; } if (exec->source_exec != nullptr) invalidate_exec(exec->source_exec, msg); } bool ir_gen(CodeGen *codegen, AstNode *node, Scope *scope, IrExecutable *ir_executable) { assert(node->owner); IrBuilder ir_builder = {0}; IrBuilder *irb = &ir_builder; irb->codegen = codegen; irb->exec = ir_executable; irb->main_block_node = node; IrBasicBlock *entry_block = ir_create_basic_block(irb, scope, "Entry"); ir_set_cursor_at_end_and_append_block(irb, entry_block); // Entry block gets a reference because we enter it to begin. ir_ref_bb(irb->current_basic_block); IrInstruction *result = ir_gen_node_extra(irb, node, scope, LValNone, nullptr); assert(result); if (irb->exec->first_err_trace_msg != nullptr) { codegen->trace_err = irb->exec->first_err_trace_msg; return false; } if (!instr_is_unreachable(result)) { ir_mark_gen(ir_build_add_implicit_return_type(irb, scope, result->source_node, result)); // no need for save_err_ret_addr because this cannot return error ir_mark_gen(ir_build_return(irb, scope, result->source_node, result)); } return true; } bool ir_gen_fn(CodeGen *codegen, ZigFn *fn_entry) { assert(fn_entry); IrExecutable *ir_executable = &fn_entry->ir_executable; AstNode *body_node = fn_entry->body_node; assert(fn_entry->child_scope); return ir_gen(codegen, body_node, fn_entry->child_scope, ir_executable); } static ErrorMsg *exec_add_error_node(CodeGen *codegen, IrExecutable *exec, AstNode *source_node, Buf *msg) { ErrorMsg *err_msg = add_node_error(codegen, source_node, msg); invalidate_exec(exec, err_msg); return err_msg; } static ErrorMsg *ir_add_error_node(IrAnalyze *ira, AstNode *source_node, Buf *msg) { return exec_add_error_node(ira->codegen, ira->new_irb.exec, source_node, msg); } static ErrorMsg *opt_ir_add_error_node(IrAnalyze *ira, CodeGen *codegen, AstNode *source_node, Buf *msg) { if (ira != nullptr) return exec_add_error_node(codegen, ira->new_irb.exec, source_node, msg); else return add_node_error(codegen, source_node, msg); } static ErrorMsg *ir_add_error(IrAnalyze *ira, IrInstruction *source_instruction, Buf *msg) { return ir_add_error_node(ira, source_instruction->source_node, msg); } static void ir_assert(bool ok, IrInstruction *source_instruction) { if (ok) return; src_assert(ok, source_instruction->source_node); } // This function takes a comptime ptr and makes the child const value conform to the type // described by the pointer. static Error eval_comptime_ptr_reinterpret(IrAnalyze *ira, CodeGen *codegen, AstNode *source_node, ConstExprValue *ptr_val) { Error err; assert(ptr_val->type->id == ZigTypeIdPointer); assert(ptr_val->special == ConstValSpecialStatic); ConstExprValue tmp = {}; tmp.special = ConstValSpecialStatic; tmp.type = ptr_val->type->data.pointer.child_type; if ((err = ir_read_const_ptr(ira, codegen, source_node, &tmp, ptr_val))) return err; ConstExprValue *child_val = const_ptr_pointee_unchecked(codegen, ptr_val); copy_const_val(child_val, &tmp, false); return ErrorNone; } ConstExprValue *const_ptr_pointee(IrAnalyze *ira, CodeGen *codegen, ConstExprValue *const_val, AstNode *source_node) { Error err; ConstExprValue *val = const_ptr_pointee_unchecked(codegen, const_val); assert(val != nullptr); assert(const_val->type->id == ZigTypeIdPointer); ZigType *expected_type = const_val->type->data.pointer.child_type; if (!types_have_same_zig_comptime_repr(val->type, expected_type)) { if ((err = eval_comptime_ptr_reinterpret(ira, codegen, source_node, const_val))) return nullptr; return const_ptr_pointee_unchecked(codegen, const_val); } return val; } static ConstExprValue *ir_exec_const_result(CodeGen *codegen, IrExecutable *exec) { IrBasicBlock *bb = exec->basic_block_list.at(0); for (size_t i = 0; i < bb->instruction_list.length; i += 1) { IrInstruction *instruction = bb->instruction_list.at(i); if (instruction->id == IrInstructionIdReturn) { IrInstructionReturn *ret_inst = (IrInstructionReturn *)instruction; IrInstruction *operand = ret_inst->operand; if (operand->value.special == ConstValSpecialRuntime) { exec_add_error_node(codegen, exec, operand->source_node, buf_sprintf("unable to evaluate constant expression")); return &codegen->invalid_instruction->value; } return &operand->value; } else if (ir_has_side_effects(instruction)) { if (instr_is_comptime(instruction)) { switch (instruction->id) { case IrInstructionIdUnwrapErrPayload: case IrInstructionIdUnionFieldPtr: continue; default: break; } } exec_add_error_node(codegen, exec, instruction->source_node, buf_sprintf("unable to evaluate constant expression")); return &codegen->invalid_instruction->value; } } zig_unreachable(); } static bool ir_emit_global_runtime_side_effect(IrAnalyze *ira, IrInstruction *source_instruction) { if (ir_should_inline(ira->new_irb.exec, source_instruction->scope)) { ir_add_error(ira, source_instruction, buf_sprintf("unable to evaluate constant expression")); return false; } return true; } static bool const_val_fits_in_num_lit(ConstExprValue *const_val, ZigType *num_lit_type) { return ((num_lit_type->id == ZigTypeIdComptimeFloat && (const_val->type->id == ZigTypeIdFloat || const_val->type->id == ZigTypeIdComptimeFloat)) || (num_lit_type->id == ZigTypeIdComptimeInt && (const_val->type->id == ZigTypeIdInt || const_val->type->id == ZigTypeIdComptimeInt))); } static bool float_has_fraction(ConstExprValue *const_val) { if (const_val->type->id == ZigTypeIdComptimeFloat) { return bigfloat_has_fraction(&const_val->data.x_bigfloat); } else if (const_val->type->id == ZigTypeIdFloat) { switch (const_val->type->data.floating.bit_count) { case 16: { float16_t floored = f16_roundToInt(const_val->data.x_f16, softfloat_round_minMag, false); return !f16_eq(floored, const_val->data.x_f16); } case 32: return floorf(const_val->data.x_f32) != const_val->data.x_f32; case 64: return floor(const_val->data.x_f64) != const_val->data.x_f64; case 128: { float128_t floored; f128M_roundToInt(&const_val->data.x_f128, softfloat_round_minMag, false, &floored); return !f128M_eq(&floored, &const_val->data.x_f128); } default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_append_buf(Buf *buf, ConstExprValue *const_val) { if (const_val->type->id == ZigTypeIdComptimeFloat) { bigfloat_append_buf(buf, &const_val->data.x_bigfloat); } else if (const_val->type->id == ZigTypeIdFloat) { switch (const_val->type->data.floating.bit_count) { case 16: buf_appendf(buf, "%f", zig_f16_to_double(const_val->data.x_f16)); break; case 32: buf_appendf(buf, "%f", const_val->data.x_f32); break; case 64: buf_appendf(buf, "%f", const_val->data.x_f64); break; case 128: { // TODO actual implementation const size_t extra_len = 100; size_t old_len = buf_len(buf); buf_resize(buf, old_len + extra_len); float64_t f64_value = f128M_to_f64(&const_val->data.x_f128); double double_value; memcpy(&double_value, &f64_value, sizeof(double)); int len = snprintf(buf_ptr(buf) + old_len, extra_len, "%f", double_value); assert(len > 0); buf_resize(buf, old_len + len); break; } default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_init_bigint(BigInt *bigint, ConstExprValue *const_val) { if (const_val->type->id == ZigTypeIdComptimeFloat) { bigint_init_bigfloat(bigint, &const_val->data.x_bigfloat); } else if (const_val->type->id == ZigTypeIdFloat) { switch (const_val->type->data.floating.bit_count) { case 16: { double x = zig_f16_to_double(const_val->data.x_f16); if (x >= 0) { bigint_init_unsigned(bigint, (uint64_t)x); } else { bigint_init_unsigned(bigint, (uint64_t)-x); bigint->is_negative = true; } break; } case 32: if (const_val->data.x_f32 >= 0) { bigint_init_unsigned(bigint, (uint64_t)(const_val->data.x_f32)); } else { bigint_init_unsigned(bigint, (uint64_t)(-const_val->data.x_f32)); bigint->is_negative = true; } break; case 64: if (const_val->data.x_f64 >= 0) { bigint_init_unsigned(bigint, (uint64_t)(const_val->data.x_f64)); } else { bigint_init_unsigned(bigint, (uint64_t)(-const_val->data.x_f64)); bigint->is_negative = true; } break; case 128: { BigFloat tmp_float; bigfloat_init_128(&tmp_float, const_val->data.x_f128); bigint_init_bigfloat(bigint, &tmp_float); } break; default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_init_bigfloat(ConstExprValue *dest_val, BigFloat *bigfloat) { if (dest_val->type->id == ZigTypeIdComptimeFloat) { bigfloat_init_bigfloat(&dest_val->data.x_bigfloat, bigfloat); } else if (dest_val->type->id == ZigTypeIdFloat) { switch (dest_val->type->data.floating.bit_count) { case 16: dest_val->data.x_f16 = bigfloat_to_f16(bigfloat); break; case 32: dest_val->data.x_f32 = bigfloat_to_f32(bigfloat); break; case 64: dest_val->data.x_f64 = bigfloat_to_f64(bigfloat); break; case 80: zig_panic("TODO"); case 128: dest_val->data.x_f128 = bigfloat_to_f128(bigfloat); break; default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_init_f16(ConstExprValue *dest_val, float16_t x) { if (dest_val->type->id == ZigTypeIdComptimeFloat) { bigfloat_init_16(&dest_val->data.x_bigfloat, x); } else if (dest_val->type->id == ZigTypeIdFloat) { switch (dest_val->type->data.floating.bit_count) { case 16: dest_val->data.x_f16 = x; break; case 32: dest_val->data.x_f32 = zig_f16_to_double(x); break; case 64: dest_val->data.x_f64 = zig_f16_to_double(x); break; case 128: f16_to_f128M(x, &dest_val->data.x_f128); break; default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_init_f32(ConstExprValue *dest_val, float x) { if (dest_val->type->id == ZigTypeIdComptimeFloat) { bigfloat_init_32(&dest_val->data.x_bigfloat, x); } else if (dest_val->type->id == ZigTypeIdFloat) { switch (dest_val->type->data.floating.bit_count) { case 16: dest_val->data.x_f16 = zig_double_to_f16(x); break; case 32: dest_val->data.x_f32 = x; break; case 64: dest_val->data.x_f64 = x; break; case 128: { float32_t x_f32; memcpy(&x_f32, &x, sizeof(float)); f32_to_f128M(x_f32, &dest_val->data.x_f128); break; } default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_init_f64(ConstExprValue *dest_val, double x) { if (dest_val->type->id == ZigTypeIdComptimeFloat) { bigfloat_init_64(&dest_val->data.x_bigfloat, x); } else if (dest_val->type->id == ZigTypeIdFloat) { switch (dest_val->type->data.floating.bit_count) { case 16: dest_val->data.x_f16 = zig_double_to_f16(x); break; case 32: dest_val->data.x_f32 = x; break; case 64: dest_val->data.x_f64 = x; break; case 128: { float64_t x_f64; memcpy(&x_f64, &x, sizeof(double)); f64_to_f128M(x_f64, &dest_val->data.x_f128); break; } default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_init_f128(ConstExprValue *dest_val, float128_t x) { if (dest_val->type->id == ZigTypeIdComptimeFloat) { bigfloat_init_128(&dest_val->data.x_bigfloat, x); } else if (dest_val->type->id == ZigTypeIdFloat) { switch (dest_val->type->data.floating.bit_count) { case 16: dest_val->data.x_f16 = f128M_to_f16(&x); break; case 32: { float32_t f32_val = f128M_to_f32(&x); memcpy(&dest_val->data.x_f32, &f32_val, sizeof(float)); break; } case 64: { float64_t f64_val = f128M_to_f64(&x); memcpy(&dest_val->data.x_f64, &f64_val, sizeof(double)); break; } case 128: { memcpy(&dest_val->data.x_f128, &x, sizeof(float128_t)); break; } default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_init_float(ConstExprValue *dest_val, ConstExprValue *src_val) { if (src_val->type->id == ZigTypeIdComptimeFloat) { float_init_bigfloat(dest_val, &src_val->data.x_bigfloat); } else if (src_val->type->id == ZigTypeIdFloat) { switch (src_val->type->data.floating.bit_count) { case 16: float_init_f16(dest_val, src_val->data.x_f16); break; case 32: float_init_f32(dest_val, src_val->data.x_f32); break; case 64: float_init_f64(dest_val, src_val->data.x_f64); break; case 128: float_init_f128(dest_val, src_val->data.x_f128); break; default: zig_unreachable(); } } else { zig_unreachable(); } } static bool float_is_nan(ConstExprValue *op) { if (op->type->id == ZigTypeIdComptimeFloat) { return bigfloat_is_nan(&op->data.x_bigfloat); } else if (op->type->id == ZigTypeIdFloat) { switch (op->type->data.floating.bit_count) { case 16: return f16_isSignalingNaN(op->data.x_f16); case 32: return op->data.x_f32 != op->data.x_f32; case 64: return op->data.x_f64 != op->data.x_f64; case 128: return f128M_isSignalingNaN(&op->data.x_f128); default: zig_unreachable(); } } else { zig_unreachable(); } } static Cmp float_cmp(ConstExprValue *op1, ConstExprValue *op2) { assert(op1->type == op2->type); if (op1->type->id == ZigTypeIdComptimeFloat) { return bigfloat_cmp(&op1->data.x_bigfloat, &op2->data.x_bigfloat); } else if (op1->type->id == ZigTypeIdFloat) { switch (op1->type->data.floating.bit_count) { case 16: if (f16_lt(op1->data.x_f16, op2->data.x_f16)) { return CmpLT; } else if (f16_lt(op2->data.x_f16, op1->data.x_f16)) { return CmpGT; } else { return CmpEQ; } case 32: if (op1->data.x_f32 > op2->data.x_f32) { return CmpGT; } else if (op1->data.x_f32 < op2->data.x_f32) { return CmpLT; } else { return CmpEQ; } case 64: if (op1->data.x_f64 > op2->data.x_f64) { return CmpGT; } else if (op1->data.x_f64 < op2->data.x_f64) { return CmpLT; } else { return CmpEQ; } case 128: if (f128M_lt(&op1->data.x_f128, &op2->data.x_f128)) { return CmpLT; } else if (f128M_eq(&op1->data.x_f128, &op2->data.x_f128)) { return CmpEQ; } else { return CmpGT; } default: zig_unreachable(); } } else { zig_unreachable(); } } static Cmp float_cmp_zero(ConstExprValue *op) { if (op->type->id == ZigTypeIdComptimeFloat) { return bigfloat_cmp_zero(&op->data.x_bigfloat); } else if (op->type->id == ZigTypeIdFloat) { switch (op->type->data.floating.bit_count) { case 16: { const float16_t zero = zig_double_to_f16(0); if (f16_lt(op->data.x_f16, zero)) { return CmpLT; } else if (f16_lt(zero, op->data.x_f16)) { return CmpGT; } else { return CmpEQ; } } case 32: if (op->data.x_f32 < 0.0) { return CmpLT; } else if (op->data.x_f32 > 0.0) { return CmpGT; } else { return CmpEQ; } case 64: if (op->data.x_f64 < 0.0) { return CmpLT; } else if (op->data.x_f64 > 0.0) { return CmpGT; } else { return CmpEQ; } case 128: float128_t zero_float; ui32_to_f128M(0, &zero_float); if (f128M_lt(&op->data.x_f128, &zero_float)) { return CmpLT; } else if (f128M_eq(&op->data.x_f128, &zero_float)) { return CmpEQ; } else { return CmpGT; } default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_add(ConstExprValue *out_val, ConstExprValue *op1, ConstExprValue *op2) { assert(op1->type == op2->type); out_val->type = op1->type; if (op1->type->id == ZigTypeIdComptimeFloat) { bigfloat_add(&out_val->data.x_bigfloat, &op1->data.x_bigfloat, &op2->data.x_bigfloat); } else if (op1->type->id == ZigTypeIdFloat) { switch (op1->type->data.floating.bit_count) { case 16: out_val->data.x_f16 = f16_add(op1->data.x_f16, op2->data.x_f16); return; case 32: out_val->data.x_f32 = op1->data.x_f32 + op2->data.x_f32; return; case 64: out_val->data.x_f64 = op1->data.x_f64 + op2->data.x_f64; return; case 128: f128M_add(&op1->data.x_f128, &op2->data.x_f128, &out_val->data.x_f128); return; default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_sub(ConstExprValue *out_val, ConstExprValue *op1, ConstExprValue *op2) { assert(op1->type == op2->type); out_val->type = op1->type; if (op1->type->id == ZigTypeIdComptimeFloat) { bigfloat_sub(&out_val->data.x_bigfloat, &op1->data.x_bigfloat, &op2->data.x_bigfloat); } else if (op1->type->id == ZigTypeIdFloat) { switch (op1->type->data.floating.bit_count) { case 16: out_val->data.x_f16 = f16_sub(op1->data.x_f16, op2->data.x_f16); return; case 32: out_val->data.x_f32 = op1->data.x_f32 - op2->data.x_f32; return; case 64: out_val->data.x_f64 = op1->data.x_f64 - op2->data.x_f64; return; case 128: f128M_sub(&op1->data.x_f128, &op2->data.x_f128, &out_val->data.x_f128); return; default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_mul(ConstExprValue *out_val, ConstExprValue *op1, ConstExprValue *op2) { assert(op1->type == op2->type); out_val->type = op1->type; if (op1->type->id == ZigTypeIdComptimeFloat) { bigfloat_mul(&out_val->data.x_bigfloat, &op1->data.x_bigfloat, &op2->data.x_bigfloat); } else if (op1->type->id == ZigTypeIdFloat) { switch (op1->type->data.floating.bit_count) { case 16: out_val->data.x_f16 = f16_mul(op1->data.x_f16, op2->data.x_f16); return; case 32: out_val->data.x_f32 = op1->data.x_f32 * op2->data.x_f32; return; case 64: out_val->data.x_f64 = op1->data.x_f64 * op2->data.x_f64; return; case 128: f128M_mul(&op1->data.x_f128, &op2->data.x_f128, &out_val->data.x_f128); return; default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_div(ConstExprValue *out_val, ConstExprValue *op1, ConstExprValue *op2) { assert(op1->type == op2->type); out_val->type = op1->type; if (op1->type->id == ZigTypeIdComptimeFloat) { bigfloat_div(&out_val->data.x_bigfloat, &op1->data.x_bigfloat, &op2->data.x_bigfloat); } else if (op1->type->id == ZigTypeIdFloat) { switch (op1->type->data.floating.bit_count) { case 16: out_val->data.x_f16 = f16_div(op1->data.x_f16, op2->data.x_f16); return; case 32: out_val->data.x_f32 = op1->data.x_f32 / op2->data.x_f32; return; case 64: out_val->data.x_f64 = op1->data.x_f64 / op2->data.x_f64; return; case 128: f128M_div(&op1->data.x_f128, &op2->data.x_f128, &out_val->data.x_f128); return; default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_div_trunc(ConstExprValue *out_val, ConstExprValue *op1, ConstExprValue *op2) { assert(op1->type == op2->type); out_val->type = op1->type; if (op1->type->id == ZigTypeIdComptimeFloat) { bigfloat_div_trunc(&out_val->data.x_bigfloat, &op1->data.x_bigfloat, &op2->data.x_bigfloat); } else if (op1->type->id == ZigTypeIdFloat) { switch (op1->type->data.floating.bit_count) { case 16: out_val->data.x_f16 = f16_div(op1->data.x_f16, op2->data.x_f16); out_val->data.x_f16 = f16_roundToInt(out_val->data.x_f16, softfloat_round_minMag, false); return; case 32: out_val->data.x_f32 = truncf(op1->data.x_f32 / op2->data.x_f32); return; case 64: out_val->data.x_f64 = trunc(op1->data.x_f64 / op2->data.x_f64); return; case 128: f128M_div(&op1->data.x_f128, &op2->data.x_f128, &out_val->data.x_f128); f128M_roundToInt(&out_val->data.x_f128, softfloat_round_minMag, false, &out_val->data.x_f128); return; default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_div_floor(ConstExprValue *out_val, ConstExprValue *op1, ConstExprValue *op2) { assert(op1->type == op2->type); out_val->type = op1->type; if (op1->type->id == ZigTypeIdComptimeFloat) { bigfloat_div_floor(&out_val->data.x_bigfloat, &op1->data.x_bigfloat, &op2->data.x_bigfloat); } else if (op1->type->id == ZigTypeIdFloat) { switch (op1->type->data.floating.bit_count) { case 16: out_val->data.x_f16 = f16_div(op1->data.x_f16, op2->data.x_f16); out_val->data.x_f16 = f16_roundToInt(out_val->data.x_f16, softfloat_round_min, false); return; case 32: out_val->data.x_f32 = floorf(op1->data.x_f32 / op2->data.x_f32); return; case 64: out_val->data.x_f64 = floor(op1->data.x_f64 / op2->data.x_f64); return; case 128: f128M_div(&op1->data.x_f128, &op2->data.x_f128, &out_val->data.x_f128); f128M_roundToInt(&out_val->data.x_f128, softfloat_round_min, false, &out_val->data.x_f128); return; default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_rem(ConstExprValue *out_val, ConstExprValue *op1, ConstExprValue *op2) { assert(op1->type == op2->type); out_val->type = op1->type; if (op1->type->id == ZigTypeIdComptimeFloat) { bigfloat_rem(&out_val->data.x_bigfloat, &op1->data.x_bigfloat, &op2->data.x_bigfloat); } else if (op1->type->id == ZigTypeIdFloat) { switch (op1->type->data.floating.bit_count) { case 16: out_val->data.x_f16 = f16_rem(op1->data.x_f16, op2->data.x_f16); return; case 32: out_val->data.x_f32 = fmodf(op1->data.x_f32, op2->data.x_f32); return; case 64: out_val->data.x_f64 = fmod(op1->data.x_f64, op2->data.x_f64); return; case 128: f128M_rem(&op1->data.x_f128, &op2->data.x_f128, &out_val->data.x_f128); return; default: zig_unreachable(); } } else { zig_unreachable(); } } // c = a - b * trunc(a / b) static float16_t zig_f16_mod(float16_t a, float16_t b) { float16_t c; c = f16_div(a, b); c = f16_roundToInt(c, softfloat_round_min, true); c = f16_mul(b, c); c = f16_sub(a, c); return c; } // c = a - b * trunc(a / b) static void zig_f128M_mod(const float128_t* a, const float128_t* b, float128_t* c) { f128M_div(a, b, c); f128M_roundToInt(c, softfloat_round_min, true, c); f128M_mul(b, c, c); f128M_sub(a, c, c); } static void float_mod(ConstExprValue *out_val, ConstExprValue *op1, ConstExprValue *op2) { assert(op1->type == op2->type); out_val->type = op1->type; if (op1->type->id == ZigTypeIdComptimeFloat) { bigfloat_mod(&out_val->data.x_bigfloat, &op1->data.x_bigfloat, &op2->data.x_bigfloat); } else if (op1->type->id == ZigTypeIdFloat) { switch (op1->type->data.floating.bit_count) { case 16: out_val->data.x_f16 = zig_f16_mod(op1->data.x_f16, op2->data.x_f16); return; case 32: out_val->data.x_f32 = fmodf(fmodf(op1->data.x_f32, op2->data.x_f32) + op2->data.x_f32, op2->data.x_f32); return; case 64: out_val->data.x_f64 = fmod(fmod(op1->data.x_f64, op2->data.x_f64) + op2->data.x_f64, op2->data.x_f64); return; case 128: zig_f128M_mod(&op1->data.x_f128, &op2->data.x_f128, &out_val->data.x_f128); return; default: zig_unreachable(); } } else { zig_unreachable(); } } static void float_negate(ConstExprValue *out_val, ConstExprValue *op) { out_val->type = op->type; if (op->type->id == ZigTypeIdComptimeFloat) { bigfloat_negate(&out_val->data.x_bigfloat, &op->data.x_bigfloat); } else if (op->type->id == ZigTypeIdFloat) { switch (op->type->data.floating.bit_count) { case 16: { const float16_t zero = zig_double_to_f16(0); out_val->data.x_f16 = f16_sub(zero, op->data.x_f16); return; } case 32: out_val->data.x_f32 = -op->data.x_f32; return; case 64: out_val->data.x_f64 = -op->data.x_f64; return; case 128: float128_t zero_f128; ui32_to_f128M(0, &zero_f128); f128M_sub(&zero_f128, &op->data.x_f128, &out_val->data.x_f128); return; default: zig_unreachable(); } } else { zig_unreachable(); } } void float_write_ieee597(ConstExprValue *op, uint8_t *buf, bool is_big_endian) { if (op->type->id == ZigTypeIdFloat) { switch (op->type->data.floating.bit_count) { case 16: memcpy(buf, &op->data.x_f16, 2); // TODO wrong when compiler is big endian return; case 32: memcpy(buf, &op->data.x_f32, 4); // TODO wrong when compiler is big endian return; case 64: memcpy(buf, &op->data.x_f64, 8); // TODO wrong when compiler is big endian return; case 128: memcpy(buf, &op->data.x_f128, 16); // TODO wrong when compiler is big endian return; default: zig_unreachable(); } } else { zig_unreachable(); } } void float_read_ieee597(ConstExprValue *val, uint8_t *buf, bool is_big_endian) { if (val->type->id == ZigTypeIdFloat) { switch (val->type->data.floating.bit_count) { case 16: memcpy(&val->data.x_f16, buf, 2); // TODO wrong when compiler is big endian return; case 32: memcpy(&val->data.x_f32, buf, 4); // TODO wrong when compiler is big endian return; case 64: memcpy(&val->data.x_f64, buf, 8); // TODO wrong when compiler is big endian return; case 128: memcpy(&val->data.x_f128, buf, 16); // TODO wrong when compiler is big endian return; default: zig_unreachable(); } } else { zig_unreachable(); } } static bool ir_num_lit_fits_in_other_type(IrAnalyze *ira, IrInstruction *instruction, ZigType *other_type, bool explicit_cast) { if (type_is_invalid(other_type)) { return false; } ConstExprValue *const_val = ir_resolve_const(ira, instruction, UndefBad); if (const_val == nullptr) return false; bool const_val_is_int = (const_val->type->id == ZigTypeIdInt || const_val->type->id == ZigTypeIdComptimeInt); bool const_val_is_float = (const_val->type->id == ZigTypeIdFloat || const_val->type->id == ZigTypeIdComptimeFloat); assert(const_val_is_int || const_val_is_float); if (const_val_is_int && other_type->id == ZigTypeIdComptimeFloat) { return true; } if (other_type->id == ZigTypeIdFloat) { if (const_val->type->id == ZigTypeIdComptimeInt || const_val->type->id == ZigTypeIdComptimeFloat) { return true; } if (const_val->type->id == ZigTypeIdInt) { BigFloat tmp_bf; bigfloat_init_bigint(&tmp_bf, &const_val->data.x_bigint); BigFloat orig_bf; switch (other_type->data.floating.bit_count) { case 16: { float16_t tmp = bigfloat_to_f16(&tmp_bf); bigfloat_init_16(&orig_bf, tmp); break; } case 32: { float tmp = bigfloat_to_f32(&tmp_bf); bigfloat_init_32(&orig_bf, tmp); break; } case 64: { double tmp = bigfloat_to_f64(&tmp_bf); bigfloat_init_64(&orig_bf, tmp); break; } case 80: zig_panic("TODO"); case 128: { float128_t tmp = bigfloat_to_f128(&tmp_bf); bigfloat_init_128(&orig_bf, tmp); break; } default: zig_unreachable(); } BigInt orig_bi; bigint_init_bigfloat(&orig_bi, &orig_bf); if (bigint_cmp(&orig_bi, &const_val->data.x_bigint) == CmpEQ) { return true; } Buf *val_buf = buf_alloc(); bigint_append_buf(val_buf, &const_val->data.x_bigint, 10); ir_add_error(ira, instruction, buf_sprintf("integer value %s has no representation in type '%s'", buf_ptr(val_buf), buf_ptr(&other_type->name))); return false; } if (other_type->data.floating.bit_count >= const_val->type->data.floating.bit_count) { return true; } switch (other_type->data.floating.bit_count) { case 16: switch (const_val->type->data.floating.bit_count) { case 32: { float16_t tmp = zig_double_to_f16(const_val->data.x_f32); float orig = zig_f16_to_double(tmp); if (const_val->data.x_f32 == orig) { return true; } break; } case 64: { float16_t tmp = zig_double_to_f16(const_val->data.x_f64); double orig = zig_f16_to_double(tmp); if (const_val->data.x_f64 == orig) { return true; } break; } case 80: zig_panic("TODO"); case 128: { float16_t tmp = f128M_to_f16(&const_val->data.x_f128); float128_t orig; f16_to_f128M(tmp, &orig); if (f128M_eq(&orig, &const_val->data.x_f128)) { return true; } break; } default: zig_unreachable(); } break; case 32: switch (const_val->type->data.floating.bit_count) { case 64: { float tmp = const_val->data.x_f64; double orig = tmp; if (const_val->data.x_f64 == orig) { return true; } break; } case 80: zig_panic("TODO"); case 128: { float32_t tmp = f128M_to_f32(&const_val->data.x_f128); float128_t orig; f32_to_f128M(tmp, &orig); if (f128M_eq(&orig, &const_val->data.x_f128)) { return true; } break; } default: zig_unreachable(); } break; case 64: switch (const_val->type->data.floating.bit_count) { case 80: zig_panic("TODO"); case 128: { float64_t tmp = f128M_to_f64(&const_val->data.x_f128); float128_t orig; f64_to_f128M(tmp, &orig); if (f128M_eq(&orig, &const_val->data.x_f128)) { return true; } break; } default: zig_unreachable(); } break; case 80: assert(const_val->type->data.floating.bit_count == 128); zig_panic("TODO"); case 128: return true; default: zig_unreachable(); } Buf *val_buf = buf_alloc(); float_append_buf(val_buf, const_val); ir_add_error(ira, instruction, buf_sprintf("cast of value %s to type '%s' loses information", buf_ptr(val_buf), buf_ptr(&other_type->name))); return false; } else if (other_type->id == ZigTypeIdInt && const_val_is_int) { if (!other_type->data.integral.is_signed && const_val->data.x_bigint.is_negative) { Buf *val_buf = buf_alloc(); bigint_append_buf(val_buf, &const_val->data.x_bigint, 10); ir_add_error(ira, instruction, buf_sprintf("cannot cast negative value %s to unsigned integer type '%s'", buf_ptr(val_buf), buf_ptr(&other_type->name))); return false; } if (bigint_fits_in_bits(&const_val->data.x_bigint, other_type->data.integral.bit_count, other_type->data.integral.is_signed)) { return true; } } else if (const_val_fits_in_num_lit(const_val, other_type)) { return true; } else if (other_type->id == ZigTypeIdOptional) { ZigType *child_type = other_type->data.maybe.child_type; if (const_val_fits_in_num_lit(const_val, child_type)) { return true; } else if (child_type->id == ZigTypeIdInt && const_val_is_int) { if (!child_type->data.integral.is_signed && const_val->data.x_bigint.is_negative) { Buf *val_buf = buf_alloc(); bigint_append_buf(val_buf, &const_val->data.x_bigint, 10); ir_add_error(ira, instruction, buf_sprintf("cannot cast negative value %s to unsigned integer type '%s'", buf_ptr(val_buf), buf_ptr(&child_type->name))); return false; } if (bigint_fits_in_bits(&const_val->data.x_bigint, child_type->data.integral.bit_count, child_type->data.integral.is_signed)) { return true; } } else if (child_type->id == ZigTypeIdFloat && const_val_is_float) { return true; } } if (explicit_cast && (other_type->id == ZigTypeIdInt || other_type->id == ZigTypeIdComptimeInt) && const_val_is_float) { if (float_has_fraction(const_val)) { Buf *val_buf = buf_alloc(); float_append_buf(val_buf, const_val); ir_add_error(ira, instruction, buf_sprintf("fractional component prevents float value %s from being casted to type '%s'", buf_ptr(val_buf), buf_ptr(&other_type->name))); return false; } else { if (other_type->id == ZigTypeIdComptimeInt) { return true; } else { BigInt bigint; float_init_bigint(&bigint, const_val); if (bigint_fits_in_bits(&bigint, other_type->data.integral.bit_count, other_type->data.integral.is_signed)) { return true; } } } } const char *num_lit_str; Buf *val_buf = buf_alloc(); if (const_val_is_float) { num_lit_str = "float"; float_append_buf(val_buf, const_val); } else { num_lit_str = "integer"; bigint_append_buf(val_buf, &const_val->data.x_bigint, 10); } ir_add_error(ira, instruction, buf_sprintf("%s value %s cannot be implicitly casted to type '%s'", num_lit_str, buf_ptr(val_buf), buf_ptr(&other_type->name))); return false; } static bool is_tagged_union(ZigType *type) { if (type->id != ZigTypeIdUnion) return false; return (type->data.unionation.decl_node->data.container_decl.auto_enum || type->data.unionation.decl_node->data.container_decl.init_arg_expr != nullptr); } static void populate_error_set_table(ErrorTableEntry **errors, ZigType *set) { assert(set->id == ZigTypeIdErrorSet); for (uint32_t i = 0; i < set->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = set->data.error_set.errors[i]; assert(errors[error_entry->value] == nullptr); errors[error_entry->value] = error_entry; } } static ZigType *get_error_set_intersection(IrAnalyze *ira, ZigType *set1, ZigType *set2, AstNode *source_node) { assert(set1->id == ZigTypeIdErrorSet); assert(set2->id == ZigTypeIdErrorSet); if (!resolve_inferred_error_set(ira->codegen, set1, source_node)) { return ira->codegen->builtin_types.entry_invalid; } if (!resolve_inferred_error_set(ira->codegen, set2, source_node)) { return ira->codegen->builtin_types.entry_invalid; } if (type_is_global_error_set(set1)) { return set2; } if (type_is_global_error_set(set2)) { return set1; } ErrorTableEntry **errors = allocate(ira->codegen->errors_by_index.length); populate_error_set_table(errors, set1); ZigList intersection_list = {}; ZigType *err_set_type = new_type_table_entry(ZigTypeIdErrorSet); buf_resize(&err_set_type->name, 0); buf_appendf(&err_set_type->name, "error{"); for (uint32_t i = 0; i < set2->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = set2->data.error_set.errors[i]; ErrorTableEntry *existing_entry = errors[error_entry->value]; if (existing_entry != nullptr) { intersection_list.append(existing_entry); buf_appendf(&err_set_type->name, "%s,", buf_ptr(&existing_entry->name)); } } free(errors); err_set_type->data.error_set.err_count = intersection_list.length; err_set_type->data.error_set.errors = intersection_list.items; err_set_type->size_in_bits = ira->codegen->builtin_types.entry_global_error_set->size_in_bits; err_set_type->abi_align = ira->codegen->builtin_types.entry_global_error_set->abi_align; err_set_type->abi_size = ira->codegen->builtin_types.entry_global_error_set->abi_size; buf_appendf(&err_set_type->name, "}"); return err_set_type; } static ConstCastOnly types_match_const_cast_only(IrAnalyze *ira, ZigType *wanted_type, ZigType *actual_type, AstNode *source_node, bool wanted_is_mutable) { CodeGen *g = ira->codegen; ConstCastOnly result = {}; result.id = ConstCastResultIdOk; Error err; if (wanted_type == actual_type) return result; // If pointers have the same representation in memory, they can be "const-casted". // `const` attribute can be gained // `volatile` attribute can be gained // `allowzero` attribute can be gained (whether from explicit attribute, C pointer, or optional pointer) // but only if !wanted_is_mutable // alignment can be decreased // bit offset attributes must match exactly // PtrLenSingle/PtrLenUnknown must match exactly, but PtrLenC matches either one ZigType *wanted_ptr_type = get_src_ptr_type(wanted_type); ZigType *actual_ptr_type = get_src_ptr_type(actual_type); bool wanted_allows_zero = ptr_allows_addr_zero(wanted_type); bool actual_allows_zero = ptr_allows_addr_zero(actual_type); bool wanted_is_c_ptr = wanted_type->id == ZigTypeIdPointer && wanted_type->data.pointer.ptr_len == PtrLenC; bool actual_is_c_ptr = actual_type->id == ZigTypeIdPointer && actual_type->data.pointer.ptr_len == PtrLenC; bool wanted_opt_or_ptr = wanted_ptr_type != nullptr && (wanted_type->id == ZigTypeIdPointer || wanted_type->id == ZigTypeIdOptional); bool actual_opt_or_ptr = actual_ptr_type != nullptr && (actual_type->id == ZigTypeIdPointer || actual_type->id == ZigTypeIdOptional); if (wanted_opt_or_ptr && actual_opt_or_ptr) { ConstCastOnly child = types_match_const_cast_only(ira, wanted_ptr_type->data.pointer.child_type, actual_ptr_type->data.pointer.child_type, source_node, !wanted_ptr_type->data.pointer.is_const); if (child.id == ConstCastResultIdInvalid) return child; if (child.id != ConstCastResultIdOk) { result.id = ConstCastResultIdPointerChild; result.data.pointer_mismatch = allocate_nonzero(1); result.data.pointer_mismatch->child = child; result.data.pointer_mismatch->wanted_child = wanted_ptr_type->data.pointer.child_type; result.data.pointer_mismatch->actual_child = actual_ptr_type->data.pointer.child_type; return result; } bool ok_allows_zero = (wanted_allows_zero && (actual_allows_zero || !wanted_is_mutable)) || (!wanted_allows_zero && !actual_allows_zero); if (!ok_allows_zero) { result.id = ConstCastResultIdBadAllowsZero; result.data.bad_allows_zero = allocate_nonzero(1); result.data.bad_allows_zero->wanted_type = wanted_type; result.data.bad_allows_zero->actual_type = actual_type; return result; } if ((err = type_resolve(g, actual_ptr_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) { result.id = ConstCastResultIdInvalid; return result; } if ((err = type_resolve(g, wanted_ptr_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) { result.id = ConstCastResultIdInvalid; return result; } if ((err = type_resolve(g, wanted_type, ResolveStatusZeroBitsKnown))) { result.id = ConstCastResultIdInvalid; return result; } if ((err = type_resolve(g, actual_type, ResolveStatusZeroBitsKnown))) { result.id = ConstCastResultIdInvalid; return result; } bool ptr_lens_equal = actual_ptr_type->data.pointer.ptr_len == wanted_ptr_type->data.pointer.ptr_len; if ((ptr_lens_equal || wanted_is_c_ptr || actual_is_c_ptr) && type_has_bits(wanted_type) == type_has_bits(actual_type) && (!actual_ptr_type->data.pointer.is_const || wanted_ptr_type->data.pointer.is_const) && (!actual_ptr_type->data.pointer.is_volatile || wanted_ptr_type->data.pointer.is_volatile) && actual_ptr_type->data.pointer.bit_offset_in_host == wanted_ptr_type->data.pointer.bit_offset_in_host && actual_ptr_type->data.pointer.host_int_bytes == wanted_ptr_type->data.pointer.host_int_bytes && get_ptr_align(ira->codegen, actual_ptr_type) >= get_ptr_align(ira->codegen, wanted_ptr_type)) { return result; } } // slice const if (is_slice(wanted_type) && is_slice(actual_type)) { ZigType *actual_ptr_type = actual_type->data.structure.fields[slice_ptr_index].type_entry; ZigType *wanted_ptr_type = wanted_type->data.structure.fields[slice_ptr_index].type_entry; if ((err = type_resolve(g, actual_ptr_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) { result.id = ConstCastResultIdInvalid; return result; } if ((err = type_resolve(g, wanted_ptr_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) { result.id = ConstCastResultIdInvalid; return result; } if ((!actual_ptr_type->data.pointer.is_const || wanted_ptr_type->data.pointer.is_const) && (!actual_ptr_type->data.pointer.is_volatile || wanted_ptr_type->data.pointer.is_volatile) && actual_ptr_type->data.pointer.bit_offset_in_host == wanted_ptr_type->data.pointer.bit_offset_in_host && actual_ptr_type->data.pointer.host_int_bytes == wanted_ptr_type->data.pointer.host_int_bytes && get_ptr_align(g, actual_ptr_type) >= get_ptr_align(g, wanted_ptr_type)) { ConstCastOnly child = types_match_const_cast_only(ira, wanted_ptr_type->data.pointer.child_type, actual_ptr_type->data.pointer.child_type, source_node, !wanted_ptr_type->data.pointer.is_const); if (child.id == ConstCastResultIdInvalid) return child; if (child.id != ConstCastResultIdOk) { result.id = ConstCastResultIdSliceChild; result.data.slice_mismatch = allocate_nonzero(1); result.data.slice_mismatch->child = child; result.data.slice_mismatch->actual_child = actual_ptr_type->data.pointer.child_type; result.data.slice_mismatch->wanted_child = wanted_ptr_type->data.pointer.child_type; } return result; } } // maybe if (wanted_type->id == ZigTypeIdOptional && actual_type->id == ZigTypeIdOptional) { ConstCastOnly child = types_match_const_cast_only(ira, wanted_type->data.maybe.child_type, actual_type->data.maybe.child_type, source_node, wanted_is_mutable); if (child.id == ConstCastResultIdInvalid) return child; if (child.id != ConstCastResultIdOk) { result.id = ConstCastResultIdOptionalChild; result.data.optional = allocate_nonzero(1); result.data.optional->child = child; result.data.optional->wanted_child = wanted_type->data.maybe.child_type; result.data.optional->actual_child = actual_type->data.maybe.child_type; } return result; } // error union if (wanted_type->id == ZigTypeIdErrorUnion && actual_type->id == ZigTypeIdErrorUnion) { ConstCastOnly payload_child = types_match_const_cast_only(ira, wanted_type->data.error_union.payload_type, actual_type->data.error_union.payload_type, source_node, wanted_is_mutable); if (payload_child.id == ConstCastResultIdInvalid) return payload_child; if (payload_child.id != ConstCastResultIdOk) { result.id = ConstCastResultIdErrorUnionPayload; result.data.error_union_payload = allocate_nonzero(1); result.data.error_union_payload->child = payload_child; result.data.error_union_payload->wanted_payload = wanted_type->data.error_union.payload_type; result.data.error_union_payload->actual_payload = actual_type->data.error_union.payload_type; return result; } ConstCastOnly error_set_child = types_match_const_cast_only(ira, wanted_type->data.error_union.err_set_type, actual_type->data.error_union.err_set_type, source_node, wanted_is_mutable); if (error_set_child.id == ConstCastResultIdInvalid) return error_set_child; if (error_set_child.id != ConstCastResultIdOk) { result.id = ConstCastResultIdErrorUnionErrorSet; result.data.error_union_error_set = allocate_nonzero(1); result.data.error_union_error_set->child = error_set_child; result.data.error_union_error_set->wanted_err_set = wanted_type->data.error_union.err_set_type; result.data.error_union_error_set->actual_err_set = actual_type->data.error_union.err_set_type; return result; } return result; } // error set if (wanted_type->id == ZigTypeIdErrorSet && actual_type->id == ZigTypeIdErrorSet) { ZigType *contained_set = actual_type; ZigType *container_set = wanted_type; // if the container set is inferred, then this will always work. if (container_set->data.error_set.infer_fn != nullptr) { return result; } // if the container set is the global one, it will always work. if (type_is_global_error_set(container_set)) { return result; } if (!resolve_inferred_error_set(ira->codegen, contained_set, source_node)) { result.id = ConstCastResultIdUnresolvedInferredErrSet; return result; } if (type_is_global_error_set(contained_set)) { result.id = ConstCastResultIdErrSetGlobal; return result; } ErrorTableEntry **errors = allocate(g->errors_by_index.length); for (uint32_t i = 0; i < container_set->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = container_set->data.error_set.errors[i]; assert(errors[error_entry->value] == nullptr); errors[error_entry->value] = error_entry; } for (uint32_t i = 0; i < contained_set->data.error_set.err_count; i += 1) { ErrorTableEntry *contained_error_entry = contained_set->data.error_set.errors[i]; ErrorTableEntry *error_entry = errors[contained_error_entry->value]; if (error_entry == nullptr) { if (result.id == ConstCastResultIdOk) { result.id = ConstCastResultIdErrSet; result.data.error_set_mismatch = allocate(1); } result.data.error_set_mismatch->missing_errors.append(contained_error_entry); } } free(errors); return result; } // fn if (wanted_type->id == ZigTypeIdFn && actual_type->id == ZigTypeIdFn) { if (wanted_type->data.fn.fn_type_id.alignment > actual_type->data.fn.fn_type_id.alignment) { result.id = ConstCastResultIdFnAlign; return result; } if (wanted_type->data.fn.fn_type_id.is_var_args != actual_type->data.fn.fn_type_id.is_var_args) { result.id = ConstCastResultIdFnVarArgs; return result; } if (wanted_type->data.fn.is_generic != actual_type->data.fn.is_generic) { result.id = ConstCastResultIdFnIsGeneric; return result; } if (!wanted_type->data.fn.is_generic && actual_type->data.fn.fn_type_id.return_type->id != ZigTypeIdUnreachable) { ConstCastOnly child = types_match_const_cast_only(ira, wanted_type->data.fn.fn_type_id.return_type, actual_type->data.fn.fn_type_id.return_type, source_node, false); if (child.id == ConstCastResultIdInvalid) return child; if (child.id != ConstCastResultIdOk) { result.id = ConstCastResultIdFnReturnType; result.data.return_type = allocate_nonzero(1); *result.data.return_type = child; return result; } } if (wanted_type->data.fn.fn_type_id.param_count != actual_type->data.fn.fn_type_id.param_count) { result.id = ConstCastResultIdFnArgCount; return result; } if (wanted_type->data.fn.fn_type_id.next_param_index != actual_type->data.fn.fn_type_id.next_param_index) { result.id = ConstCastResultIdFnGenericArgCount; return result; } assert(wanted_type->data.fn.is_generic || wanted_type->data.fn.fn_type_id.next_param_index == wanted_type->data.fn.fn_type_id.param_count); for (size_t i = 0; i < wanted_type->data.fn.fn_type_id.next_param_index; i += 1) { // note it's reversed for parameters FnTypeParamInfo *actual_param_info = &actual_type->data.fn.fn_type_id.param_info[i]; FnTypeParamInfo *expected_param_info = &wanted_type->data.fn.fn_type_id.param_info[i]; ConstCastOnly arg_child = types_match_const_cast_only(ira, actual_param_info->type, expected_param_info->type, source_node, false); if (arg_child.id == ConstCastResultIdInvalid) return arg_child; if (arg_child.id != ConstCastResultIdOk) { result.id = ConstCastResultIdFnArg; result.data.fn_arg.arg_index = i; result.data.fn_arg.actual_param_type = actual_param_info->type; result.data.fn_arg.expected_param_type = expected_param_info->type; result.data.fn_arg.child = allocate_nonzero(1); *result.data.fn_arg.child = arg_child; return result; } if (expected_param_info->is_noalias != actual_param_info->is_noalias) { result.id = ConstCastResultIdFnArgNoAlias; result.data.arg_no_alias.arg_index = i; return result; } } if (wanted_type->data.fn.fn_type_id.cc != actual_type->data.fn.fn_type_id.cc) { // ConstCastResultIdFnCC is guaranteed to be the last one reported, meaning everything else is ok. result.id = ConstCastResultIdFnCC; return result; } return result; } result.id = ConstCastResultIdType; result.data.type_mismatch = allocate_nonzero(1); result.data.type_mismatch->wanted_type = wanted_type; result.data.type_mismatch->actual_type = actual_type; return result; } static void update_errors_helper(CodeGen *g, ErrorTableEntry ***errors, size_t *errors_count) { size_t old_errors_count = *errors_count; *errors_count = g->errors_by_index.length; *errors = reallocate(*errors, old_errors_count, *errors_count); } static ZigType *ir_resolve_peer_types(IrAnalyze *ira, AstNode *source_node, ZigType *expected_type, IrInstruction **instructions, size_t instruction_count) { Error err; assert(instruction_count >= 1); IrInstruction *prev_inst; size_t i = 0; for (;;) { prev_inst = instructions[i]; if (type_is_invalid(prev_inst->value.type)) { return ira->codegen->builtin_types.entry_invalid; } if (prev_inst->value.type->id == ZigTypeIdUnreachable) { i += 1; if (i == instruction_count) { return prev_inst->value.type; } continue; } break; } ErrorTableEntry **errors = nullptr; size_t errors_count = 0; ZigType *err_set_type = nullptr; if (prev_inst->value.type->id == ZigTypeIdErrorSet) { if (!resolve_inferred_error_set(ira->codegen, prev_inst->value.type, prev_inst->source_node)) { return ira->codegen->builtin_types.entry_invalid; } if (type_is_global_error_set(prev_inst->value.type)) { err_set_type = ira->codegen->builtin_types.entry_global_error_set; } else { err_set_type = prev_inst->value.type; update_errors_helper(ira->codegen, &errors, &errors_count); for (uint32_t i = 0; i < err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = err_set_type->data.error_set.errors[i]; assert(errors[error_entry->value] == nullptr); errors[error_entry->value] = error_entry; } } } bool any_are_null = (prev_inst->value.type->id == ZigTypeIdNull); bool convert_to_const_slice = false; for (; i < instruction_count; i += 1) { IrInstruction *cur_inst = instructions[i]; ZigType *cur_type = cur_inst->value.type; ZigType *prev_type = prev_inst->value.type; if (type_is_invalid(cur_type)) { return cur_type; } if (prev_type == cur_type) { continue; } if (prev_type->id == ZigTypeIdUnreachable) { prev_inst = cur_inst; continue; } if (cur_type->id == ZigTypeIdUnreachable) { continue; } if (prev_type->id == ZigTypeIdErrorSet) { ir_assert(err_set_type != nullptr, prev_inst); if (cur_type->id == ZigTypeIdErrorSet) { if (type_is_global_error_set(err_set_type)) { continue; } if (!resolve_inferred_error_set(ira->codegen, cur_type, cur_inst->source_node)) { return ira->codegen->builtin_types.entry_invalid; } if (type_is_global_error_set(cur_type)) { err_set_type = ira->codegen->builtin_types.entry_global_error_set; prev_inst = cur_inst; continue; } // number of declared errors might have increased now update_errors_helper(ira->codegen, &errors, &errors_count); // if err_set_type is a superset of cur_type, keep err_set_type. // if cur_type is a superset of err_set_type, switch err_set_type to cur_type bool prev_is_superset = true; for (uint32_t i = 0; i < cur_type->data.error_set.err_count; i += 1) { ErrorTableEntry *contained_error_entry = cur_type->data.error_set.errors[i]; ErrorTableEntry *error_entry = errors[contained_error_entry->value]; if (error_entry == nullptr) { prev_is_superset = false; break; } } if (prev_is_superset) { continue; } // unset everything in errors for (uint32_t i = 0; i < err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = err_set_type->data.error_set.errors[i]; errors[error_entry->value] = nullptr; } for (uint32_t i = 0, count = ira->codegen->errors_by_index.length; i < count; i += 1) { assert(errors[i] == nullptr); } for (uint32_t i = 0; i < cur_type->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = cur_type->data.error_set.errors[i]; assert(errors[error_entry->value] == nullptr); errors[error_entry->value] = error_entry; } bool cur_is_superset = true; for (uint32_t i = 0; i < err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *contained_error_entry = err_set_type->data.error_set.errors[i]; ErrorTableEntry *error_entry = errors[contained_error_entry->value]; if (error_entry == nullptr) { cur_is_superset = false; break; } } if (cur_is_superset) { err_set_type = cur_type; prev_inst = cur_inst; assert(errors != nullptr); continue; } // neither of them are supersets. so we invent a new error set type that is a union of both of them err_set_type = get_error_set_union(ira->codegen, errors, cur_type, err_set_type); assert(errors != nullptr); continue; } else if (cur_type->id == ZigTypeIdErrorUnion) { if (type_is_global_error_set(err_set_type)) { prev_inst = cur_inst; continue; } ZigType *cur_err_set_type = cur_type->data.error_union.err_set_type; if (!resolve_inferred_error_set(ira->codegen, cur_err_set_type, cur_inst->source_node)) { return ira->codegen->builtin_types.entry_invalid; } if (type_is_global_error_set(cur_err_set_type)) { err_set_type = ira->codegen->builtin_types.entry_global_error_set; prev_inst = cur_inst; continue; } update_errors_helper(ira->codegen, &errors, &errors_count); // test if err_set_type is a subset of cur_type's error set // unset everything in errors for (uint32_t i = 0; i < err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = err_set_type->data.error_set.errors[i]; errors[error_entry->value] = nullptr; } for (uint32_t i = 0, count = ira->codegen->errors_by_index.length; i < count; i += 1) { assert(errors[i] == nullptr); } for (uint32_t i = 0; i < cur_err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = cur_err_set_type->data.error_set.errors[i]; assert(errors[error_entry->value] == nullptr); errors[error_entry->value] = error_entry; } bool cur_is_superset = true; for (uint32_t i = 0; i < err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *contained_error_entry = err_set_type->data.error_set.errors[i]; ErrorTableEntry *error_entry = errors[contained_error_entry->value]; if (error_entry == nullptr) { cur_is_superset = false; break; } } if (cur_is_superset) { err_set_type = cur_err_set_type; prev_inst = cur_inst; assert(errors != nullptr); continue; } // not a subset. invent new error set type, union of both of them err_set_type = get_error_set_union(ira->codegen, errors, cur_err_set_type, err_set_type); prev_inst = cur_inst; assert(errors != nullptr); continue; } else { prev_inst = cur_inst; continue; } } if (cur_type->id == ZigTypeIdErrorSet) { if (prev_type->id == ZigTypeIdArray) { convert_to_const_slice = true; } if (!resolve_inferred_error_set(ira->codegen, cur_type, cur_inst->source_node)) { return ira->codegen->builtin_types.entry_invalid; } if (type_is_global_error_set(cur_type)) { err_set_type = ira->codegen->builtin_types.entry_global_error_set; continue; } if (err_set_type != nullptr && type_is_global_error_set(err_set_type)) { continue; } update_errors_helper(ira->codegen, &errors, &errors_count); if (err_set_type == nullptr) { if (prev_type->id == ZigTypeIdErrorUnion) { err_set_type = prev_type->data.error_union.err_set_type; } else { err_set_type = cur_type; } for (uint32_t i = 0; i < err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = err_set_type->data.error_set.errors[i]; assert(errors[error_entry->value] == nullptr); errors[error_entry->value] = error_entry; } if (err_set_type == cur_type) { continue; } } // check if the cur type error set is a subset bool prev_is_superset = true; for (uint32_t i = 0; i < cur_type->data.error_set.err_count; i += 1) { ErrorTableEntry *contained_error_entry = cur_type->data.error_set.errors[i]; ErrorTableEntry *error_entry = errors[contained_error_entry->value]; if (error_entry == nullptr) { prev_is_superset = false; break; } } if (prev_is_superset) { continue; } // not a subset. invent new error set type, union of both of them err_set_type = get_error_set_union(ira->codegen, errors, err_set_type, cur_type); assert(errors != nullptr); continue; } if (prev_type->id == ZigTypeIdErrorUnion && cur_type->id == ZigTypeIdErrorUnion) { ZigType *prev_payload_type = prev_type->data.error_union.payload_type; ZigType *cur_payload_type = cur_type->data.error_union.payload_type; bool const_cast_prev = types_match_const_cast_only(ira, prev_payload_type, cur_payload_type, source_node, false).id == ConstCastResultIdOk; bool const_cast_cur = types_match_const_cast_only(ira, cur_payload_type, prev_payload_type, source_node, false).id == ConstCastResultIdOk; if (const_cast_prev || const_cast_cur) { if (const_cast_cur) { prev_inst = cur_inst; } ZigType *prev_err_set_type = (err_set_type == nullptr) ? prev_type->data.error_union.err_set_type : err_set_type; ZigType *cur_err_set_type = cur_type->data.error_union.err_set_type; if (prev_err_set_type == cur_err_set_type) continue; if (!resolve_inferred_error_set(ira->codegen, prev_err_set_type, cur_inst->source_node)) { return ira->codegen->builtin_types.entry_invalid; } if (!resolve_inferred_error_set(ira->codegen, cur_err_set_type, cur_inst->source_node)) { return ira->codegen->builtin_types.entry_invalid; } if (type_is_global_error_set(prev_err_set_type) || type_is_global_error_set(cur_err_set_type)) { err_set_type = ira->codegen->builtin_types.entry_global_error_set; continue; } update_errors_helper(ira->codegen, &errors, &errors_count); if (err_set_type == nullptr) { err_set_type = prev_err_set_type; for (uint32_t i = 0; i < prev_err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = prev_err_set_type->data.error_set.errors[i]; assert(errors[error_entry->value] == nullptr); errors[error_entry->value] = error_entry; } } bool prev_is_superset = true; for (uint32_t i = 0; i < cur_err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *contained_error_entry = cur_err_set_type->data.error_set.errors[i]; ErrorTableEntry *error_entry = errors[contained_error_entry->value]; if (error_entry == nullptr) { prev_is_superset = false; break; } } if (prev_is_superset) { continue; } // unset all the errors for (uint32_t i = 0; i < err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = err_set_type->data.error_set.errors[i]; errors[error_entry->value] = nullptr; } for (uint32_t i = 0, count = ira->codegen->errors_by_index.length; i < count; i += 1) { assert(errors[i] == nullptr); } for (uint32_t i = 0; i < cur_err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = cur_err_set_type->data.error_set.errors[i]; assert(errors[error_entry->value] == nullptr); errors[error_entry->value] = error_entry; } bool cur_is_superset = true; for (uint32_t i = 0; i < prev_err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *contained_error_entry = prev_err_set_type->data.error_set.errors[i]; ErrorTableEntry *error_entry = errors[contained_error_entry->value]; if (error_entry == nullptr) { cur_is_superset = false; break; } } if (cur_is_superset) { err_set_type = cur_err_set_type; continue; } err_set_type = get_error_set_union(ira->codegen, errors, cur_err_set_type, prev_err_set_type); continue; } } if (prev_type->id == ZigTypeIdNull) { prev_inst = cur_inst; any_are_null = true; continue; } if (cur_type->id == ZigTypeIdNull) { any_are_null = true; continue; } if (prev_type->id == ZigTypeIdEnum && cur_type->id == ZigTypeIdEnumLiteral) { TypeEnumField *field = find_enum_type_field(prev_type, cur_inst->value.data.x_enum_literal); if (field != nullptr) { continue; } } if (is_tagged_union(prev_type) && cur_type->id == ZigTypeIdEnumLiteral) { TypeUnionField *field = find_union_type_field(prev_type, cur_inst->value.data.x_enum_literal); if (field != nullptr) { continue; } } if (cur_type->id == ZigTypeIdEnum && prev_type->id == ZigTypeIdEnumLiteral) { TypeEnumField *field = find_enum_type_field(cur_type, prev_inst->value.data.x_enum_literal); if (field != nullptr) { prev_inst = cur_inst; continue; } } if (is_tagged_union(cur_type) && prev_type->id == ZigTypeIdEnumLiteral) { TypeUnionField *field = find_union_type_field(cur_type, prev_inst->value.data.x_enum_literal); if (field != nullptr) { prev_inst = cur_inst; continue; } } if (prev_type->id == ZigTypeIdPointer && prev_type->data.pointer.ptr_len == PtrLenC && (cur_type->id == ZigTypeIdComptimeInt || cur_type->id == ZigTypeIdInt)) { continue; } if (cur_type->id == ZigTypeIdPointer && cur_type->data.pointer.ptr_len == PtrLenC && (prev_type->id == ZigTypeIdComptimeInt || prev_type->id == ZigTypeIdInt)) { prev_inst = cur_inst; continue; } if (prev_type->id == ZigTypeIdPointer && cur_type->id == ZigTypeIdPointer) { if (prev_type->data.pointer.ptr_len == PtrLenC && types_match_const_cast_only(ira, prev_type->data.pointer.child_type, cur_type->data.pointer.child_type, source_node, !prev_type->data.pointer.is_const).id == ConstCastResultIdOk) { continue; } if (cur_type->data.pointer.ptr_len == PtrLenC && types_match_const_cast_only(ira, cur_type->data.pointer.child_type, prev_type->data.pointer.child_type, source_node, !cur_type->data.pointer.is_const).id == ConstCastResultIdOk) { prev_inst = cur_inst; continue; } } if (types_match_const_cast_only(ira, prev_type, cur_type, source_node, false).id == ConstCastResultIdOk) { continue; } if (types_match_const_cast_only(ira, cur_type, prev_type, source_node, false).id == ConstCastResultIdOk) { prev_inst = cur_inst; continue; } if (prev_type->id == ZigTypeIdInt && cur_type->id == ZigTypeIdInt && prev_type->data.integral.is_signed == cur_type->data.integral.is_signed) { if (cur_type->data.integral.bit_count > prev_type->data.integral.bit_count) { prev_inst = cur_inst; } continue; } if (prev_type->id == ZigTypeIdFloat && cur_type->id == ZigTypeIdFloat) { if (cur_type->data.floating.bit_count > prev_type->data.floating.bit_count) { prev_inst = cur_inst; } continue; } if (prev_type->id == ZigTypeIdErrorUnion && types_match_const_cast_only(ira, prev_type->data.error_union.payload_type, cur_type, source_node, false).id == ConstCastResultIdOk) { continue; } if (cur_type->id == ZigTypeIdErrorUnion && types_match_const_cast_only(ira, cur_type->data.error_union.payload_type, prev_type, source_node, false).id == ConstCastResultIdOk) { if (err_set_type != nullptr) { ZigType *cur_err_set_type = cur_type->data.error_union.err_set_type; if (!resolve_inferred_error_set(ira->codegen, cur_err_set_type, cur_inst->source_node)) { return ira->codegen->builtin_types.entry_invalid; } if (type_is_global_error_set(cur_err_set_type) || type_is_global_error_set(err_set_type)) { err_set_type = ira->codegen->builtin_types.entry_global_error_set; prev_inst = cur_inst; continue; } update_errors_helper(ira->codegen, &errors, &errors_count); err_set_type = get_error_set_union(ira->codegen, errors, err_set_type, cur_err_set_type); } prev_inst = cur_inst; continue; } if (prev_type->id == ZigTypeIdOptional && types_match_const_cast_only(ira, prev_type->data.maybe.child_type, cur_type, source_node, false).id == ConstCastResultIdOk) { continue; } if (cur_type->id == ZigTypeIdOptional && types_match_const_cast_only(ira, cur_type->data.maybe.child_type, prev_type, source_node, false).id == ConstCastResultIdOk) { prev_inst = cur_inst; continue; } if (prev_type->id == ZigTypeIdOptional && types_match_const_cast_only(ira, cur_type, prev_type->data.maybe.child_type, source_node, false).id == ConstCastResultIdOk) { prev_inst = cur_inst; any_are_null = true; continue; } if (cur_type->id == ZigTypeIdOptional && types_match_const_cast_only(ira, prev_type, cur_type->data.maybe.child_type, source_node, false).id == ConstCastResultIdOk) { any_are_null = true; continue; } if (cur_type->id == ZigTypeIdUndefined) { continue; } if (prev_type->id == ZigTypeIdUndefined) { prev_inst = cur_inst; continue; } if (prev_type->id == ZigTypeIdComptimeInt || prev_type->id == ZigTypeIdComptimeFloat) { if (ir_num_lit_fits_in_other_type(ira, prev_inst, cur_type, false)) { prev_inst = cur_inst; continue; } else { return ira->codegen->builtin_types.entry_invalid; } } if (cur_type->id == ZigTypeIdComptimeInt || cur_type->id == ZigTypeIdComptimeFloat) { if (ir_num_lit_fits_in_other_type(ira, cur_inst, prev_type, false)) { continue; } else { return ira->codegen->builtin_types.entry_invalid; } } if (cur_type->id == ZigTypeIdArray && prev_type->id == ZigTypeIdArray && cur_type->data.array.len != prev_type->data.array.len && types_match_const_cast_only(ira, cur_type->data.array.child_type, prev_type->data.array.child_type, source_node, false).id == ConstCastResultIdOk) { convert_to_const_slice = true; prev_inst = cur_inst; continue; } if (cur_type->id == ZigTypeIdArray && prev_type->id == ZigTypeIdArray && cur_type->data.array.len != prev_type->data.array.len && types_match_const_cast_only(ira, prev_type->data.array.child_type, cur_type->data.array.child_type, source_node, false).id == ConstCastResultIdOk) { convert_to_const_slice = true; continue; } if (cur_type->id == ZigTypeIdArray && is_slice(prev_type) && (prev_type->data.structure.fields[slice_ptr_index].type_entry->data.pointer.is_const || cur_type->data.array.len == 0) && types_match_const_cast_only(ira, prev_type->data.structure.fields[slice_ptr_index].type_entry->data.pointer.child_type, cur_type->data.array.child_type, source_node, false).id == ConstCastResultIdOk) { convert_to_const_slice = false; continue; } if (prev_type->id == ZigTypeIdArray && is_slice(cur_type) && (cur_type->data.structure.fields[slice_ptr_index].type_entry->data.pointer.is_const || prev_type->data.array.len == 0) && types_match_const_cast_only(ira, cur_type->data.structure.fields[slice_ptr_index].type_entry->data.pointer.child_type, prev_type->data.array.child_type, source_node, false).id == ConstCastResultIdOk) { prev_inst = cur_inst; convert_to_const_slice = false; continue; } if (prev_type->id == ZigTypeIdEnum && cur_type->id == ZigTypeIdUnion && (cur_type->data.unionation.decl_node->data.container_decl.auto_enum || cur_type->data.unionation.decl_node->data.container_decl.init_arg_expr != nullptr)) { if ((err = type_resolve(ira->codegen, cur_type, ResolveStatusZeroBitsKnown))) return ira->codegen->builtin_types.entry_invalid; if (cur_type->data.unionation.tag_type == prev_type) { continue; } } if (cur_type->id == ZigTypeIdEnum && prev_type->id == ZigTypeIdUnion && (prev_type->data.unionation.decl_node->data.container_decl.auto_enum || prev_type->data.unionation.decl_node->data.container_decl.init_arg_expr != nullptr)) { if ((err = type_resolve(ira->codegen, prev_type, ResolveStatusZeroBitsKnown))) return ira->codegen->builtin_types.entry_invalid; if (prev_type->data.unionation.tag_type == cur_type) { prev_inst = cur_inst; continue; } } ErrorMsg *msg = ir_add_error_node(ira, source_node, buf_sprintf("incompatible types: '%s' and '%s'", buf_ptr(&prev_type->name), buf_ptr(&cur_type->name))); add_error_note(ira->codegen, msg, prev_inst->source_node, buf_sprintf("type '%s' here", buf_ptr(&prev_type->name))); add_error_note(ira->codegen, msg, cur_inst->source_node, buf_sprintf("type '%s' here", buf_ptr(&cur_type->name))); return ira->codegen->builtin_types.entry_invalid; } free(errors); if (convert_to_const_slice) { assert(prev_inst->value.type->id == ZigTypeIdArray); ZigType *ptr_type = get_pointer_to_type_extra( ira->codegen, prev_inst->value.type->data.array.child_type, true, false, PtrLenUnknown, 0, 0, 0, false); ZigType *slice_type = get_slice_type(ira->codegen, ptr_type); if (err_set_type != nullptr) { return get_error_union_type(ira->codegen, err_set_type, slice_type); } else { return slice_type; } } else if (err_set_type != nullptr) { if (prev_inst->value.type->id == ZigTypeIdErrorSet) { return err_set_type; } else if (prev_inst->value.type->id == ZigTypeIdErrorUnion) { ZigType *payload_type = prev_inst->value.type->data.error_union.payload_type; if ((err = type_resolve(ira->codegen, payload_type, ResolveStatusSizeKnown))) return ira->codegen->builtin_types.entry_invalid; return get_error_union_type(ira->codegen, err_set_type, payload_type); } else if (expected_type != nullptr && expected_type->id == ZigTypeIdErrorUnion) { ZigType *payload_type = expected_type->data.error_union.payload_type; if ((err = type_resolve(ira->codegen, payload_type, ResolveStatusSizeKnown))) return ira->codegen->builtin_types.entry_invalid; return get_error_union_type(ira->codegen, err_set_type, payload_type); } else { if (prev_inst->value.type->id == ZigTypeIdComptimeInt || prev_inst->value.type->id == ZigTypeIdComptimeFloat) { ir_add_error_node(ira, source_node, buf_sprintf("unable to make error union out of number literal")); return ira->codegen->builtin_types.entry_invalid; } else if (prev_inst->value.type->id == ZigTypeIdNull) { ir_add_error_node(ira, source_node, buf_sprintf("unable to make error union out of null literal")); return ira->codegen->builtin_types.entry_invalid; } else { if ((err = type_resolve(ira->codegen, prev_inst->value.type, ResolveStatusSizeKnown))) return ira->codegen->builtin_types.entry_invalid; return get_error_union_type(ira->codegen, err_set_type, prev_inst->value.type); } } } else if (any_are_null && prev_inst->value.type->id != ZigTypeIdNull) { if (prev_inst->value.type->id == ZigTypeIdComptimeInt || prev_inst->value.type->id == ZigTypeIdComptimeFloat) { ir_add_error_node(ira, source_node, buf_sprintf("unable to make maybe out of number literal")); return ira->codegen->builtin_types.entry_invalid; } else if (prev_inst->value.type->id == ZigTypeIdOptional) { return prev_inst->value.type; } else { if ((err = type_resolve(ira->codegen, prev_inst->value.type, ResolveStatusSizeKnown))) return ira->codegen->builtin_types.entry_invalid; return get_optional_type(ira->codegen, prev_inst->value.type); } } else { return prev_inst->value.type; } } static void copy_const_val(ConstExprValue *dest, ConstExprValue *src, bool same_global_refs) { ConstGlobalRefs *global_refs = dest->global_refs; memcpy(dest, src, sizeof(ConstExprValue)); if (!same_global_refs) { dest->global_refs = global_refs; if (src->special == ConstValSpecialUndef) return; if (dest->type->id == ZigTypeIdStruct) { dest->data.x_struct.fields = create_const_vals(dest->type->data.structure.src_field_count); for (size_t i = 0; i < dest->type->data.structure.src_field_count; i += 1) { copy_const_val(&dest->data.x_struct.fields[i], &src->data.x_struct.fields[i], false); } } } } static bool eval_const_expr_implicit_cast(IrAnalyze *ira, IrInstruction *source_instr, CastOp cast_op, ConstExprValue *other_val, ZigType *other_type, ConstExprValue *const_val, ZigType *new_type) { const_val->special = other_val->special; assert(other_val != const_val); switch (cast_op) { case CastOpNoCast: zig_unreachable(); case CastOpErrSet: case CastOpBitCast: zig_panic("TODO"); case CastOpNoop: { bool same_global_refs = other_val->special == ConstValSpecialStatic; copy_const_val(const_val, other_val, same_global_refs); const_val->type = new_type; break; } case CastOpNumLitToConcrete: if (other_val->type->id == ZigTypeIdComptimeFloat) { assert(new_type->id == ZigTypeIdFloat); switch (new_type->data.floating.bit_count) { case 16: const_val->data.x_f16 = bigfloat_to_f16(&other_val->data.x_bigfloat); break; case 32: const_val->data.x_f32 = bigfloat_to_f32(&other_val->data.x_bigfloat); break; case 64: const_val->data.x_f64 = bigfloat_to_f64(&other_val->data.x_bigfloat); break; case 80: zig_panic("TODO"); case 128: const_val->data.x_f128 = bigfloat_to_f128(&other_val->data.x_bigfloat); break; default: zig_unreachable(); } } else if (other_val->type->id == ZigTypeIdComptimeInt) { bigint_init_bigint(&const_val->data.x_bigint, &other_val->data.x_bigint); } else { zig_unreachable(); } const_val->type = new_type; break; case CastOpIntToFloat: { assert(new_type->id == ZigTypeIdFloat); BigFloat bigfloat; bigfloat_init_bigint(&bigfloat, &other_val->data.x_bigint); switch (new_type->data.floating.bit_count) { case 16: const_val->data.x_f16 = bigfloat_to_f16(&bigfloat); break; case 32: const_val->data.x_f32 = bigfloat_to_f32(&bigfloat); break; case 64: const_val->data.x_f64 = bigfloat_to_f64(&bigfloat); break; case 80: zig_panic("TODO"); case 128: const_val->data.x_f128 = bigfloat_to_f128(&bigfloat); break; default: zig_unreachable(); } const_val->special = ConstValSpecialStatic; break; } case CastOpFloatToInt: float_init_bigint(&const_val->data.x_bigint, other_val); if (new_type->id == ZigTypeIdInt) { if (!bigint_fits_in_bits(&const_val->data.x_bigint, new_type->data.integral.bit_count, new_type->data.integral.is_signed)) { Buf *int_buf = buf_alloc(); bigint_append_buf(int_buf, &const_val->data.x_bigint, 10); ir_add_error(ira, source_instr, buf_sprintf("integer value '%s' cannot be stored in type '%s'", buf_ptr(int_buf), buf_ptr(&new_type->name))); return false; } } const_val->special = ConstValSpecialStatic; break; case CastOpBoolToInt: bigint_init_unsigned(&const_val->data.x_bigint, other_val->data.x_bool ? 1 : 0); const_val->special = ConstValSpecialStatic; break; } return true; } static IrInstruction *ir_const(IrAnalyze *ira, IrInstruction *old_instruction, ZigType *ty) { IrInstructionConst *const_instruction = ir_create_instruction(&ira->new_irb, old_instruction->scope, old_instruction->source_node); IrInstruction *new_instruction = &const_instruction->base; new_instruction->value.type = ty; new_instruction->value.special = ConstValSpecialStatic; return new_instruction; } static IrInstruction *ir_resolve_cast(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value, ZigType *wanted_type, CastOp cast_op) { if (instr_is_comptime(value) || !type_has_bits(wanted_type)) { IrInstruction *result = ir_const(ira, source_instr, wanted_type); if (!eval_const_expr_implicit_cast(ira, source_instr, cast_op, &value->value, value->value.type, &result->value, wanted_type)) { return ira->codegen->invalid_instruction; } return result; } else { IrInstruction *result = ir_build_cast(&ira->new_irb, source_instr->scope, source_instr->source_node, wanted_type, value, cast_op); result->value.type = wanted_type; return result; } } static IrInstruction *ir_resolve_ptr_of_array_to_unknown_len_ptr(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value, ZigType *wanted_type) { assert(value->value.type->id == ZigTypeIdPointer); Error err; if ((err = type_resolve(ira->codegen, value->value.type->data.pointer.child_type, ResolveStatusAlignmentKnown))) { return ira->codegen->invalid_instruction; } wanted_type = adjust_ptr_align(ira->codegen, wanted_type, get_ptr_align(ira->codegen, value->value.type)); if (instr_is_comptime(value)) { ConstExprValue *pointee = const_ptr_pointee(ira, ira->codegen, &value->value, source_instr->source_node); if (pointee == nullptr) return ira->codegen->invalid_instruction; if (pointee->special != ConstValSpecialRuntime) { IrInstruction *result = ir_const(ira, source_instr, wanted_type); result->value.data.x_ptr.special = ConstPtrSpecialBaseArray; result->value.data.x_ptr.mut = value->value.data.x_ptr.mut; result->value.data.x_ptr.data.base_array.array_val = pointee; result->value.data.x_ptr.data.base_array.elem_index = 0; result->value.data.x_ptr.data.base_array.is_cstr = false; return result; } } IrInstruction *result = ir_build_cast(&ira->new_irb, source_instr->scope, source_instr->source_node, wanted_type, value, CastOpBitCast); result->value.type = wanted_type; return result; } static IrInstruction *ir_resolve_ptr_of_array_to_slice(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value, ZigType *wanted_type, ResultLoc *result_loc) { Error err; if ((err = type_resolve(ira->codegen, value->value.type->data.pointer.child_type, ResolveStatusAlignmentKnown))) { return ira->codegen->invalid_instruction; } wanted_type = adjust_slice_align(ira->codegen, wanted_type, get_ptr_align(ira->codegen, value->value.type)); if (instr_is_comptime(value)) { ConstExprValue *pointee = const_ptr_pointee(ira, ira->codegen, &value->value, source_instr->source_node); if (pointee == nullptr) return ira->codegen->invalid_instruction; if (pointee->special != ConstValSpecialRuntime) { assert(value->value.type->id == ZigTypeIdPointer); ZigType *array_type = value->value.type->data.pointer.child_type; assert(is_slice(wanted_type)); bool is_const = wanted_type->data.structure.fields[slice_ptr_index].type_entry->data.pointer.is_const; IrInstruction *result = ir_const(ira, source_instr, wanted_type); init_const_slice(ira->codegen, &result->value, pointee, 0, array_type->data.array.len, is_const); result->value.data.x_struct.fields[slice_ptr_index].data.x_ptr.mut = value->value.data.x_ptr.mut; result->value.type = wanted_type; return result; } } if (result_loc == nullptr) result_loc = no_result_loc(); IrInstruction *result_loc_inst = ir_resolve_result(ira, source_instr, result_loc, wanted_type, nullptr, true, false, true); if (type_is_invalid(result_loc_inst->value.type) || instr_is_unreachable(result_loc_inst)) { return result_loc_inst; } return ir_build_ptr_of_array_to_slice(ira, source_instr, wanted_type, value, result_loc_inst); } static IrBasicBlock *ir_get_new_bb(IrAnalyze *ira, IrBasicBlock *old_bb, IrInstruction *ref_old_instruction) { assert(old_bb); if (old_bb->other) { if (ref_old_instruction == nullptr || old_bb->other->ref_instruction != ref_old_instruction) { return old_bb->other; } } IrBasicBlock *new_bb = ir_build_bb_from(&ira->new_irb, old_bb); new_bb->ref_instruction = ref_old_instruction; return new_bb; } static IrBasicBlock *ir_get_new_bb_runtime(IrAnalyze *ira, IrBasicBlock *old_bb, IrInstruction *ref_old_instruction) { assert(ref_old_instruction != nullptr); IrBasicBlock *new_bb = ir_get_new_bb(ira, old_bb, ref_old_instruction); if (new_bb->must_be_comptime_source_instr) { ErrorMsg *msg = ir_add_error(ira, ref_old_instruction, buf_sprintf("control flow attempts to use compile-time variable at runtime")); add_error_note(ira->codegen, msg, new_bb->must_be_comptime_source_instr->source_node, buf_sprintf("compile-time variable assigned here")); return nullptr; } return new_bb; } static void ir_start_bb(IrAnalyze *ira, IrBasicBlock *old_bb, IrBasicBlock *const_predecessor_bb) { ir_assert(!old_bb->suspended, (old_bb->instruction_list.length != 0) ? old_bb->instruction_list.at(0) : nullptr); ira->instruction_index = 0; ira->old_irb.current_basic_block = old_bb; ira->const_predecessor_bb = const_predecessor_bb; ira->old_bb_index = old_bb->index; } static IrInstruction *ira_suspend(IrAnalyze *ira, IrInstruction *old_instruction, IrBasicBlock *next_bb, IrSuspendPosition *suspend_pos) { if (ira->codegen->verbose_ir) { fprintf(stderr, "suspend %s_%zu %s_%zu #%zu (%zu,%zu)\n", ira->old_irb.current_basic_block->name_hint, ira->old_irb.current_basic_block->debug_id, ira->old_irb.exec->basic_block_list.at(ira->old_bb_index)->name_hint, ira->old_irb.exec->basic_block_list.at(ira->old_bb_index)->debug_id, ira->old_irb.current_basic_block->instruction_list.at(ira->instruction_index)->debug_id, ira->old_bb_index, ira->instruction_index); } suspend_pos->basic_block_index = ira->old_bb_index; suspend_pos->instruction_index = ira->instruction_index; ira->old_irb.current_basic_block->suspended = true; // null next_bb means that the caller plans to call ira_resume before returning if (next_bb != nullptr) { ira->old_bb_index = next_bb->index; ira->old_irb.current_basic_block = ira->old_irb.exec->basic_block_list.at(ira->old_bb_index); assert(ira->old_irb.current_basic_block == next_bb); ira->instruction_index = 0; ira->const_predecessor_bb = nullptr; next_bb->other = ir_get_new_bb_runtime(ira, next_bb, old_instruction); ira->new_irb.current_basic_block = next_bb->other; } return ira->codegen->unreach_instruction; } static IrInstruction *ira_resume(IrAnalyze *ira) { IrSuspendPosition pos = ira->resume_stack.pop(); if (ira->codegen->verbose_ir) { fprintf(stderr, "resume (%zu,%zu) ", pos.basic_block_index, pos.instruction_index); } ira->old_bb_index = pos.basic_block_index; ira->old_irb.current_basic_block = ira->old_irb.exec->basic_block_list.at(ira->old_bb_index); assert(ira->old_irb.current_basic_block->in_resume_stack); ira->old_irb.current_basic_block->in_resume_stack = false; ira->old_irb.current_basic_block->suspended = false; ira->instruction_index = pos.instruction_index; assert(pos.instruction_index < ira->old_irb.current_basic_block->instruction_list.length); if (ira->codegen->verbose_ir) { fprintf(stderr, "%s_%zu #%zu\n", ira->old_irb.current_basic_block->name_hint, ira->old_irb.current_basic_block->debug_id, ira->old_irb.current_basic_block->instruction_list.at(pos.instruction_index)->debug_id); } ira->const_predecessor_bb = nullptr; ira->new_irb.current_basic_block = ira->old_irb.current_basic_block->other; assert(ira->new_irb.current_basic_block != nullptr); return ira->codegen->unreach_instruction; } static void ir_start_next_bb(IrAnalyze *ira) { ira->old_bb_index += 1; bool need_repeat = true; for (;;) { while (ira->old_bb_index < ira->old_irb.exec->basic_block_list.length) { IrBasicBlock *old_bb = ira->old_irb.exec->basic_block_list.at(ira->old_bb_index); if (old_bb->other == nullptr && old_bb->suspend_instruction_ref == nullptr) { ira->old_bb_index += 1; continue; } // if it's already started, or // if it's a suspended block, // then skip it if (old_bb->suspended || (old_bb->other != nullptr && old_bb->other->instruction_list.length != 0) || (old_bb->other != nullptr && old_bb->other->already_appended)) { ira->old_bb_index += 1; continue; } // if there is a resume_stack, pop one from there rather than moving on. // the last item of the resume stack will be a basic block that will // move on to the next one below if (ira->resume_stack.length != 0) { ira_resume(ira); return; } if (old_bb->other == nullptr) { old_bb->other = ir_get_new_bb_runtime(ira, old_bb, old_bb->suspend_instruction_ref); } ira->new_irb.current_basic_block = old_bb->other; ir_start_bb(ira, old_bb, nullptr); return; } if (!need_repeat) { if (ira->resume_stack.length != 0) { ira_resume(ira); } return; } need_repeat = false; ira->old_bb_index = 0; continue; } } static void ir_finish_bb(IrAnalyze *ira) { if (!ira->new_irb.current_basic_block->already_appended) { ira->new_irb.current_basic_block->already_appended = true; if (ira->codegen->verbose_ir) { fprintf(stderr, "append new bb %s_%zu\n", ira->new_irb.current_basic_block->name_hint, ira->new_irb.current_basic_block->debug_id); } ira->new_irb.exec->basic_block_list.append(ira->new_irb.current_basic_block); } ira->instruction_index += 1; while (ira->instruction_index < ira->old_irb.current_basic_block->instruction_list.length) { IrInstruction *next_instruction = ira->old_irb.current_basic_block->instruction_list.at(ira->instruction_index); if (!next_instruction->is_gen) { ir_add_error(ira, next_instruction, buf_sprintf("unreachable code")); break; } ira->instruction_index += 1; } ir_start_next_bb(ira); } static IrInstruction *ir_unreach_error(IrAnalyze *ira) { ira->old_bb_index = SIZE_MAX; assert(ira->new_irb.exec->first_err_trace_msg != nullptr); return ira->codegen->unreach_instruction; } static bool ir_emit_backward_branch(IrAnalyze *ira, IrInstruction *source_instruction) { size_t *bbc = ira->new_irb.exec->backward_branch_count; size_t *quota = ira->new_irb.exec->backward_branch_quota; // If we're already over quota, we've already given an error message for this. if (*bbc > *quota) { assert(ira->codegen->errors.length > 0); return false; } *bbc += 1; if (*bbc > *quota) { ir_add_error(ira, source_instruction, buf_sprintf("evaluation exceeded %" ZIG_PRI_usize " backwards branches", *quota)); return false; } return true; } static IrInstruction *ir_inline_bb(IrAnalyze *ira, IrInstruction *source_instruction, IrBasicBlock *old_bb) { if (old_bb->debug_id <= ira->old_irb.current_basic_block->debug_id) { if (!ir_emit_backward_branch(ira, source_instruction)) return ir_unreach_error(ira); } old_bb->other = ira->old_irb.current_basic_block->other; ir_start_bb(ira, old_bb, ira->old_irb.current_basic_block); return ira->codegen->unreach_instruction; } static IrInstruction *ir_finish_anal(IrAnalyze *ira, IrInstruction *instruction) { if (instruction->value.type->id == ZigTypeIdUnreachable) ir_finish_bb(ira); return instruction; } static IrInstruction *ir_const_type(IrAnalyze *ira, IrInstruction *source_instruction, ZigType *ty) { IrInstruction *result = ir_const(ira, source_instruction, ira->codegen->builtin_types.entry_type); result->value.data.x_type = ty; return result; } static IrInstruction *ir_const_bool(IrAnalyze *ira, IrInstruction *source_instruction, bool value) { IrInstruction *result = ir_const(ira, source_instruction, ira->codegen->builtin_types.entry_bool); result->value.data.x_bool = value; return result; } static IrInstruction *ir_const_undef(IrAnalyze *ira, IrInstruction *source_instruction, ZigType *ty) { IrInstruction *result = ir_const(ira, source_instruction, ty); result->value.special = ConstValSpecialUndef; return result; } static IrInstruction *ir_const_unreachable(IrAnalyze *ira, IrInstruction *source_instruction) { IrInstruction *result = ir_const(ira, source_instruction, ira->codegen->builtin_types.entry_unreachable); result->value.special = ConstValSpecialStatic; return result; } static IrInstruction *ir_const_void(IrAnalyze *ira, IrInstruction *source_instruction) { return ir_const(ira, source_instruction, ira->codegen->builtin_types.entry_void); } static IrInstruction *ir_const_unsigned(IrAnalyze *ira, IrInstruction *source_instruction, uint64_t value) { IrInstruction *result = ir_const(ira, source_instruction, ira->codegen->builtin_types.entry_num_lit_int); bigint_init_unsigned(&result->value.data.x_bigint, value); return result; } static IrInstruction *ir_get_const_ptr(IrAnalyze *ira, IrInstruction *instruction, ConstExprValue *pointee, ZigType *pointee_type, ConstPtrMut ptr_mut, bool ptr_is_const, bool ptr_is_volatile, uint32_t ptr_align) { ZigType *ptr_type = get_pointer_to_type_extra(ira->codegen, pointee_type, ptr_is_const, ptr_is_volatile, PtrLenSingle, ptr_align, 0, 0, false); IrInstruction *const_instr = ir_const(ira, instruction, ptr_type); ConstExprValue *const_val = &const_instr->value; const_val->data.x_ptr.special = ConstPtrSpecialRef; const_val->data.x_ptr.mut = ptr_mut; const_val->data.x_ptr.data.ref.pointee = pointee; return const_instr; } static Error ir_resolve_const_val(CodeGen *codegen, IrExecutable *exec, AstNode *source_node, ConstExprValue *val, UndefAllowed undef_allowed) { Error err; for (;;) { switch (val->special) { case ConstValSpecialStatic: return ErrorNone; case ConstValSpecialRuntime: if (!type_has_bits(val->type)) return ErrorNone; exec_add_error_node(codegen, exec, source_node, buf_sprintf("unable to evaluate constant expression")); return ErrorSemanticAnalyzeFail; case ConstValSpecialUndef: if (undef_allowed == UndefOk || undef_allowed == LazyOk) return ErrorNone; exec_add_error_node(codegen, exec, source_node, buf_sprintf("use of undefined value here causes undefined behavior")); return ErrorSemanticAnalyzeFail; case ConstValSpecialLazy: if (undef_allowed == LazyOk || undef_allowed == LazyOkNoUndef) return ErrorNone; if ((err = ir_resolve_lazy(codegen, source_node, val))) return err; continue; } } } static ConstExprValue *ir_resolve_const(IrAnalyze *ira, IrInstruction *value, UndefAllowed undef_allowed) { Error err; if ((err = ir_resolve_const_val(ira->codegen, ira->new_irb.exec, value->source_node, &value->value, undef_allowed))) { return nullptr; } return &value->value; } ConstExprValue *ir_eval_const_value(CodeGen *codegen, Scope *scope, AstNode *node, ZigType *expected_type, size_t *backward_branch_count, size_t *backward_branch_quota, ZigFn *fn_entry, Buf *c_import_buf, AstNode *source_node, Buf *exec_name, IrExecutable *parent_exec, AstNode *expected_type_source_node, UndefAllowed undef_allowed) { Error err; if (expected_type != nullptr && type_is_invalid(expected_type)) return &codegen->invalid_instruction->value; IrExecutable *ir_executable = allocate(1); ir_executable->source_node = source_node; ir_executable->parent_exec = parent_exec; ir_executable->name = exec_name; ir_executable->is_inline = true; ir_executable->fn_entry = fn_entry; ir_executable->c_import_buf = c_import_buf; ir_executable->begin_scope = scope; ir_gen(codegen, node, scope, ir_executable); if (ir_executable->first_err_trace_msg != nullptr) { codegen->trace_err = add_error_note(codegen, ir_executable->first_err_trace_msg, source_node, buf_create_from_str("called from here")); return &codegen->invalid_instruction->value; } if (codegen->verbose_ir) { fprintf(stderr, "\nSource: "); ast_render(stderr, node, 4); fprintf(stderr, "\n{ // (IR)\n"); ir_print(codegen, stderr, ir_executable, 2); fprintf(stderr, "}\n"); } IrExecutable *analyzed_executable = allocate(1); analyzed_executable->source_node = source_node; analyzed_executable->parent_exec = parent_exec; analyzed_executable->source_exec = ir_executable; analyzed_executable->name = exec_name; analyzed_executable->is_inline = true; analyzed_executable->fn_entry = fn_entry; analyzed_executable->c_import_buf = c_import_buf; analyzed_executable->backward_branch_count = backward_branch_count; analyzed_executable->backward_branch_quota = backward_branch_quota; analyzed_executable->begin_scope = scope; ZigType *result_type = ir_analyze(codegen, ir_executable, analyzed_executable, expected_type, expected_type_source_node); if (type_is_invalid(result_type)) { return &codegen->invalid_instruction->value; } if (codegen->verbose_ir) { fprintf(stderr, "{ // (analyzed)\n"); ir_print(codegen, stderr, analyzed_executable, 2); fprintf(stderr, "}\n"); } ConstExprValue *result = ir_exec_const_result(codegen, analyzed_executable); if ((err = ir_resolve_const_val(codegen, analyzed_executable, node, result, undef_allowed))) return &codegen->invalid_instruction->value; return result; } static ErrorTableEntry *ir_resolve_error(IrAnalyze *ira, IrInstruction *err_value) { if (type_is_invalid(err_value->value.type)) return nullptr; if (err_value->value.type->id != ZigTypeIdErrorSet) { ir_add_error(ira, err_value, buf_sprintf("expected error, found '%s'", buf_ptr(&err_value->value.type->name))); return nullptr; } ConstExprValue *const_val = ir_resolve_const(ira, err_value, UndefBad); if (!const_val) return nullptr; assert(const_val->data.x_err_set != nullptr); return const_val->data.x_err_set; } static ZigType *ir_resolve_const_type(CodeGen *codegen, IrExecutable *exec, AstNode *source_node, ConstExprValue *val) { Error err; if ((err = ir_resolve_const_val(codegen, exec, source_node, val, UndefBad))) return codegen->builtin_types.entry_invalid; assert(val->data.x_type != nullptr); return val->data.x_type; } static ConstExprValue *ir_resolve_type_lazy(IrAnalyze *ira, IrInstruction *type_value) { if (type_is_invalid(type_value->value.type)) return nullptr; if (type_value->value.type->id != ZigTypeIdMetaType) { ir_add_error(ira, type_value, buf_sprintf("expected type 'type', found '%s'", buf_ptr(&type_value->value.type->name))); return nullptr; } Error err; if ((err = ir_resolve_const_val(ira->codegen, ira->new_irb.exec, type_value->source_node, &type_value->value, LazyOk))) { return nullptr; } return &type_value->value; } static ZigType *ir_resolve_type(IrAnalyze *ira, IrInstruction *type_value) { ConstExprValue *val = ir_resolve_type_lazy(ira, type_value); if (val == nullptr) return ira->codegen->builtin_types.entry_invalid; return ir_resolve_const_type(ira->codegen, ira->new_irb.exec, type_value->source_node, val); } static ZigType *ir_resolve_int_type(IrAnalyze *ira, IrInstruction *type_value) { ZigType *ty = ir_resolve_type(ira, type_value); if (type_is_invalid(ty)) return ira->codegen->builtin_types.entry_invalid; if (ty->id != ZigTypeIdInt) { ir_add_error(ira, type_value, buf_sprintf("expected integer type, found '%s'", buf_ptr(&ty->name))); return ira->codegen->builtin_types.entry_invalid; } return ty; } static ZigType *ir_resolve_error_set_type(IrAnalyze *ira, IrInstruction *op_source, IrInstruction *type_value) { if (type_is_invalid(type_value->value.type)) return ira->codegen->builtin_types.entry_invalid; if (type_value->value.type->id != ZigTypeIdMetaType) { ErrorMsg *msg = ir_add_error(ira, type_value, buf_sprintf("expected error set type, found '%s'", buf_ptr(&type_value->value.type->name))); add_error_note(ira->codegen, msg, op_source->source_node, buf_sprintf("`||` merges error sets; `or` performs boolean OR")); return ira->codegen->builtin_types.entry_invalid; } ConstExprValue *const_val = ir_resolve_const(ira, type_value, UndefBad); if (!const_val) return ira->codegen->builtin_types.entry_invalid; assert(const_val->data.x_type != nullptr); ZigType *result_type = const_val->data.x_type; if (result_type->id != ZigTypeIdErrorSet) { ErrorMsg *msg = ir_add_error(ira, type_value, buf_sprintf("expected error set type, found type '%s'", buf_ptr(&result_type->name))); add_error_note(ira->codegen, msg, op_source->source_node, buf_sprintf("`||` merges error sets; `or` performs boolean OR")); return ira->codegen->builtin_types.entry_invalid; } return result_type; } static ZigFn *ir_resolve_fn(IrAnalyze *ira, IrInstruction *fn_value) { if (fn_value == ira->codegen->invalid_instruction) return nullptr; if (type_is_invalid(fn_value->value.type)) return nullptr; if (fn_value->value.type->id != ZigTypeIdFn) { ir_add_error_node(ira, fn_value->source_node, buf_sprintf("expected function type, found '%s'", buf_ptr(&fn_value->value.type->name))); return nullptr; } ConstExprValue *const_val = ir_resolve_const(ira, fn_value, UndefBad); if (!const_val) return nullptr; assert(const_val->data.x_ptr.special == ConstPtrSpecialFunction); return const_val->data.x_ptr.data.fn.fn_entry; } static IrInstruction *ir_analyze_optional_wrap(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value, ZigType *wanted_type, ResultLoc *result_loc) { assert(wanted_type->id == ZigTypeIdOptional); if (instr_is_comptime(value)) { ZigType *payload_type = wanted_type->data.maybe.child_type; IrInstruction *casted_payload = ir_implicit_cast(ira, value, payload_type); if (type_is_invalid(casted_payload->value.type)) return ira->codegen->invalid_instruction; ConstExprValue *val = ir_resolve_const(ira, casted_payload, UndefOk); if (!val) return ira->codegen->invalid_instruction; IrInstructionConst *const_instruction = ir_create_instruction(&ira->new_irb, source_instr->scope, source_instr->source_node); const_instruction->base.value.special = ConstValSpecialStatic; if (types_have_same_zig_comptime_repr(wanted_type, payload_type)) { copy_const_val(&const_instruction->base.value, val, val->data.x_ptr.mut == ConstPtrMutComptimeConst); } else { const_instruction->base.value.data.x_optional = val; } const_instruction->base.value.type = wanted_type; return &const_instruction->base; } if (result_loc == nullptr && handle_is_ptr(wanted_type)) { result_loc = no_result_loc(); } IrInstruction *result_loc_inst = nullptr; if (result_loc != nullptr) { result_loc_inst = ir_resolve_result(ira, source_instr, result_loc, wanted_type, nullptr, true, false, true); if (type_is_invalid(result_loc_inst->value.type) || instr_is_unreachable(result_loc_inst)) { return result_loc_inst; } } IrInstruction *result = ir_build_optional_wrap(ira, source_instr, wanted_type, value, result_loc_inst); result->value.data.rh_maybe = RuntimeHintOptionalNonNull; return result; } static IrInstruction *ir_analyze_err_wrap_payload(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value, ZigType *wanted_type, ResultLoc *result_loc) { assert(wanted_type->id == ZigTypeIdErrorUnion); ZigType *payload_type = wanted_type->data.error_union.payload_type; ZigType *err_set_type = wanted_type->data.error_union.err_set_type; if (instr_is_comptime(value)) { IrInstruction *casted_payload = ir_implicit_cast(ira, value, payload_type); if (type_is_invalid(casted_payload->value.type)) return ira->codegen->invalid_instruction; ConstExprValue *val = ir_resolve_const(ira, casted_payload, UndefBad); if (!val) return ira->codegen->invalid_instruction; ConstExprValue *err_set_val = create_const_vals(1); err_set_val->type = err_set_type; err_set_val->special = ConstValSpecialStatic; err_set_val->data.x_err_set = nullptr; IrInstructionConst *const_instruction = ir_create_instruction(&ira->new_irb, source_instr->scope, source_instr->source_node); const_instruction->base.value.type = wanted_type; const_instruction->base.value.special = ConstValSpecialStatic; const_instruction->base.value.data.x_err_union.error_set = err_set_val; const_instruction->base.value.data.x_err_union.payload = val; return &const_instruction->base; } IrInstruction *result_loc_inst; if (handle_is_ptr(wanted_type)) { if (result_loc == nullptr) result_loc = no_result_loc(); result_loc_inst = ir_resolve_result(ira, source_instr, result_loc, wanted_type, nullptr, true, false, true); if (type_is_invalid(result_loc_inst->value.type) || instr_is_unreachable(result_loc_inst)) { return result_loc_inst; } } else { result_loc_inst = nullptr; } IrInstruction *result = ir_build_err_wrap_payload(ira, source_instr, wanted_type, value, result_loc_inst); result->value.data.rh_error_union = RuntimeHintErrorUnionNonError; return result; } static IrInstruction *ir_analyze_err_set_cast(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value, ZigType *wanted_type) { assert(value->value.type->id == ZigTypeIdErrorSet); assert(wanted_type->id == ZigTypeIdErrorSet); if (instr_is_comptime(value)) { ConstExprValue *val = ir_resolve_const(ira, value, UndefBad); if (!val) return ira->codegen->invalid_instruction; if (!resolve_inferred_error_set(ira->codegen, wanted_type, source_instr->source_node)) { return ira->codegen->invalid_instruction; } if (!type_is_global_error_set(wanted_type)) { bool subset = false; for (uint32_t i = 0, count = wanted_type->data.error_set.err_count; i < count; i += 1) { if (wanted_type->data.error_set.errors[i]->value == val->data.x_err_set->value) { subset = true; break; } } if (!subset) { ir_add_error(ira, source_instr, buf_sprintf("error.%s not a member of error set '%s'", buf_ptr(&val->data.x_err_set->name), buf_ptr(&wanted_type->name))); return ira->codegen->invalid_instruction; } } IrInstructionConst *const_instruction = ir_create_instruction(&ira->new_irb, source_instr->scope, source_instr->source_node); const_instruction->base.value.type = wanted_type; const_instruction->base.value.special = ConstValSpecialStatic; const_instruction->base.value.data.x_err_set = val->data.x_err_set; return &const_instruction->base; } IrInstruction *result = ir_build_cast(&ira->new_irb, source_instr->scope, source_instr->source_node, wanted_type, value, CastOpErrSet); result->value.type = wanted_type; return result; } static IrInstruction *ir_analyze_frame_ptr_to_anyframe(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *frame_ptr, ZigType *wanted_type) { if (instr_is_comptime(frame_ptr)) { ConstExprValue *ptr_val = ir_resolve_const(ira, frame_ptr, UndefBad); if (ptr_val == nullptr) return ira->codegen->invalid_instruction; ir_assert(ptr_val->type->id == ZigTypeIdPointer, source_instr); if (ptr_val->data.x_ptr.mut != ConstPtrMutRuntimeVar) { zig_panic("TODO comptime frame pointer"); } } IrInstruction *result = ir_build_cast(&ira->new_irb, source_instr->scope, source_instr->source_node, wanted_type, frame_ptr, CastOpBitCast); result->value.type = wanted_type; return result; } static IrInstruction *ir_analyze_anyframe_to_anyframe(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value, ZigType *wanted_type) { if (instr_is_comptime(value)) { zig_panic("TODO comptime anyframe->T to anyframe"); } IrInstruction *result = ir_build_cast(&ira->new_irb, source_instr->scope, source_instr->source_node, wanted_type, value, CastOpBitCast); result->value.type = wanted_type; return result; } static IrInstruction *ir_analyze_err_wrap_code(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value, ZigType *wanted_type, ResultLoc *result_loc) { assert(wanted_type->id == ZigTypeIdErrorUnion); IrInstruction *casted_value = ir_implicit_cast(ira, value, wanted_type->data.error_union.err_set_type); if (instr_is_comptime(casted_value)) { ConstExprValue *val = ir_resolve_const(ira, casted_value, UndefBad); if (!val) return ira->codegen->invalid_instruction; ConstExprValue *err_set_val = create_const_vals(1); err_set_val->special = ConstValSpecialStatic; err_set_val->type = wanted_type->data.error_union.err_set_type; err_set_val->data.x_err_set = val->data.x_err_set; IrInstructionConst *const_instruction = ir_create_instruction(&ira->new_irb, source_instr->scope, source_instr->source_node); const_instruction->base.value.type = wanted_type; const_instruction->base.value.special = ConstValSpecialStatic; const_instruction->base.value.data.x_err_union.error_set = err_set_val; const_instruction->base.value.data.x_err_union.payload = nullptr; return &const_instruction->base; } IrInstruction *result_loc_inst; if (handle_is_ptr(wanted_type)) { if (result_loc == nullptr) result_loc = no_result_loc(); result_loc_inst = ir_resolve_result(ira, source_instr, result_loc, wanted_type, nullptr, true, false, true); if (type_is_invalid(result_loc_inst->value.type) || instr_is_unreachable(result_loc_inst)) { return result_loc_inst; } } else { result_loc_inst = nullptr; } IrInstruction *result = ir_build_err_wrap_code(ira, source_instr, wanted_type, value, result_loc_inst); result->value.data.rh_error_union = RuntimeHintErrorUnionError; return result; } static IrInstruction *ir_analyze_null_to_maybe(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value, ZigType *wanted_type) { assert(wanted_type->id == ZigTypeIdOptional); assert(instr_is_comptime(value)); ConstExprValue *val = ir_resolve_const(ira, value, UndefBad); assert(val != nullptr); IrInstruction *result = ir_const(ira, source_instr, wanted_type); result->value.special = ConstValSpecialStatic; if (get_codegen_ptr_type(wanted_type) != nullptr) { result->value.data.x_ptr.special = ConstPtrSpecialNull; } else if (is_opt_err_set(wanted_type)) { result->value.data.x_err_set = nullptr; } else { result->value.data.x_optional = nullptr; } return result; } static IrInstruction *ir_analyze_null_to_c_pointer(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value, ZigType *wanted_type) { assert(wanted_type->id == ZigTypeIdPointer); assert(wanted_type->data.pointer.ptr_len == PtrLenC); assert(instr_is_comptime(value)); ConstExprValue *val = ir_resolve_const(ira, value, UndefBad); assert(val != nullptr); IrInstruction *result = ir_const(ira, source_instr, wanted_type); result->value.data.x_ptr.special = ConstPtrSpecialNull; result->value.data.x_ptr.mut = ConstPtrMutComptimeConst; return result; } static IrInstruction *ir_get_ref(IrAnalyze *ira, IrInstruction *source_instruction, IrInstruction *value, bool is_const, bool is_volatile) { Error err; if (type_is_invalid(value->value.type)) return ira->codegen->invalid_instruction; if ((err = type_resolve(ira->codegen, value->value.type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; if (instr_is_comptime(value)) { ConstExprValue *val = ir_resolve_const(ira, value, UndefOk); if (!val) return ira->codegen->invalid_instruction; return ir_get_const_ptr(ira, source_instruction, val, value->value.type, ConstPtrMutComptimeConst, is_const, is_volatile, 0); } ZigType *ptr_type = get_pointer_to_type_extra(ira->codegen, value->value.type, is_const, is_volatile, PtrLenSingle, 0, 0, 0, false); IrInstruction *result_loc; if (type_has_bits(ptr_type) && !handle_is_ptr(value->value.type)) { result_loc = ir_resolve_result(ira, source_instruction, no_result_loc(), value->value.type, nullptr, true, false, true); } else { result_loc = nullptr; } IrInstruction *new_instruction = ir_build_ref_gen(ira, source_instruction, ptr_type, value, result_loc); new_instruction->value.data.rh_ptr = RuntimeHintPtrStack; return new_instruction; } static IrInstruction *ir_analyze_array_to_slice(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *array_arg, ZigType *wanted_type, ResultLoc *result_loc) { assert(is_slice(wanted_type)); // In this function we honor the const-ness of wanted_type, because // we may be casting [0]T to []const T which is perfectly valid. IrInstruction *array_ptr = nullptr; IrInstruction *array; if (array_arg->value.type->id == ZigTypeIdPointer) { array = ir_get_deref(ira, source_instr, array_arg, nullptr); array_ptr = array_arg; } else { array = array_arg; } ZigType *array_type = array->value.type; assert(array_type->id == ZigTypeIdArray); if (instr_is_comptime(array) || array_type->data.array.len == 0) { IrInstruction *result = ir_const(ira, source_instr, wanted_type); init_const_slice(ira->codegen, &result->value, &array->value, 0, array_type->data.array.len, true); result->value.type = wanted_type; return result; } IrInstruction *start = ir_const(ira, source_instr, ira->codegen->builtin_types.entry_usize); init_const_usize(ira->codegen, &start->value, 0); IrInstruction *end = ir_const(ira, source_instr, ira->codegen->builtin_types.entry_usize); init_const_usize(ira->codegen, &end->value, array_type->data.array.len); if (!array_ptr) array_ptr = ir_get_ref(ira, source_instr, array, true, false); if (result_loc == nullptr) result_loc = no_result_loc(); IrInstruction *result_loc_inst = ir_resolve_result(ira, source_instr, result_loc, wanted_type, nullptr, true, false, true); if (type_is_invalid(result_loc_inst->value.type) || instr_is_unreachable(result_loc_inst)) { return result_loc_inst; } IrInstruction *result = ir_build_slice_gen(ira, source_instr, wanted_type, array_ptr, start, end, false, result_loc_inst); result->value.data.rh_slice.id = RuntimeHintSliceIdLen; result->value.data.rh_slice.len = array_type->data.array.len; return result; } static ZigType *ir_resolve_union_tag_type(IrAnalyze *ira, IrInstruction *source_instr, ZigType *union_type) { assert(union_type->id == ZigTypeIdUnion); Error err; if ((err = type_resolve(ira->codegen, union_type, ResolveStatusSizeKnown))) return ira->codegen->builtin_types.entry_invalid; AstNode *decl_node = union_type->data.unionation.decl_node; if (decl_node->data.container_decl.auto_enum || decl_node->data.container_decl.init_arg_expr != nullptr) { assert(union_type->data.unionation.tag_type != nullptr); return union_type->data.unionation.tag_type; } else { ErrorMsg *msg = ir_add_error(ira, source_instr, buf_sprintf("union '%s' has no tag", buf_ptr(&union_type->name))); add_error_note(ira->codegen, msg, decl_node, buf_sprintf("consider 'union(enum)' here")); return ira->codegen->builtin_types.entry_invalid; } } static IrInstruction *ir_analyze_enum_to_int(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *target) { Error err; IrInstruction *enum_target; ZigType *enum_type; if (target->value.type->id == ZigTypeIdUnion) { enum_type = ir_resolve_union_tag_type(ira, target, target->value.type); if (type_is_invalid(enum_type)) return ira->codegen->invalid_instruction; enum_target = ir_implicit_cast(ira, target, enum_type); if (type_is_invalid(enum_target->value.type)) return ira->codegen->invalid_instruction; } else if (target->value.type->id == ZigTypeIdEnum) { enum_target = target; enum_type = target->value.type; } else { ir_add_error(ira, target, buf_sprintf("expected enum, found type '%s'", buf_ptr(&target->value.type->name))); return ira->codegen->invalid_instruction; } if ((err = type_resolve(ira->codegen, enum_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; ZigType *tag_type = enum_type->data.enumeration.tag_int_type; assert(tag_type->id == ZigTypeIdInt || tag_type->id == ZigTypeIdComptimeInt); // If there is only one possible tag, then we know at comptime what it is. if (enum_type->data.enumeration.layout == ContainerLayoutAuto && enum_type->data.enumeration.src_field_count == 1) { IrInstruction *result = ir_const(ira, source_instr, tag_type); init_const_bigint(&result->value, tag_type, &enum_type->data.enumeration.fields[0].value); return result; } if (instr_is_comptime(enum_target)) { ConstExprValue *val = ir_resolve_const(ira, enum_target, UndefBad); if (!val) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, source_instr, tag_type); init_const_bigint(&result->value, tag_type, &val->data.x_enum_tag); return result; } IrInstruction *result = ir_build_widen_or_shorten(&ira->new_irb, source_instr->scope, source_instr->source_node, enum_target); result->value.type = tag_type; return result; } static IrInstruction *ir_analyze_union_to_tag(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *target, ZigType *wanted_type) { assert(target->value.type->id == ZigTypeIdUnion); assert(wanted_type->id == ZigTypeIdEnum); assert(wanted_type == target->value.type->data.unionation.tag_type); if (instr_is_comptime(target)) { ConstExprValue *val = ir_resolve_const(ira, target, UndefBad); if (!val) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, source_instr, wanted_type); result->value.special = ConstValSpecialStatic; result->value.type = wanted_type; bigint_init_bigint(&result->value.data.x_enum_tag, &val->data.x_union.tag); return result; } // If there is only 1 possible tag, then we know at comptime what it is. if (wanted_type->data.enumeration.layout == ContainerLayoutAuto && wanted_type->data.enumeration.src_field_count == 1) { IrInstruction *result = ir_const(ira, source_instr, wanted_type); result->value.special = ConstValSpecialStatic; result->value.type = wanted_type; TypeEnumField *enum_field = target->value.type->data.unionation.fields[0].enum_field; bigint_init_bigint(&result->value.data.x_enum_tag, &enum_field->value); return result; } IrInstruction *result = ir_build_union_tag(&ira->new_irb, source_instr->scope, source_instr->source_node, target); result->value.type = wanted_type; return result; } static IrInstruction *ir_analyze_undefined_to_anything(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *target, ZigType *wanted_type) { IrInstruction *result = ir_const(ira, source_instr, wanted_type); result->value.special = ConstValSpecialUndef; return result; } static IrInstruction *ir_analyze_enum_to_union(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *uncasted_target, ZigType *wanted_type) { Error err; assert(wanted_type->id == ZigTypeIdUnion); if ((err = type_resolve(ira->codegen, wanted_type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; IrInstruction *target = ir_implicit_cast(ira, uncasted_target, wanted_type->data.unionation.tag_type); if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; if (instr_is_comptime(target)) { ConstExprValue *val = ir_resolve_const(ira, target, UndefBad); if (!val) return ira->codegen->invalid_instruction; TypeUnionField *union_field = find_union_field_by_tag(wanted_type, &val->data.x_enum_tag); assert(union_field != nullptr); if ((err = type_resolve(ira->codegen, union_field->type_entry, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; switch (type_has_one_possible_value(ira->codegen, union_field->type_entry)) { case OnePossibleValueInvalid: return ira->codegen->invalid_instruction; case OnePossibleValueNo: { AstNode *field_node = wanted_type->data.unionation.decl_node->data.container_decl.fields.at( union_field->enum_field->decl_index); ErrorMsg *msg = ir_add_error(ira, source_instr, buf_sprintf("cast to union '%s' must initialize '%s' field '%s'", buf_ptr(&wanted_type->name), buf_ptr(&union_field->type_entry->name), buf_ptr(union_field->name))); add_error_note(ira->codegen, msg, field_node, buf_sprintf("field '%s' declared here", buf_ptr(union_field->name))); return ira->codegen->invalid_instruction; } case OnePossibleValueYes: break; } IrInstruction *result = ir_const(ira, source_instr, wanted_type); result->value.special = ConstValSpecialStatic; result->value.type = wanted_type; bigint_init_bigint(&result->value.data.x_union.tag, &val->data.x_enum_tag); result->value.data.x_union.payload = create_const_vals(1); result->value.data.x_union.payload->special = ConstValSpecialStatic; result->value.data.x_union.payload->type = union_field->type_entry; return result; } // if the union has all fields 0 bits, we can do it // and in fact it's a noop cast because the union value is just the enum value if (wanted_type->data.unionation.gen_field_count == 0) { IrInstruction *result = ir_build_cast(&ira->new_irb, target->scope, target->source_node, wanted_type, target, CastOpNoop); result->value.type = wanted_type; return result; } ErrorMsg *msg = ir_add_error(ira, source_instr, buf_sprintf("runtime cast to union '%s' which has non-void fields", buf_ptr(&wanted_type->name))); for (uint32_t i = 0; i < wanted_type->data.unionation.src_field_count; i += 1) { TypeUnionField *union_field = &wanted_type->data.unionation.fields[i]; if (type_has_bits(union_field->type_entry)) { AstNode *field_node = wanted_type->data.unionation.decl_node->data.container_decl.fields.at(i); add_error_note(ira->codegen, msg, field_node, buf_sprintf("field '%s' has type '%s'", buf_ptr(union_field->name), buf_ptr(&union_field->type_entry->name))); } } return ira->codegen->invalid_instruction; } static IrInstruction *ir_analyze_widen_or_shorten(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *target, ZigType *wanted_type) { assert(wanted_type->id == ZigTypeIdInt || wanted_type->id == ZigTypeIdFloat); if (instr_is_comptime(target)) { ConstExprValue *val = ir_resolve_const(ira, target, UndefBad); if (!val) return ira->codegen->invalid_instruction; if (wanted_type->id == ZigTypeIdInt) { if (bigint_cmp_zero(&val->data.x_bigint) == CmpLT && !wanted_type->data.integral.is_signed) { ir_add_error(ira, source_instr, buf_sprintf("attempt to cast negative value to unsigned integer")); return ira->codegen->invalid_instruction; } if (!bigint_fits_in_bits(&val->data.x_bigint, wanted_type->data.integral.bit_count, wanted_type->data.integral.is_signed)) { ir_add_error(ira, source_instr, buf_sprintf("cast from '%s' to '%s' truncates bits", buf_ptr(&target->value.type->name), buf_ptr(&wanted_type->name))); return ira->codegen->invalid_instruction; } } IrInstruction *result = ir_const(ira, source_instr, wanted_type); result->value.type = wanted_type; if (wanted_type->id == ZigTypeIdInt) { bigint_init_bigint(&result->value.data.x_bigint, &val->data.x_bigint); } else { float_init_float(&result->value, val); } return result; } // If the destination integer type has no bits, then we can emit a comptime // zero. However, we still want to emit a runtime safety check to make sure // the target is zero. if (!type_has_bits(wanted_type)) { assert(wanted_type->id == ZigTypeIdInt); assert(type_has_bits(target->value.type)); ir_build_assert_zero(ira, source_instr, target); IrInstruction *result = ir_const_unsigned(ira, source_instr, 0); result->value.type = wanted_type; return result; } IrInstruction *result = ir_build_widen_or_shorten(&ira->new_irb, source_instr->scope, source_instr->source_node, target); result->value.type = wanted_type; return result; } static IrInstruction *ir_analyze_int_to_enum(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *target, ZigType *wanted_type) { Error err; assert(wanted_type->id == ZigTypeIdEnum); ZigType *actual_type = target->value.type; if ((err = type_resolve(ira->codegen, wanted_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; if (actual_type != wanted_type->data.enumeration.tag_int_type) { ir_add_error(ira, source_instr, buf_sprintf("integer to enum cast from '%s' instead of its tag type, '%s'", buf_ptr(&actual_type->name), buf_ptr(&wanted_type->data.enumeration.tag_int_type->name))); return ira->codegen->invalid_instruction; } assert(actual_type->id == ZigTypeIdInt || actual_type->id == ZigTypeIdComptimeInt); if (instr_is_comptime(target)) { ConstExprValue *val = ir_resolve_const(ira, target, UndefBad); if (!val) return ira->codegen->invalid_instruction; TypeEnumField *field = find_enum_field_by_tag(wanted_type, &val->data.x_bigint); if (field == nullptr) { Buf *val_buf = buf_alloc(); bigint_append_buf(val_buf, &val->data.x_bigint, 10); ErrorMsg *msg = ir_add_error(ira, source_instr, buf_sprintf("enum '%s' has no tag matching integer value %s", buf_ptr(&wanted_type->name), buf_ptr(val_buf))); add_error_note(ira->codegen, msg, wanted_type->data.enumeration.decl_node, buf_sprintf("'%s' declared here", buf_ptr(&wanted_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *result = ir_const(ira, source_instr, wanted_type); bigint_init_bigint(&result->value.data.x_enum_tag, &val->data.x_bigint); return result; } IrInstruction *result = ir_build_int_to_enum(&ira->new_irb, source_instr->scope, source_instr->source_node, nullptr, target); result->value.type = wanted_type; return result; } static IrInstruction *ir_analyze_number_to_literal(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *target, ZigType *wanted_type) { ConstExprValue *val = ir_resolve_const(ira, target, UndefBad); if (!val) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, source_instr, wanted_type); if (wanted_type->id == ZigTypeIdComptimeFloat) { float_init_float(&result->value, val); } else if (wanted_type->id == ZigTypeIdComptimeInt) { bigint_init_bigint(&result->value.data.x_bigint, &val->data.x_bigint); } else { zig_unreachable(); } return result; } static IrInstruction *ir_analyze_int_to_err(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *target, ZigType *wanted_type) { assert(target->value.type->id == ZigTypeIdInt); assert(!target->value.type->data.integral.is_signed); assert(wanted_type->id == ZigTypeIdErrorSet); if (instr_is_comptime(target)) { ConstExprValue *val = ir_resolve_const(ira, target, UndefBad); if (!val) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, source_instr, wanted_type); if (!resolve_inferred_error_set(ira->codegen, wanted_type, source_instr->source_node)) { return ira->codegen->invalid_instruction; } if (type_is_global_error_set(wanted_type)) { BigInt err_count; bigint_init_unsigned(&err_count, ira->codegen->errors_by_index.length); if (bigint_cmp_zero(&val->data.x_bigint) == CmpEQ || bigint_cmp(&val->data.x_bigint, &err_count) != CmpLT) { Buf *val_buf = buf_alloc(); bigint_append_buf(val_buf, &val->data.x_bigint, 10); ir_add_error(ira, source_instr, buf_sprintf("integer value %s represents no error", buf_ptr(val_buf))); return ira->codegen->invalid_instruction; } size_t index = bigint_as_usize(&val->data.x_bigint); result->value.data.x_err_set = ira->codegen->errors_by_index.at(index); return result; } else { ErrorTableEntry *err = nullptr; BigInt err_int; for (uint32_t i = 0, count = wanted_type->data.error_set.err_count; i < count; i += 1) { ErrorTableEntry *this_err = wanted_type->data.error_set.errors[i]; bigint_init_unsigned(&err_int, this_err->value); if (bigint_cmp(&val->data.x_bigint, &err_int) == CmpEQ) { err = this_err; break; } } if (err == nullptr) { Buf *val_buf = buf_alloc(); bigint_append_buf(val_buf, &val->data.x_bigint, 10); ir_add_error(ira, source_instr, buf_sprintf("integer value %s represents no error in '%s'", buf_ptr(val_buf), buf_ptr(&wanted_type->name))); return ira->codegen->invalid_instruction; } result->value.data.x_err_set = err; return result; } } IrInstruction *result = ir_build_int_to_err(&ira->new_irb, source_instr->scope, source_instr->source_node, target); result->value.type = wanted_type; return result; } static IrInstruction *ir_analyze_err_to_int(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *target, ZigType *wanted_type) { assert(wanted_type->id == ZigTypeIdInt); ZigType *err_type = target->value.type; if (instr_is_comptime(target)) { ConstExprValue *val = ir_resolve_const(ira, target, UndefBad); if (!val) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, source_instr, wanted_type); ErrorTableEntry *err; if (err_type->id == ZigTypeIdErrorUnion) { err = val->data.x_err_union.error_set->data.x_err_set; } else if (err_type->id == ZigTypeIdErrorSet) { err = val->data.x_err_set; } else { zig_unreachable(); } result->value.type = wanted_type; uint64_t err_value = err ? err->value : 0; bigint_init_unsigned(&result->value.data.x_bigint, err_value); if (!bigint_fits_in_bits(&result->value.data.x_bigint, wanted_type->data.integral.bit_count, wanted_type->data.integral.is_signed)) { ir_add_error_node(ira, source_instr->source_node, buf_sprintf("error code '%s' does not fit in '%s'", buf_ptr(&err->name), buf_ptr(&wanted_type->name))); return ira->codegen->invalid_instruction; } return result; } ZigType *err_set_type; if (err_type->id == ZigTypeIdErrorUnion) { err_set_type = err_type->data.error_union.err_set_type; } else if (err_type->id == ZigTypeIdErrorSet) { err_set_type = err_type; } else { zig_unreachable(); } if (!type_is_global_error_set(err_set_type)) { if (!resolve_inferred_error_set(ira->codegen, err_set_type, source_instr->source_node)) { return ira->codegen->invalid_instruction; } if (err_set_type->data.error_set.err_count == 0) { IrInstruction *result = ir_const(ira, source_instr, wanted_type); bigint_init_unsigned(&result->value.data.x_bigint, 0); return result; } else if (err_set_type->data.error_set.err_count == 1) { IrInstruction *result = ir_const(ira, source_instr, wanted_type); ErrorTableEntry *err = err_set_type->data.error_set.errors[0]; bigint_init_unsigned(&result->value.data.x_bigint, err->value); return result; } } BigInt bn; bigint_init_unsigned(&bn, ira->codegen->errors_by_index.length); if (!bigint_fits_in_bits(&bn, wanted_type->data.integral.bit_count, wanted_type->data.integral.is_signed)) { ir_add_error_node(ira, source_instr->source_node, buf_sprintf("too many error values to fit in '%s'", buf_ptr(&wanted_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *result = ir_build_err_to_int(&ira->new_irb, source_instr->scope, source_instr->source_node, target); result->value.type = wanted_type; return result; } static IrInstruction *ir_analyze_ptr_to_array(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *target, ZigType *wanted_type) { assert(wanted_type->id == ZigTypeIdPointer); Error err; if ((err = type_resolve(ira->codegen, target->value.type->data.pointer.child_type, ResolveStatusAlignmentKnown))) return ira->codegen->invalid_instruction; assert((wanted_type->data.pointer.is_const && target->value.type->data.pointer.is_const) || !target->value.type->data.pointer.is_const); wanted_type = adjust_ptr_align(ira->codegen, wanted_type, get_ptr_align(ira->codegen, target->value.type)); ZigType *array_type = wanted_type->data.pointer.child_type; assert(array_type->id == ZigTypeIdArray); assert(array_type->data.array.len == 1); if (instr_is_comptime(target)) { ConstExprValue *val = ir_resolve_const(ira, target, UndefBad); if (!val) return ira->codegen->invalid_instruction; assert(val->type->id == ZigTypeIdPointer); ConstExprValue *pointee = const_ptr_pointee(ira, ira->codegen, val, source_instr->source_node); if (pointee == nullptr) return ira->codegen->invalid_instruction; if (pointee->special != ConstValSpecialRuntime) { ConstExprValue *array_val = create_const_vals(1); array_val->special = ConstValSpecialStatic; array_val->type = array_type; array_val->data.x_array.special = ConstArraySpecialNone; array_val->data.x_array.data.s_none.elements = pointee; array_val->parent.id = ConstParentIdScalar; array_val->parent.data.p_scalar.scalar_val = pointee; IrInstructionConst *const_instruction = ir_create_instruction(&ira->new_irb, source_instr->scope, source_instr->source_node); const_instruction->base.value.type = wanted_type; const_instruction->base.value.special = ConstValSpecialStatic; const_instruction->base.value.data.x_ptr.special = ConstPtrSpecialRef; const_instruction->base.value.data.x_ptr.data.ref.pointee = array_val; const_instruction->base.value.data.x_ptr.mut = val->data.x_ptr.mut; return &const_instruction->base; } } // pointer to array and pointer to single item are represented the same way at runtime IrInstruction *result = ir_build_cast(&ira->new_irb, target->scope, target->source_node, wanted_type, target, CastOpBitCast); result->value.type = wanted_type; return result; } static void report_recursive_error(IrAnalyze *ira, AstNode *source_node, ConstCastOnly *cast_result, ErrorMsg *parent_msg) { switch (cast_result->id) { case ConstCastResultIdOk: zig_unreachable(); case ConstCastResultIdInvalid: zig_unreachable(); case ConstCastResultIdOptionalChild: { ErrorMsg *msg = add_error_note(ira->codegen, parent_msg, source_node, buf_sprintf("optional type child '%s' cannot cast into optional type child '%s'", buf_ptr(&cast_result->data.optional->actual_child->name), buf_ptr(&cast_result->data.optional->wanted_child->name))); report_recursive_error(ira, source_node, &cast_result->data.optional->child, msg); break; } case ConstCastResultIdErrorUnionErrorSet: { ErrorMsg *msg = add_error_note(ira->codegen, parent_msg, source_node, buf_sprintf("error set '%s' cannot cast into error set '%s'", buf_ptr(&cast_result->data.error_union_error_set->actual_err_set->name), buf_ptr(&cast_result->data.error_union_error_set->wanted_err_set->name))); report_recursive_error(ira, source_node, &cast_result->data.error_union_error_set->child, msg); break; } case ConstCastResultIdErrSet: { ZigList *missing_errors = &cast_result->data.error_set_mismatch->missing_errors; for (size_t i = 0; i < missing_errors->length; i += 1) { ErrorTableEntry *error_entry = missing_errors->at(i); add_error_note(ira->codegen, parent_msg, error_entry->decl_node, buf_sprintf("'error.%s' not a member of destination error set", buf_ptr(&error_entry->name))); } break; } case ConstCastResultIdErrSetGlobal: { add_error_note(ira->codegen, parent_msg, source_node, buf_sprintf("cannot cast global error set into smaller set")); break; } case ConstCastResultIdPointerChild: { ErrorMsg *msg = add_error_note(ira->codegen, parent_msg, source_node, buf_sprintf("pointer type child '%s' cannot cast into pointer type child '%s'", buf_ptr(&cast_result->data.pointer_mismatch->actual_child->name), buf_ptr(&cast_result->data.pointer_mismatch->wanted_child->name))); report_recursive_error(ira, source_node, &cast_result->data.pointer_mismatch->child, msg); break; } case ConstCastResultIdSliceChild: { ErrorMsg *msg = add_error_note(ira->codegen, parent_msg, source_node, buf_sprintf("slice type child '%s' cannot cast into slice type child '%s'", buf_ptr(&cast_result->data.slice_mismatch->actual_child->name), buf_ptr(&cast_result->data.slice_mismatch->wanted_child->name))); report_recursive_error(ira, source_node, &cast_result->data.slice_mismatch->child, msg); break; } case ConstCastResultIdErrorUnionPayload: { ErrorMsg *msg = add_error_note(ira->codegen, parent_msg, source_node, buf_sprintf("error union payload '%s' cannot cast into error union payload '%s'", buf_ptr(&cast_result->data.error_union_payload->actual_payload->name), buf_ptr(&cast_result->data.error_union_payload->wanted_payload->name))); report_recursive_error(ira, source_node, &cast_result->data.error_union_payload->child, msg); break; } case ConstCastResultIdType: { AstNode *wanted_decl_node = type_decl_node(cast_result->data.type_mismatch->wanted_type); AstNode *actual_decl_node = type_decl_node(cast_result->data.type_mismatch->actual_type); if (wanted_decl_node != nullptr) { add_error_note(ira->codegen, parent_msg, wanted_decl_node, buf_sprintf("%s declared here", buf_ptr(&cast_result->data.type_mismatch->wanted_type->name))); } if (actual_decl_node != nullptr) { add_error_note(ira->codegen, parent_msg, actual_decl_node, buf_sprintf("%s declared here", buf_ptr(&cast_result->data.type_mismatch->actual_type->name))); } break; } case ConstCastResultIdFnArg: { ErrorMsg *msg = add_error_note(ira->codegen, parent_msg, source_node, buf_sprintf("parameter %" ZIG_PRI_usize ": '%s' cannot cast into '%s'", cast_result->data.fn_arg.arg_index, buf_ptr(&cast_result->data.fn_arg.actual_param_type->name), buf_ptr(&cast_result->data.fn_arg.expected_param_type->name))); report_recursive_error(ira, source_node, cast_result->data.fn_arg.child, msg); break; } case ConstCastResultIdBadAllowsZero: { ZigType *wanted_type = cast_result->data.bad_allows_zero->wanted_type; ZigType *actual_type = cast_result->data.bad_allows_zero->actual_type; bool wanted_allows_zero = ptr_allows_addr_zero(wanted_type); bool actual_allows_zero = ptr_allows_addr_zero(actual_type); if (actual_allows_zero && !wanted_allows_zero) { add_error_note(ira->codegen, parent_msg, source_node, buf_sprintf("'%s' could have null values which are illegal in type '%s'", buf_ptr(&actual_type->name), buf_ptr(&wanted_type->name))); } else { add_error_note(ira->codegen, parent_msg, source_node, buf_sprintf("mutable '%s' allows illegal null values stored to type '%s'", buf_ptr(&wanted_type->name), buf_ptr(&actual_type->name))); } break; } case ConstCastResultIdFnIsGeneric: add_error_note(ira->codegen, parent_msg, source_node, buf_sprintf("only one of the functions is generic")); break; case ConstCastResultIdFnCC: add_error_note(ira->codegen, parent_msg, source_node, buf_sprintf("calling convention mismatch")); break; case ConstCastResultIdFnAlign: // TODO case ConstCastResultIdFnVarArgs: // TODO case ConstCastResultIdFnReturnType: // TODO case ConstCastResultIdFnArgCount: // TODO case ConstCastResultIdFnGenericArgCount: // TODO case ConstCastResultIdFnArgNoAlias: // TODO case ConstCastResultIdUnresolvedInferredErrSet: // TODO case ConstCastResultIdAsyncAllocatorType: // TODO break; } } static IrInstruction *ir_analyze_array_to_vector(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *array, ZigType *vector_type) { if (instr_is_comptime(array)) { // arrays and vectors have the same ConstExprValue representation IrInstruction *result = ir_const(ira, source_instr, vector_type); copy_const_val(&result->value, &array->value, false); result->value.type = vector_type; return result; } return ir_build_array_to_vector(ira, source_instr, array, vector_type); } static IrInstruction *ir_analyze_vector_to_array(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *vector, ZigType *array_type, ResultLoc *result_loc) { if (instr_is_comptime(vector)) { // arrays and vectors have the same ConstExprValue representation IrInstruction *result = ir_const(ira, source_instr, array_type); copy_const_val(&result->value, &vector->value, false); result->value.type = array_type; return result; } if (result_loc == nullptr) { result_loc = no_result_loc(); } IrInstruction *result_loc_inst = ir_resolve_result(ira, source_instr, result_loc, array_type, nullptr, true, false, true); if (type_is_invalid(result_loc_inst->value.type) || instr_is_unreachable(result_loc_inst)) { return result_loc_inst; } return ir_build_vector_to_array(ira, source_instr, array_type, vector, result_loc_inst); } static IrInstruction *ir_analyze_int_to_c_ptr(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *integer, ZigType *dest_type) { IrInstruction *unsigned_integer; if (instr_is_comptime(integer)) { unsigned_integer = integer; } else { assert(integer->value.type->id == ZigTypeIdInt); if (integer->value.type->data.integral.bit_count > ira->codegen->builtin_types.entry_usize->data.integral.bit_count) { ir_add_error(ira, source_instr, buf_sprintf("integer type '%s' too big for implicit @intToPtr to type '%s'", buf_ptr(&integer->value.type->name), buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } if (integer->value.type->data.integral.is_signed) { ZigType *unsigned_int_type = get_int_type(ira->codegen, false, integer->value.type->data.integral.bit_count); unsigned_integer = ir_analyze_bit_cast(ira, source_instr, integer, unsigned_int_type); if (type_is_invalid(unsigned_integer->value.type)) return ira->codegen->invalid_instruction; } else { unsigned_integer = integer; } } return ir_analyze_int_to_ptr(ira, source_instr, unsigned_integer, dest_type); } static bool is_pointery_and_elem_is_not_pointery(ZigType *ty) { if (ty->id == ZigTypeIdPointer) return ty->data.pointer.child_type->id != ZigTypeIdPointer; if (ty->id == ZigTypeIdFn) return true; if (ty->id == ZigTypeIdOptional) { ZigType *ptr_ty = ty->data.maybe.child_type; if (ptr_ty->id == ZigTypeIdPointer) return ptr_ty->data.pointer.child_type->id != ZigTypeIdPointer; if (ptr_ty->id == ZigTypeIdFn) return true; } return false; } static IrInstruction *ir_analyze_cast(IrAnalyze *ira, IrInstruction *source_instr, ZigType *wanted_type, IrInstruction *value, ResultLoc *result_loc) { Error err; ZigType *actual_type = value->value.type; AstNode *source_node = source_instr->source_node; if (type_is_invalid(wanted_type) || type_is_invalid(actual_type)) { return ira->codegen->invalid_instruction; } // perfect match or non-const to const ConstCastOnly const_cast_result = types_match_const_cast_only(ira, wanted_type, actual_type, source_node, false); if (const_cast_result.id == ConstCastResultIdInvalid) return ira->codegen->invalid_instruction; if (const_cast_result.id == ConstCastResultIdOk) { return ir_resolve_cast(ira, source_instr, value, wanted_type, CastOpNoop); } if (const_cast_result.id == ConstCastResultIdFnCC) { ir_assert(value->value.type->id == ZigTypeIdFn, source_instr); // ConstCastResultIdFnCC is guaranteed to be the last one reported, meaning everything else is ok. if (wanted_type->data.fn.fn_type_id.cc == CallingConventionAsync && actual_type->data.fn.fn_type_id.cc == CallingConventionUnspecified) { ir_assert(value->value.data.x_ptr.special == ConstPtrSpecialFunction, source_instr); ZigFn *fn = value->value.data.x_ptr.data.fn.fn_entry; if (fn->inferred_async_node == nullptr) { fn->inferred_async_node = source_instr->source_node; } return ir_resolve_cast(ira, source_instr, value, wanted_type, CastOpNoop); } } // cast from T to ?T // note that the *T to ?*T case is handled via the "ConstCastOnly" mechanism if (wanted_type->id == ZigTypeIdOptional) { ZigType *wanted_child_type = wanted_type->data.maybe.child_type; if (types_match_const_cast_only(ira, wanted_child_type, actual_type, source_node, false).id == ConstCastResultIdOk) { return ir_analyze_optional_wrap(ira, source_instr, value, wanted_type, result_loc); } else if (actual_type->id == ZigTypeIdComptimeInt || actual_type->id == ZigTypeIdComptimeFloat) { if (ir_num_lit_fits_in_other_type(ira, value, wanted_child_type, true)) { return ir_analyze_optional_wrap(ira, source_instr, value, wanted_type, result_loc); } else { return ira->codegen->invalid_instruction; } } else if ( wanted_child_type->id == ZigTypeIdPointer && wanted_child_type->data.pointer.ptr_len == PtrLenUnknown && actual_type->id == ZigTypeIdPointer && actual_type->data.pointer.ptr_len == PtrLenSingle && actual_type->data.pointer.child_type->id == ZigTypeIdArray) { if ((err = type_resolve(ira->codegen, actual_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) return ira->codegen->invalid_instruction; if ((err = type_resolve(ira->codegen, wanted_child_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) return ira->codegen->invalid_instruction; if (get_ptr_align(ira->codegen, actual_type) >= get_ptr_align(ira->codegen, wanted_child_type) && types_match_const_cast_only(ira, wanted_child_type->data.pointer.child_type, actual_type->data.pointer.child_type->data.array.child_type, source_node, !wanted_child_type->data.pointer.is_const).id == ConstCastResultIdOk) { IrInstruction *cast1 = ir_resolve_ptr_of_array_to_unknown_len_ptr(ira, source_instr, value, wanted_child_type); if (type_is_invalid(cast1->value.type)) return ira->codegen->invalid_instruction; return ir_analyze_optional_wrap(ira, source_instr, cast1, wanted_type, result_loc); } } } // T to E!T if (wanted_type->id == ZigTypeIdErrorUnion) { if (types_match_const_cast_only(ira, wanted_type->data.error_union.payload_type, actual_type, source_node, false).id == ConstCastResultIdOk) { return ir_analyze_err_wrap_payload(ira, source_instr, value, wanted_type, result_loc); } else if (actual_type->id == ZigTypeIdComptimeInt || actual_type->id == ZigTypeIdComptimeFloat) { if (ir_num_lit_fits_in_other_type(ira, value, wanted_type->data.error_union.payload_type, true)) { return ir_analyze_err_wrap_payload(ira, source_instr, value, wanted_type, result_loc); } else { return ira->codegen->invalid_instruction; } } } // cast from T to E!?T if (wanted_type->id == ZigTypeIdErrorUnion && wanted_type->data.error_union.payload_type->id == ZigTypeIdOptional && actual_type->id != ZigTypeIdOptional) { ZigType *wanted_child_type = wanted_type->data.error_union.payload_type->data.maybe.child_type; if (types_match_const_cast_only(ira, wanted_child_type, actual_type, source_node, false).id == ConstCastResultIdOk || actual_type->id == ZigTypeIdNull || actual_type->id == ZigTypeIdComptimeInt || actual_type->id == ZigTypeIdComptimeFloat) { IrInstruction *cast1 = ir_analyze_cast(ira, source_instr, wanted_type->data.error_union.payload_type, value, nullptr); if (type_is_invalid(cast1->value.type)) return ira->codegen->invalid_instruction; IrInstruction *cast2 = ir_analyze_cast(ira, source_instr, wanted_type, cast1, result_loc); if (type_is_invalid(cast2->value.type)) return ira->codegen->invalid_instruction; return cast2; } } // cast from comptime-known number to another number type if (instr_is_comptime(value) && (actual_type->id == ZigTypeIdInt || actual_type->id == ZigTypeIdComptimeInt || actual_type->id == ZigTypeIdFloat || actual_type->id == ZigTypeIdComptimeFloat) && (wanted_type->id == ZigTypeIdInt || wanted_type->id == ZigTypeIdComptimeInt || wanted_type->id == ZigTypeIdFloat || wanted_type->id == ZigTypeIdComptimeFloat)) { if (value->value.special == ConstValSpecialUndef) { IrInstruction *result = ir_const(ira, source_instr, wanted_type); result->value.special = ConstValSpecialUndef; return result; } if (ir_num_lit_fits_in_other_type(ira, value, wanted_type, true)) { if (wanted_type->id == ZigTypeIdComptimeInt || wanted_type->id == ZigTypeIdInt) { IrInstruction *result = ir_const(ira, source_instr, wanted_type); if (actual_type->id == ZigTypeIdComptimeInt || actual_type->id == ZigTypeIdInt) { bigint_init_bigint(&result->value.data.x_bigint, &value->value.data.x_bigint); } else { float_init_bigint(&result->value.data.x_bigint, &value->value); } return result; } else if (wanted_type->id == ZigTypeIdComptimeFloat || wanted_type->id == ZigTypeIdFloat) { IrInstruction *result = ir_const(ira, source_instr, wanted_type); if (actual_type->id == ZigTypeIdComptimeInt || actual_type->id == ZigTypeIdInt) { BigFloat bf; bigfloat_init_bigint(&bf, &value->value.data.x_bigint); float_init_bigfloat(&result->value, &bf); } else { float_init_float(&result->value, &value->value); } return result; } zig_unreachable(); } else { return ira->codegen->invalid_instruction; } } // widening conversion if (wanted_type->id == ZigTypeIdInt && actual_type->id == ZigTypeIdInt && wanted_type->data.integral.is_signed == actual_type->data.integral.is_signed && wanted_type->data.integral.bit_count >= actual_type->data.integral.bit_count) { return ir_analyze_widen_or_shorten(ira, source_instr, value, wanted_type); } // small enough unsigned ints can get casted to large enough signed ints if (wanted_type->id == ZigTypeIdInt && wanted_type->data.integral.is_signed && actual_type->id == ZigTypeIdInt && !actual_type->data.integral.is_signed && wanted_type->data.integral.bit_count > actual_type->data.integral.bit_count) { return ir_analyze_widen_or_shorten(ira, source_instr, value, wanted_type); } // float widening conversion if (wanted_type->id == ZigTypeIdFloat && actual_type->id == ZigTypeIdFloat && wanted_type->data.floating.bit_count >= actual_type->data.floating.bit_count) { return ir_analyze_widen_or_shorten(ira, source_instr, value, wanted_type); } // cast from [N]T to []const T // TODO: once https://github.com/ziglang/zig/issues/265 lands, remove this if (is_slice(wanted_type) && actual_type->id == ZigTypeIdArray) { ZigType *ptr_type = wanted_type->data.structure.fields[slice_ptr_index].type_entry; assert(ptr_type->id == ZigTypeIdPointer); if ((ptr_type->data.pointer.is_const || actual_type->data.array.len == 0) && types_match_const_cast_only(ira, ptr_type->data.pointer.child_type, actual_type->data.array.child_type, source_node, false).id == ConstCastResultIdOk) { return ir_analyze_array_to_slice(ira, source_instr, value, wanted_type, result_loc); } } // cast from [N]T to ?[]const T // TODO: once https://github.com/ziglang/zig/issues/265 lands, remove this if (wanted_type->id == ZigTypeIdOptional && is_slice(wanted_type->data.maybe.child_type) && actual_type->id == ZigTypeIdArray) { ZigType *ptr_type = wanted_type->data.maybe.child_type->data.structure.fields[slice_ptr_index].type_entry; assert(ptr_type->id == ZigTypeIdPointer); if ((ptr_type->data.pointer.is_const || actual_type->data.array.len == 0) && types_match_const_cast_only(ira, ptr_type->data.pointer.child_type, actual_type->data.array.child_type, source_node, false).id == ConstCastResultIdOk) { IrInstruction *cast1 = ir_analyze_cast(ira, source_instr, wanted_type->data.maybe.child_type, value, nullptr); if (type_is_invalid(cast1->value.type)) return ira->codegen->invalid_instruction; IrInstruction *cast2 = ir_analyze_cast(ira, source_instr, wanted_type, cast1, result_loc); if (type_is_invalid(cast2->value.type)) return ira->codegen->invalid_instruction; return cast2; } } // *[N]T to [*]T and [*c]T if (wanted_type->id == ZigTypeIdPointer && (wanted_type->data.pointer.ptr_len == PtrLenUnknown || wanted_type->data.pointer.ptr_len == PtrLenC) && actual_type->id == ZigTypeIdPointer && actual_type->data.pointer.ptr_len == PtrLenSingle && actual_type->data.pointer.child_type->id == ZigTypeIdArray) { if ((err = type_resolve(ira->codegen, actual_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) return ira->codegen->invalid_instruction; if ((err = type_resolve(ira->codegen, wanted_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) return ira->codegen->invalid_instruction; if (get_ptr_align(ira->codegen, actual_type) >= get_ptr_align(ira->codegen, wanted_type) && types_match_const_cast_only(ira, wanted_type->data.pointer.child_type, actual_type->data.pointer.child_type->data.array.child_type, source_node, !wanted_type->data.pointer.is_const).id == ConstCastResultIdOk) { return ir_resolve_ptr_of_array_to_unknown_len_ptr(ira, source_instr, value, wanted_type); } } // *[N]T to []T if (is_slice(wanted_type) && actual_type->id == ZigTypeIdPointer && actual_type->data.pointer.ptr_len == PtrLenSingle && actual_type->data.pointer.child_type->id == ZigTypeIdArray) { ZigType *slice_ptr_type = wanted_type->data.structure.fields[slice_ptr_index].type_entry; assert(slice_ptr_type->id == ZigTypeIdPointer); ZigType *array_type = actual_type->data.pointer.child_type; bool const_ok = (slice_ptr_type->data.pointer.is_const || array_type->data.array.len == 0 || !actual_type->data.pointer.is_const); if (const_ok && types_match_const_cast_only(ira, slice_ptr_type->data.pointer.child_type, array_type->data.array.child_type, source_node, !slice_ptr_type->data.pointer.is_const).id == ConstCastResultIdOk) { // If the pointers both have ABI align, it works. bool ok_align = slice_ptr_type->data.pointer.explicit_alignment == 0 && actual_type->data.pointer.explicit_alignment == 0; if (!ok_align) { // If either one has non ABI align, we have to resolve them both if ((err = type_resolve(ira->codegen, actual_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) { return ira->codegen->invalid_instruction; } if ((err = type_resolve(ira->codegen, slice_ptr_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) { return ira->codegen->invalid_instruction; } ok_align = get_ptr_align(ira->codegen, actual_type) >= get_ptr_align(ira->codegen, slice_ptr_type); } if (ok_align) { return ir_resolve_ptr_of_array_to_slice(ira, source_instr, value, wanted_type, result_loc); } } } // *@Frame(func) to anyframe->T or anyframe if (actual_type->id == ZigTypeIdPointer && actual_type->data.pointer.ptr_len == PtrLenSingle && !actual_type->data.pointer.is_const && actual_type->data.pointer.child_type->id == ZigTypeIdFnFrame && wanted_type->id == ZigTypeIdAnyFrame) { bool ok = true; if (wanted_type->data.any_frame.result_type != nullptr) { ZigFn *fn = actual_type->data.pointer.child_type->data.frame.fn; ZigType *fn_return_type = fn->type_entry->data.fn.fn_type_id.return_type; if (wanted_type->data.any_frame.result_type != fn_return_type) { ok = false; } } if (ok) { return ir_analyze_frame_ptr_to_anyframe(ira, source_instr, value, wanted_type); } } // anyframe->T to anyframe if (actual_type->id == ZigTypeIdAnyFrame && actual_type->data.any_frame.result_type != nullptr && wanted_type->id == ZigTypeIdAnyFrame && wanted_type->data.any_frame.result_type == nullptr) { return ir_analyze_anyframe_to_anyframe(ira, source_instr, value, wanted_type); } // cast from null literal to maybe type if (wanted_type->id == ZigTypeIdOptional && actual_type->id == ZigTypeIdNull) { return ir_analyze_null_to_maybe(ira, source_instr, value, wanted_type); } // cast from null literal to C pointer if (wanted_type->id == ZigTypeIdPointer && wanted_type->data.pointer.ptr_len == PtrLenC && actual_type->id == ZigTypeIdNull) { return ir_analyze_null_to_c_pointer(ira, source_instr, value, wanted_type); } // cast from [N]T to E![]const T if (wanted_type->id == ZigTypeIdErrorUnion && is_slice(wanted_type->data.error_union.payload_type) && actual_type->id == ZigTypeIdArray) { ZigType *ptr_type = wanted_type->data.error_union.payload_type->data.structure.fields[slice_ptr_index].type_entry; assert(ptr_type->id == ZigTypeIdPointer); if ((ptr_type->data.pointer.is_const || actual_type->data.array.len == 0) && types_match_const_cast_only(ira, ptr_type->data.pointer.child_type, actual_type->data.array.child_type, source_node, false).id == ConstCastResultIdOk) { IrInstruction *cast1 = ir_analyze_cast(ira, source_instr, wanted_type->data.error_union.payload_type, value, nullptr); if (type_is_invalid(cast1->value.type)) return ira->codegen->invalid_instruction; IrInstruction *cast2 = ir_analyze_cast(ira, source_instr, wanted_type, cast1, result_loc); if (type_is_invalid(cast2->value.type)) return ira->codegen->invalid_instruction; return cast2; } } // cast from E to E!T if (wanted_type->id == ZigTypeIdErrorUnion && actual_type->id == ZigTypeIdErrorSet) { return ir_analyze_err_wrap_code(ira, source_instr, value, wanted_type, result_loc); } // cast from typed number to integer or float literal. // works when the number is known at compile time if (instr_is_comptime(value) && ((actual_type->id == ZigTypeIdInt && wanted_type->id == ZigTypeIdComptimeInt) || (actual_type->id == ZigTypeIdFloat && wanted_type->id == ZigTypeIdComptimeFloat))) { return ir_analyze_number_to_literal(ira, source_instr, value, wanted_type); } // cast from enum literal to enum with matching field name if (actual_type->id == ZigTypeIdEnumLiteral && wanted_type->id == ZigTypeIdEnum) { if ((err = type_resolve(ira->codegen, wanted_type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; TypeEnumField *field = find_enum_type_field(wanted_type, value->value.data.x_enum_literal); if (field == nullptr) { ErrorMsg *msg = ir_add_error(ira, source_instr, buf_sprintf("enum '%s' has no field named '%s'", buf_ptr(&wanted_type->name), buf_ptr(value->value.data.x_enum_literal))); add_error_note(ira->codegen, msg, wanted_type->data.enumeration.decl_node, buf_sprintf("'%s' declared here", buf_ptr(&wanted_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *result = ir_const(ira, source_instr, wanted_type); bigint_init_bigint(&result->value.data.x_enum_tag, &field->value); return result; } // cast from union to the enum type of the union if (actual_type->id == ZigTypeIdUnion && wanted_type->id == ZigTypeIdEnum) { if ((err = type_resolve(ira->codegen, actual_type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; if (actual_type->data.unionation.tag_type == wanted_type) { return ir_analyze_union_to_tag(ira, source_instr, value, wanted_type); } } // enum to union which has the enum as the tag type, or // enum literal to union which has a matching enum as the tag type if (is_tagged_union(wanted_type) && (actual_type->id == ZigTypeIdEnum || actual_type->id == ZigTypeIdEnumLiteral)) { return ir_analyze_enum_to_union(ira, source_instr, value, wanted_type); } // cast from *T to *[1]T if (wanted_type->id == ZigTypeIdPointer && wanted_type->data.pointer.ptr_len == PtrLenSingle && actual_type->id == ZigTypeIdPointer && actual_type->data.pointer.ptr_len == PtrLenSingle) { ZigType *array_type = wanted_type->data.pointer.child_type; if (array_type->id == ZigTypeIdArray && array_type->data.array.len == 1 && types_match_const_cast_only(ira, array_type->data.array.child_type, actual_type->data.pointer.child_type, source_node, !wanted_type->data.pointer.is_const).id == ConstCastResultIdOk && // This should be the job of `types_match_const_cast_only` // but `types_match_const_cast_only` only gets info for child_types ((wanted_type->data.pointer.is_const && actual_type->data.pointer.is_const) || !actual_type->data.pointer.is_const)) { if ((err = type_resolve(ira->codegen, wanted_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) { return ira->codegen->invalid_instruction; } if ((err = type_resolve(ira->codegen, actual_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) { return ira->codegen->invalid_instruction; } uint32_t wanted_align = get_ptr_align(ira->codegen, wanted_type); uint32_t actual_align = get_ptr_align(ira->codegen, actual_type); if (wanted_align > actual_align) { ErrorMsg *msg = ir_add_error(ira, source_instr, buf_sprintf("cast increases pointer alignment")); add_error_note(ira->codegen, msg, value->source_node, buf_sprintf("'%s' has alignment %" PRIu32, buf_ptr(&actual_type->name), actual_align)); add_error_note(ira->codegen, msg, source_instr->source_node, buf_sprintf("'%s' has alignment %" PRIu32, buf_ptr(&wanted_type->name), wanted_align)); return ira->codegen->invalid_instruction; } return ir_analyze_ptr_to_array(ira, source_instr, value, wanted_type); } } // cast from *T and [*]T to *c_void and ?*c_void // but don't do it if the actual type is a double pointer if (is_pointery_and_elem_is_not_pointery(actual_type)) { ZigType *dest_ptr_type = nullptr; if (wanted_type->id == ZigTypeIdPointer && wanted_type->data.pointer.child_type == ira->codegen->builtin_types.entry_c_void) { dest_ptr_type = wanted_type; } else if (wanted_type->id == ZigTypeIdOptional && wanted_type->data.maybe.child_type->id == ZigTypeIdPointer && wanted_type->data.maybe.child_type->data.pointer.child_type == ira->codegen->builtin_types.entry_c_void) { dest_ptr_type = wanted_type->data.maybe.child_type; } if (dest_ptr_type != nullptr) { return ir_analyze_ptr_cast(ira, source_instr, value, wanted_type, source_instr, true); } } // cast from T to *T where T is zero bits if (wanted_type->id == ZigTypeIdPointer && wanted_type->data.pointer.ptr_len == PtrLenSingle && types_match_const_cast_only(ira, wanted_type->data.pointer.child_type, actual_type, source_node, !wanted_type->data.pointer.is_const).id == ConstCastResultIdOk) { if ((err = type_resolve(ira->codegen, actual_type, ResolveStatusZeroBitsKnown))) { return ira->codegen->invalid_instruction; } if (!type_has_bits(actual_type)) { return ir_get_ref(ira, source_instr, value, false, false); } } // cast from @Vector(N, T) to [N]T if (wanted_type->id == ZigTypeIdArray && actual_type->id == ZigTypeIdVector && wanted_type->data.array.len == actual_type->data.vector.len && types_match_const_cast_only(ira, wanted_type->data.array.child_type, actual_type->data.vector.elem_type, source_node, false).id == ConstCastResultIdOk) { return ir_analyze_vector_to_array(ira, source_instr, value, wanted_type, result_loc); } // cast from [N]T to @Vector(N, T) if (actual_type->id == ZigTypeIdArray && wanted_type->id == ZigTypeIdVector && actual_type->data.array.len == wanted_type->data.vector.len && types_match_const_cast_only(ira, actual_type->data.array.child_type, wanted_type->data.vector.elem_type, source_node, false).id == ConstCastResultIdOk) { return ir_analyze_array_to_vector(ira, source_instr, value, wanted_type); } // casting between C pointers and normal pointers if (wanted_type->id == ZigTypeIdPointer && actual_type->id == ZigTypeIdPointer && (wanted_type->data.pointer.ptr_len == PtrLenC || actual_type->data.pointer.ptr_len == PtrLenC) && types_match_const_cast_only(ira, wanted_type->data.pointer.child_type, actual_type->data.pointer.child_type, source_node, !wanted_type->data.pointer.is_const).id == ConstCastResultIdOk) { return ir_analyze_ptr_cast(ira, source_instr, value, wanted_type, source_instr, true); } // cast from integer to C pointer if (wanted_type->id == ZigTypeIdPointer && wanted_type->data.pointer.ptr_len == PtrLenC && (actual_type->id == ZigTypeIdInt || actual_type->id == ZigTypeIdComptimeInt)) { return ir_analyze_int_to_c_ptr(ira, source_instr, value, wanted_type); } // cast from undefined to anything if (actual_type->id == ZigTypeIdUndefined) { return ir_analyze_undefined_to_anything(ira, source_instr, value, wanted_type); } ErrorMsg *parent_msg = ir_add_error_node(ira, source_instr->source_node, buf_sprintf("expected type '%s', found '%s'", buf_ptr(&wanted_type->name), buf_ptr(&actual_type->name))); report_recursive_error(ira, source_instr->source_node, &const_cast_result, parent_msg); return ira->codegen->invalid_instruction; } static IrInstruction *ir_implicit_cast_with_result(IrAnalyze *ira, IrInstruction *value, ZigType *expected_type, ResultLoc *result_loc) { assert(value); assert(value != ira->codegen->invalid_instruction); assert(!expected_type || !type_is_invalid(expected_type)); assert(value->value.type); assert(!type_is_invalid(value->value.type)); if (expected_type == nullptr) return value; // anything will do if (expected_type == value->value.type) return value; // match if (value->value.type->id == ZigTypeIdUnreachable) return value; return ir_analyze_cast(ira, value, expected_type, value, result_loc); } static IrInstruction *ir_implicit_cast(IrAnalyze *ira, IrInstruction *value, ZigType *expected_type) { return ir_implicit_cast_with_result(ira, value, expected_type, nullptr); } static IrInstruction *ir_get_deref(IrAnalyze *ira, IrInstruction *source_instruction, IrInstruction *ptr, ResultLoc *result_loc) { Error err; ZigType *type_entry = ptr->value.type; if (type_is_invalid(type_entry)) return ira->codegen->invalid_instruction; if (type_entry->id != ZigTypeIdPointer) { ir_add_error_node(ira, source_instruction->source_node, buf_sprintf("attempt to dereference non-pointer type '%s'", buf_ptr(&type_entry->name))); return ira->codegen->invalid_instruction; } ZigType *child_type = type_entry->data.pointer.child_type; // if the child type has one possible value, the deref is comptime switch (type_has_one_possible_value(ira->codegen, child_type)) { case OnePossibleValueInvalid: return ira->codegen->invalid_instruction; case OnePossibleValueYes: return ir_const(ira, source_instruction, child_type); case OnePossibleValueNo: break; } if (instr_is_comptime(ptr)) { if (ptr->value.special == ConstValSpecialUndef) { ir_add_error(ira, ptr, buf_sprintf("attempt to dereference undefined value")); return ira->codegen->invalid_instruction; } if (ptr->value.data.x_ptr.mut != ConstPtrMutRuntimeVar) { ConstExprValue *pointee = const_ptr_pointee_unchecked(ira->codegen, &ptr->value); if (pointee->special != ConstValSpecialRuntime) { IrInstruction *result = ir_const(ira, source_instruction, child_type); if ((err = ir_read_const_ptr(ira, ira->codegen, source_instruction->source_node, &result->value, &ptr->value))) { return ira->codegen->invalid_instruction; } result->value.type = child_type; return result; } } } // if the instruction is a const ref instruction we can skip it if (ptr->id == IrInstructionIdRef) { IrInstructionRef *ref_inst = reinterpret_cast(ptr); return ref_inst->value; } IrInstruction *result_loc_inst; if (type_entry->data.pointer.host_int_bytes != 0 && handle_is_ptr(child_type)) { if (result_loc == nullptr) result_loc = no_result_loc(); result_loc_inst = ir_resolve_result(ira, source_instruction, result_loc, child_type, nullptr, true, false, true); if (type_is_invalid(result_loc_inst->value.type) || instr_is_unreachable(result_loc_inst)) { return result_loc_inst; } } else { result_loc_inst = nullptr; } return ir_build_load_ptr_gen(ira, source_instruction, ptr, child_type, result_loc_inst); } static bool ir_resolve_const_align(CodeGen *codegen, IrExecutable *exec, AstNode *source_node, ConstExprValue *const_val, uint32_t *out) { Error err; if ((err = ir_resolve_const_val(codegen, exec, source_node, const_val, UndefBad))) return false; uint32_t align_bytes = bigint_as_u32(&const_val->data.x_bigint); if (align_bytes == 0) { exec_add_error_node(codegen, exec, source_node, buf_sprintf("alignment must be >= 1")); return false; } if (!is_power_of_2(align_bytes)) { exec_add_error_node(codegen, exec, source_node, buf_sprintf("alignment value %" PRIu32 " is not a power of 2", align_bytes)); return false; } *out = align_bytes; return true; } static bool ir_resolve_align(IrAnalyze *ira, IrInstruction *value, uint32_t *out) { if (type_is_invalid(value->value.type)) return false; IrInstruction *casted_value = ir_implicit_cast(ira, value, get_align_amt_type(ira->codegen)); if (type_is_invalid(casted_value->value.type)) return false; return ir_resolve_const_align(ira->codegen, ira->new_irb.exec, value->source_node, &casted_value->value, out); } static bool ir_resolve_unsigned(IrAnalyze *ira, IrInstruction *value, ZigType *int_type, uint64_t *out) { if (type_is_invalid(value->value.type)) return false; IrInstruction *casted_value = ir_implicit_cast(ira, value, int_type); if (type_is_invalid(casted_value->value.type)) return false; ConstExprValue *const_val = ir_resolve_const(ira, casted_value, UndefBad); if (!const_val) return false; *out = bigint_as_u64(&const_val->data.x_bigint); return true; } static bool ir_resolve_usize(IrAnalyze *ira, IrInstruction *value, uint64_t *out) { return ir_resolve_unsigned(ira, value, ira->codegen->builtin_types.entry_usize, out); } static bool ir_resolve_bool(IrAnalyze *ira, IrInstruction *value, bool *out) { if (type_is_invalid(value->value.type)) return false; IrInstruction *casted_value = ir_implicit_cast(ira, value, ira->codegen->builtin_types.entry_bool); if (type_is_invalid(casted_value->value.type)) return false; ConstExprValue *const_val = ir_resolve_const(ira, casted_value, UndefBad); if (!const_val) return false; *out = const_val->data.x_bool; return true; } static bool ir_resolve_comptime(IrAnalyze *ira, IrInstruction *value, bool *out) { if (!value) { *out = false; return true; } return ir_resolve_bool(ira, value, out); } static bool ir_resolve_atomic_order(IrAnalyze *ira, IrInstruction *value, AtomicOrder *out) { if (type_is_invalid(value->value.type)) return false; ConstExprValue *atomic_order_val = get_builtin_value(ira->codegen, "AtomicOrder"); assert(atomic_order_val->type->id == ZigTypeIdMetaType); ZigType *atomic_order_type = atomic_order_val->data.x_type; IrInstruction *casted_value = ir_implicit_cast(ira, value, atomic_order_type); if (type_is_invalid(casted_value->value.type)) return false; ConstExprValue *const_val = ir_resolve_const(ira, casted_value, UndefBad); if (!const_val) return false; *out = (AtomicOrder)bigint_as_u32(&const_val->data.x_enum_tag); return true; } static bool ir_resolve_atomic_rmw_op(IrAnalyze *ira, IrInstruction *value, AtomicRmwOp *out) { if (type_is_invalid(value->value.type)) return false; ConstExprValue *atomic_rmw_op_val = get_builtin_value(ira->codegen, "AtomicRmwOp"); assert(atomic_rmw_op_val->type->id == ZigTypeIdMetaType); ZigType *atomic_rmw_op_type = atomic_rmw_op_val->data.x_type; IrInstruction *casted_value = ir_implicit_cast(ira, value, atomic_rmw_op_type); if (type_is_invalid(casted_value->value.type)) return false; ConstExprValue *const_val = ir_resolve_const(ira, casted_value, UndefBad); if (!const_val) return false; *out = (AtomicRmwOp)bigint_as_u32(&const_val->data.x_enum_tag); return true; } static bool ir_resolve_global_linkage(IrAnalyze *ira, IrInstruction *value, GlobalLinkageId *out) { if (type_is_invalid(value->value.type)) return false; ConstExprValue *global_linkage_val = get_builtin_value(ira->codegen, "GlobalLinkage"); assert(global_linkage_val->type->id == ZigTypeIdMetaType); ZigType *global_linkage_type = global_linkage_val->data.x_type; IrInstruction *casted_value = ir_implicit_cast(ira, value, global_linkage_type); if (type_is_invalid(casted_value->value.type)) return false; ConstExprValue *const_val = ir_resolve_const(ira, casted_value, UndefBad); if (!const_val) return false; *out = (GlobalLinkageId)bigint_as_u32(&const_val->data.x_enum_tag); return true; } static bool ir_resolve_float_mode(IrAnalyze *ira, IrInstruction *value, FloatMode *out) { if (type_is_invalid(value->value.type)) return false; ConstExprValue *float_mode_val = get_builtin_value(ira->codegen, "FloatMode"); assert(float_mode_val->type->id == ZigTypeIdMetaType); ZigType *float_mode_type = float_mode_val->data.x_type; IrInstruction *casted_value = ir_implicit_cast(ira, value, float_mode_type); if (type_is_invalid(casted_value->value.type)) return false; ConstExprValue *const_val = ir_resolve_const(ira, casted_value, UndefBad); if (!const_val) return false; *out = (FloatMode)bigint_as_u32(&const_val->data.x_enum_tag); return true; } static Buf *ir_resolve_str(IrAnalyze *ira, IrInstruction *value) { if (type_is_invalid(value->value.type)) return nullptr; ZigType *ptr_type = get_pointer_to_type_extra(ira->codegen, ira->codegen->builtin_types.entry_u8, true, false, PtrLenUnknown, 0, 0, 0, false); ZigType *str_type = get_slice_type(ira->codegen, ptr_type); IrInstruction *casted_value = ir_implicit_cast(ira, value, str_type); if (type_is_invalid(casted_value->value.type)) return nullptr; ConstExprValue *const_val = ir_resolve_const(ira, casted_value, UndefBad); if (!const_val) return nullptr; ConstExprValue *ptr_field = &const_val->data.x_struct.fields[slice_ptr_index]; ConstExprValue *len_field = &const_val->data.x_struct.fields[slice_len_index]; assert(ptr_field->data.x_ptr.special == ConstPtrSpecialBaseArray); ConstExprValue *array_val = ptr_field->data.x_ptr.data.base_array.array_val; if (array_val->data.x_array.special == ConstArraySpecialBuf) { return array_val->data.x_array.data.s_buf; } expand_undef_array(ira->codegen, array_val); size_t len = bigint_as_usize(&len_field->data.x_bigint); Buf *result = buf_alloc(); buf_resize(result, len); for (size_t i = 0; i < len; i += 1) { size_t new_index = ptr_field->data.x_ptr.data.base_array.elem_index + i; ConstExprValue *char_val = &array_val->data.x_array.data.s_none.elements[new_index]; if (char_val->special == ConstValSpecialUndef) { ir_add_error(ira, casted_value, buf_sprintf("use of undefined value")); return nullptr; } uint64_t big_c = bigint_as_u64(&char_val->data.x_bigint); assert(big_c <= UINT8_MAX); uint8_t c = (uint8_t)big_c; buf_ptr(result)[i] = c; } return result; } static IrInstruction *ir_analyze_instruction_add_implicit_return_type(IrAnalyze *ira, IrInstructionAddImplicitReturnType *instruction) { IrInstruction *value = instruction->value->child; if (type_is_invalid(value->value.type)) return ir_unreach_error(ira); ira->src_implicit_return_type_list.append(value); return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_return(IrAnalyze *ira, IrInstructionReturn *instruction) { IrInstruction *operand = instruction->operand->child; if (type_is_invalid(operand->value.type)) return ir_unreach_error(ira); if (!instr_is_comptime(operand) && ira->explicit_return_type != nullptr && handle_is_ptr(ira->explicit_return_type)) { // result location mechanism took care of it. IrInstruction *result = ir_build_return(&ira->new_irb, instruction->base.scope, instruction->base.source_node, nullptr); result->value.type = ira->codegen->builtin_types.entry_unreachable; return ir_finish_anal(ira, result); } IrInstruction *casted_operand = ir_implicit_cast(ira, operand, ira->explicit_return_type); if (type_is_invalid(casted_operand->value.type)) { AstNode *source_node = ira->explicit_return_type_source_node; if (source_node != nullptr) { ErrorMsg *msg = ira->codegen->errors.last(); add_error_note(ira->codegen, msg, source_node, buf_sprintf("return type declared here")); } return ir_unreach_error(ira); } if (casted_operand->value.special == ConstValSpecialRuntime && casted_operand->value.type->id == ZigTypeIdPointer && casted_operand->value.data.rh_ptr == RuntimeHintPtrStack) { ir_add_error(ira, casted_operand, buf_sprintf("function returns address of local variable")); return ir_unreach_error(ira); } IrInstruction *result = ir_build_return(&ira->new_irb, instruction->base.scope, instruction->base.source_node, casted_operand); result->value.type = ira->codegen->builtin_types.entry_unreachable; return ir_finish_anal(ira, result); } static IrInstruction *ir_analyze_instruction_const(IrAnalyze *ira, IrInstructionConst *instruction) { IrInstruction *result = ir_const(ira, &instruction->base, nullptr); copy_const_val(&result->value, &instruction->base.value, true); return result; } static IrInstruction *ir_analyze_bin_op_bool(IrAnalyze *ira, IrInstructionBinOp *bin_op_instruction) { IrInstruction *op1 = bin_op_instruction->op1->child; if (type_is_invalid(op1->value.type)) return ira->codegen->invalid_instruction; IrInstruction *op2 = bin_op_instruction->op2->child; if (type_is_invalid(op2->value.type)) return ira->codegen->invalid_instruction; ZigType *bool_type = ira->codegen->builtin_types.entry_bool; IrInstruction *casted_op1 = ir_implicit_cast(ira, op1, bool_type); if (casted_op1 == ira->codegen->invalid_instruction) return ira->codegen->invalid_instruction; IrInstruction *casted_op2 = ir_implicit_cast(ira, op2, bool_type); if (casted_op2 == ira->codegen->invalid_instruction) return ira->codegen->invalid_instruction; if (instr_is_comptime(casted_op1) && instr_is_comptime(casted_op2)) { ConstExprValue *op1_val = ir_resolve_const(ira, casted_op1, UndefBad); if (op1_val == nullptr) return ira->codegen->invalid_instruction; ConstExprValue *op2_val = ir_resolve_const(ira, casted_op2, UndefBad); if (op2_val == nullptr) return ira->codegen->invalid_instruction; assert(casted_op1->value.type->id == ZigTypeIdBool); assert(casted_op2->value.type->id == ZigTypeIdBool); bool result_bool; if (bin_op_instruction->op_id == IrBinOpBoolOr) { result_bool = op1_val->data.x_bool || op2_val->data.x_bool; } else if (bin_op_instruction->op_id == IrBinOpBoolAnd) { result_bool = op1_val->data.x_bool && op2_val->data.x_bool; } else { zig_unreachable(); } return ir_const_bool(ira, &bin_op_instruction->base, result_bool); } IrInstruction *result = ir_build_bin_op(&ira->new_irb, bin_op_instruction->base.scope, bin_op_instruction->base.source_node, bin_op_instruction->op_id, casted_op1, casted_op2, bin_op_instruction->safety_check_on); result->value.type = bool_type; return result; } static bool resolve_cmp_op_id(IrBinOp op_id, Cmp cmp) { switch (op_id) { case IrBinOpCmpEq: return cmp == CmpEQ; case IrBinOpCmpNotEq: return cmp != CmpEQ; case IrBinOpCmpLessThan: return cmp == CmpLT; case IrBinOpCmpGreaterThan: return cmp == CmpGT; case IrBinOpCmpLessOrEq: return cmp != CmpGT; case IrBinOpCmpGreaterOrEq: return cmp != CmpLT; default: zig_unreachable(); } } static bool optional_value_is_null(ConstExprValue *val) { assert(val->special == ConstValSpecialStatic); if (get_codegen_ptr_type(val->type) != nullptr) { if (val->data.x_ptr.special == ConstPtrSpecialNull) { return true; } else if (val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr) { return val->data.x_ptr.data.hard_coded_addr.addr == 0; } else { return false; } } else if (is_opt_err_set(val->type)) { return val->data.x_err_set == nullptr; } else { return val->data.x_optional == nullptr; } } static IrInstruction *ir_analyze_bin_op_cmp(IrAnalyze *ira, IrInstructionBinOp *bin_op_instruction) { IrInstruction *op1 = bin_op_instruction->op1->child; if (type_is_invalid(op1->value.type)) return ira->codegen->invalid_instruction; IrInstruction *op2 = bin_op_instruction->op2->child; if (type_is_invalid(op2->value.type)) return ira->codegen->invalid_instruction; AstNode *source_node = bin_op_instruction->base.source_node; IrBinOp op_id = bin_op_instruction->op_id; bool is_equality_cmp = (op_id == IrBinOpCmpEq || op_id == IrBinOpCmpNotEq); if (is_equality_cmp && op1->value.type->id == ZigTypeIdNull && op2->value.type->id == ZigTypeIdNull) { return ir_const_bool(ira, &bin_op_instruction->base, (op_id == IrBinOpCmpEq)); } else if (is_equality_cmp && ((op1->value.type->id == ZigTypeIdNull && op2->value.type->id == ZigTypeIdOptional) || (op2->value.type->id == ZigTypeIdNull && op1->value.type->id == ZigTypeIdOptional))) { IrInstruction *maybe_op; if (op1->value.type->id == ZigTypeIdNull) { maybe_op = op2; } else if (op2->value.type->id == ZigTypeIdNull) { maybe_op = op1; } else { zig_unreachable(); } if (instr_is_comptime(maybe_op)) { ConstExprValue *maybe_val = ir_resolve_const(ira, maybe_op, UndefBad); if (!maybe_val) return ira->codegen->invalid_instruction; bool is_null = optional_value_is_null(maybe_val); bool bool_result = (op_id == IrBinOpCmpEq) ? is_null : !is_null; return ir_const_bool(ira, &bin_op_instruction->base, bool_result); } IrInstruction *is_non_null = ir_build_test_nonnull(&ira->new_irb, bin_op_instruction->base.scope, source_node, maybe_op); is_non_null->value.type = ira->codegen->builtin_types.entry_bool; if (op_id == IrBinOpCmpEq) { IrInstruction *result = ir_build_bool_not(&ira->new_irb, bin_op_instruction->base.scope, bin_op_instruction->base.source_node, is_non_null); result->value.type = ira->codegen->builtin_types.entry_bool; return result; } else { return is_non_null; } } else if (is_equality_cmp && ((op1->value.type->id == ZigTypeIdNull && op2->value.type->id == ZigTypeIdPointer && op2->value.type->data.pointer.ptr_len == PtrLenC) || (op2->value.type->id == ZigTypeIdNull && op1->value.type->id == ZigTypeIdPointer && op1->value.type->data.pointer.ptr_len == PtrLenC))) { IrInstruction *c_ptr_op; if (op1->value.type->id == ZigTypeIdNull) { c_ptr_op = op2; } else if (op2->value.type->id == ZigTypeIdNull) { c_ptr_op = op1; } else { zig_unreachable(); } if (instr_is_comptime(c_ptr_op)) { ConstExprValue *c_ptr_val = ir_resolve_const(ira, c_ptr_op, UndefOk); if (!c_ptr_val) return ira->codegen->invalid_instruction; if (c_ptr_val->special == ConstValSpecialUndef) return ir_const_undef(ira, &bin_op_instruction->base, ira->codegen->builtin_types.entry_bool); bool is_null = c_ptr_val->data.x_ptr.special == ConstPtrSpecialNull || (c_ptr_val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr && c_ptr_val->data.x_ptr.data.hard_coded_addr.addr == 0); bool bool_result = (op_id == IrBinOpCmpEq) ? is_null : !is_null; return ir_const_bool(ira, &bin_op_instruction->base, bool_result); } IrInstruction *is_non_null = ir_build_test_nonnull(&ira->new_irb, bin_op_instruction->base.scope, source_node, c_ptr_op); is_non_null->value.type = ira->codegen->builtin_types.entry_bool; if (op_id == IrBinOpCmpEq) { IrInstruction *result = ir_build_bool_not(&ira->new_irb, bin_op_instruction->base.scope, bin_op_instruction->base.source_node, is_non_null); result->value.type = ira->codegen->builtin_types.entry_bool; return result; } else { return is_non_null; } } else if (op1->value.type->id == ZigTypeIdNull || op2->value.type->id == ZigTypeIdNull) { ZigType *non_null_type = (op1->value.type->id == ZigTypeIdNull) ? op2->value.type : op1->value.type; ir_add_error_node(ira, source_node, buf_sprintf("comparison of '%s' with null", buf_ptr(&non_null_type->name))); return ira->codegen->invalid_instruction; } if (op1->value.type->id == ZigTypeIdErrorSet && op2->value.type->id == ZigTypeIdErrorSet) { if (!is_equality_cmp) { ir_add_error_node(ira, source_node, buf_sprintf("operator not allowed for errors")); return ira->codegen->invalid_instruction; } ZigType *intersect_type = get_error_set_intersection(ira, op1->value.type, op2->value.type, source_node); if (type_is_invalid(intersect_type)) { return ira->codegen->invalid_instruction; } if (!resolve_inferred_error_set(ira->codegen, intersect_type, source_node)) { return ira->codegen->invalid_instruction; } // exception if one of the operators has the type of the empty error set, we allow the comparison // (and make it comptime known) // this is a function which is evaluated at comptime and returns an inferred error set will have an empty // error set. if (op1->value.type->data.error_set.err_count == 0 || op2->value.type->data.error_set.err_count == 0) { bool are_equal = false; bool answer; if (op_id == IrBinOpCmpEq) { answer = are_equal; } else if (op_id == IrBinOpCmpNotEq) { answer = !are_equal; } else { zig_unreachable(); } return ir_const_bool(ira, &bin_op_instruction->base, answer); } if (!type_is_global_error_set(intersect_type)) { if (intersect_type->data.error_set.err_count == 0) { ir_add_error_node(ira, source_node, buf_sprintf("error sets '%s' and '%s' have no common errors", buf_ptr(&op1->value.type->name), buf_ptr(&op2->value.type->name))); return ira->codegen->invalid_instruction; } if (op1->value.type->data.error_set.err_count == 1 && op2->value.type->data.error_set.err_count == 1) { bool are_equal = true; bool answer; if (op_id == IrBinOpCmpEq) { answer = are_equal; } else if (op_id == IrBinOpCmpNotEq) { answer = !are_equal; } else { zig_unreachable(); } return ir_const_bool(ira, &bin_op_instruction->base, answer); } } if (instr_is_comptime(op1) && instr_is_comptime(op2)) { ConstExprValue *op1_val = ir_resolve_const(ira, op1, UndefBad); if (op1_val == nullptr) return ira->codegen->invalid_instruction; ConstExprValue *op2_val = ir_resolve_const(ira, op2, UndefBad); if (op2_val == nullptr) return ira->codegen->invalid_instruction; bool answer; bool are_equal = op1_val->data.x_err_set->value == op2_val->data.x_err_set->value; if (op_id == IrBinOpCmpEq) { answer = are_equal; } else if (op_id == IrBinOpCmpNotEq) { answer = !are_equal; } else { zig_unreachable(); } return ir_const_bool(ira, &bin_op_instruction->base, answer); } IrInstruction *result = ir_build_bin_op(&ira->new_irb, bin_op_instruction->base.scope, bin_op_instruction->base.source_node, op_id, op1, op2, bin_op_instruction->safety_check_on); result->value.type = ira->codegen->builtin_types.entry_bool; return result; } IrInstruction *instructions[] = {op1, op2}; ZigType *resolved_type = ir_resolve_peer_types(ira, source_node, nullptr, instructions, 2); if (type_is_invalid(resolved_type)) return ira->codegen->invalid_instruction; bool operator_allowed; switch (resolved_type->id) { case ZigTypeIdInvalid: zig_unreachable(); // handled above case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdInt: case ZigTypeIdFloat: case ZigTypeIdVector: operator_allowed = true; break; case ZigTypeIdBool: case ZigTypeIdMetaType: case ZigTypeIdVoid: case ZigTypeIdErrorSet: case ZigTypeIdFn: case ZigTypeIdOpaque: case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdEnum: case ZigTypeIdEnumLiteral: case ZigTypeIdAnyFrame: operator_allowed = is_equality_cmp; break; case ZigTypeIdPointer: operator_allowed = is_equality_cmp || (resolved_type->data.pointer.ptr_len == PtrLenC); break; case ZigTypeIdUnreachable: case ZigTypeIdArray: case ZigTypeIdStruct: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdErrorUnion: case ZigTypeIdUnion: case ZigTypeIdFnFrame: operator_allowed = false; break; case ZigTypeIdOptional: operator_allowed = is_equality_cmp && get_codegen_ptr_type(resolved_type) != nullptr; break; } if (!operator_allowed) { ir_add_error_node(ira, source_node, buf_sprintf("operator not allowed for type '%s'", buf_ptr(&resolved_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *casted_op1 = ir_implicit_cast(ira, op1, resolved_type); if (casted_op1 == ira->codegen->invalid_instruction) return ira->codegen->invalid_instruction; IrInstruction *casted_op2 = ir_implicit_cast(ira, op2, resolved_type); if (casted_op2 == ira->codegen->invalid_instruction) return ira->codegen->invalid_instruction; bool one_possible_value; switch (type_has_one_possible_value(ira->codegen, resolved_type)) { case OnePossibleValueInvalid: return ira->codegen->invalid_instruction; case OnePossibleValueYes: one_possible_value = true; break; case OnePossibleValueNo: one_possible_value = false; break; } if (one_possible_value || (instr_is_comptime(casted_op1) && instr_is_comptime(casted_op2))) { ConstExprValue *op1_val = one_possible_value ? &casted_op1->value : ir_resolve_const(ira, casted_op1, UndefBad); if (op1_val == nullptr) return ira->codegen->invalid_instruction; ConstExprValue *op2_val = one_possible_value ? &casted_op2->value : ir_resolve_const(ira, casted_op2, UndefBad); if (op2_val == nullptr) return ira->codegen->invalid_instruction; if (resolved_type->id == ZigTypeIdComptimeFloat || resolved_type->id == ZigTypeIdFloat) { if (float_is_nan(op1_val) || float_is_nan(op2_val)) { return ir_const_bool(ira, &bin_op_instruction->base, op_id == IrBinOpCmpNotEq); } Cmp cmp_result = float_cmp(op1_val, op2_val); bool answer = resolve_cmp_op_id(op_id, cmp_result); return ir_const_bool(ira, &bin_op_instruction->base, answer); } else if (resolved_type->id == ZigTypeIdComptimeInt || resolved_type->id == ZigTypeIdInt) { Cmp cmp_result = bigint_cmp(&op1_val->data.x_bigint, &op2_val->data.x_bigint); bool answer = resolve_cmp_op_id(op_id, cmp_result); return ir_const_bool(ira, &bin_op_instruction->base, answer); } else if (resolved_type->id == ZigTypeIdPointer && op_id != IrBinOpCmpEq && op_id != IrBinOpCmpNotEq) { if ((op1_val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr || op1_val->data.x_ptr.special == ConstPtrSpecialNull) && (op2_val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr || op2_val->data.x_ptr.special == ConstPtrSpecialNull)) { uint64_t op1_addr = op1_val->data.x_ptr.special == ConstPtrSpecialNull ? 0 : op1_val->data.x_ptr.data.hard_coded_addr.addr; uint64_t op2_addr = op2_val->data.x_ptr.special == ConstPtrSpecialNull ? 0 : op2_val->data.x_ptr.data.hard_coded_addr.addr; Cmp cmp_result; if (op1_addr > op2_addr) { cmp_result = CmpGT; } else if (op1_addr < op2_addr) { cmp_result = CmpLT; } else { cmp_result = CmpEQ; } bool answer = resolve_cmp_op_id(op_id, cmp_result); return ir_const_bool(ira, &bin_op_instruction->base, answer); } } else { bool are_equal = one_possible_value || const_values_equal(ira->codegen, op1_val, op2_val); bool answer; if (op_id == IrBinOpCmpEq) { answer = are_equal; } else if (op_id == IrBinOpCmpNotEq) { answer = !are_equal; } else { zig_unreachable(); } return ir_const_bool(ira, &bin_op_instruction->base, answer); } } // some comparisons with unsigned numbers can be evaluated if (resolved_type->id == ZigTypeIdInt && !resolved_type->data.integral.is_signed) { ConstExprValue *known_left_val; IrBinOp flipped_op_id; if (instr_is_comptime(casted_op1)) { known_left_val = ir_resolve_const(ira, casted_op1, UndefBad); if (known_left_val == nullptr) return ira->codegen->invalid_instruction; flipped_op_id = op_id; } else if (instr_is_comptime(casted_op2)) { known_left_val = ir_resolve_const(ira, casted_op2, UndefBad); if (known_left_val == nullptr) return ira->codegen->invalid_instruction; if (op_id == IrBinOpCmpLessThan) { flipped_op_id = IrBinOpCmpGreaterThan; } else if (op_id == IrBinOpCmpGreaterThan) { flipped_op_id = IrBinOpCmpLessThan; } else if (op_id == IrBinOpCmpLessOrEq) { flipped_op_id = IrBinOpCmpGreaterOrEq; } else if (op_id == IrBinOpCmpGreaterOrEq) { flipped_op_id = IrBinOpCmpLessOrEq; } else { flipped_op_id = op_id; } } else { known_left_val = nullptr; } if (known_left_val != nullptr && bigint_cmp_zero(&known_left_val->data.x_bigint) == CmpEQ && (flipped_op_id == IrBinOpCmpLessOrEq || flipped_op_id == IrBinOpCmpGreaterThan)) { bool answer = (flipped_op_id == IrBinOpCmpLessOrEq); return ir_const_bool(ira, &bin_op_instruction->base, answer); } } IrInstruction *result = ir_build_bin_op(&ira->new_irb, bin_op_instruction->base.scope, bin_op_instruction->base.source_node, op_id, casted_op1, casted_op2, bin_op_instruction->safety_check_on); result->value.type = ira->codegen->builtin_types.entry_bool; return result; } static ErrorMsg *ir_eval_math_op_scalar(IrAnalyze *ira, IrInstruction *source_instr, ZigType *type_entry, ConstExprValue *op1_val, IrBinOp op_id, ConstExprValue *op2_val, ConstExprValue *out_val) { bool is_int; bool is_float; Cmp op2_zcmp; if (type_entry->id == ZigTypeIdInt || type_entry->id == ZigTypeIdComptimeInt) { is_int = true; is_float = false; op2_zcmp = bigint_cmp_zero(&op2_val->data.x_bigint); } else if (type_entry->id == ZigTypeIdFloat || type_entry->id == ZigTypeIdComptimeFloat) { is_int = false; is_float = true; op2_zcmp = float_cmp_zero(op2_val); } else { zig_unreachable(); } if ((op_id == IrBinOpDivUnspecified || op_id == IrBinOpRemRem || op_id == IrBinOpRemMod || op_id == IrBinOpDivTrunc || op_id == IrBinOpDivFloor) && op2_zcmp == CmpEQ) { return ir_add_error(ira, source_instr, buf_sprintf("division by zero")); } if ((op_id == IrBinOpRemRem || op_id == IrBinOpRemMod) && op2_zcmp == CmpLT) { return ir_add_error(ira, source_instr, buf_sprintf("negative denominator")); } switch (op_id) { case IrBinOpInvalid: case IrBinOpBoolOr: case IrBinOpBoolAnd: case IrBinOpCmpEq: case IrBinOpCmpNotEq: case IrBinOpCmpLessThan: case IrBinOpCmpGreaterThan: case IrBinOpCmpLessOrEq: case IrBinOpCmpGreaterOrEq: case IrBinOpArrayCat: case IrBinOpArrayMult: case IrBinOpRemUnspecified: case IrBinOpMergeErrorSets: zig_unreachable(); case IrBinOpBinOr: assert(is_int); bigint_or(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); break; case IrBinOpBinXor: assert(is_int); bigint_xor(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); break; case IrBinOpBinAnd: assert(is_int); bigint_and(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); break; case IrBinOpBitShiftLeftExact: assert(is_int); bigint_shl(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); break; case IrBinOpBitShiftLeftLossy: assert(type_entry->id == ZigTypeIdInt); bigint_shl_trunc(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint, type_entry->data.integral.bit_count, type_entry->data.integral.is_signed); break; case IrBinOpBitShiftRightExact: { assert(is_int); bigint_shr(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); BigInt orig_bigint; bigint_shl(&orig_bigint, &out_val->data.x_bigint, &op2_val->data.x_bigint); if (bigint_cmp(&op1_val->data.x_bigint, &orig_bigint) != CmpEQ) { return ir_add_error(ira, source_instr, buf_sprintf("exact shift shifted out 1 bits")); } break; } case IrBinOpBitShiftRightLossy: assert(is_int); bigint_shr(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); break; case IrBinOpAdd: if (is_int) { bigint_add(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); } else { float_add(out_val, op1_val, op2_val); } break; case IrBinOpAddWrap: assert(type_entry->id == ZigTypeIdInt); bigint_add_wrap(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint, type_entry->data.integral.bit_count, type_entry->data.integral.is_signed); break; case IrBinOpSub: if (is_int) { bigint_sub(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); } else { float_sub(out_val, op1_val, op2_val); } break; case IrBinOpSubWrap: assert(type_entry->id == ZigTypeIdInt); bigint_sub_wrap(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint, type_entry->data.integral.bit_count, type_entry->data.integral.is_signed); break; case IrBinOpMult: if (is_int) { bigint_mul(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); } else { float_mul(out_val, op1_val, op2_val); } break; case IrBinOpMultWrap: assert(type_entry->id == ZigTypeIdInt); bigint_mul_wrap(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint, type_entry->data.integral.bit_count, type_entry->data.integral.is_signed); break; case IrBinOpDivUnspecified: assert(is_float); float_div(out_val, op1_val, op2_val); break; case IrBinOpDivTrunc: if (is_int) { bigint_div_trunc(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); } else { float_div_trunc(out_val, op1_val, op2_val); } break; case IrBinOpDivFloor: if (is_int) { bigint_div_floor(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); } else { float_div_floor(out_val, op1_val, op2_val); } break; case IrBinOpDivExact: if (is_int) { bigint_div_trunc(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); BigInt remainder; bigint_rem(&remainder, &op1_val->data.x_bigint, &op2_val->data.x_bigint); if (bigint_cmp_zero(&remainder) != CmpEQ) { return ir_add_error(ira, source_instr, buf_sprintf("exact division had a remainder")); } } else { float_div_trunc(out_val, op1_val, op2_val); ConstExprValue remainder = {}; float_rem(&remainder, op1_val, op2_val); if (float_cmp_zero(&remainder) != CmpEQ) { return ir_add_error(ira, source_instr, buf_sprintf("exact division had a remainder")); } } break; case IrBinOpRemRem: if (is_int) { bigint_rem(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); } else { float_rem(out_val, op1_val, op2_val); } break; case IrBinOpRemMod: if (is_int) { bigint_mod(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint); } else { float_mod(out_val, op1_val, op2_val); } break; } if (type_entry->id == ZigTypeIdInt) { if (!bigint_fits_in_bits(&out_val->data.x_bigint, type_entry->data.integral.bit_count, type_entry->data.integral.is_signed)) { return ir_add_error(ira, source_instr, buf_sprintf("operation caused overflow")); } } out_val->type = type_entry; out_val->special = ConstValSpecialStatic; return nullptr; } // This works on operands that have already been checked to be comptime known. static IrInstruction *ir_analyze_math_op(IrAnalyze *ira, IrInstruction *source_instr, ZigType *type_entry, ConstExprValue *op1_val, IrBinOp op_id, ConstExprValue *op2_val) { IrInstruction *result_instruction = ir_const(ira, source_instr, type_entry); ConstExprValue *out_val = &result_instruction->value; if (type_entry->id == ZigTypeIdVector) { expand_undef_array(ira->codegen, op1_val); expand_undef_array(ira->codegen, op2_val); out_val->special = ConstValSpecialUndef; expand_undef_array(ira->codegen, out_val); size_t len = type_entry->data.vector.len; ZigType *scalar_type = type_entry->data.vector.elem_type; for (size_t i = 0; i < len; i += 1) { ConstExprValue *scalar_op1_val = &op1_val->data.x_array.data.s_none.elements[i]; ConstExprValue *scalar_op2_val = &op2_val->data.x_array.data.s_none.elements[i]; ConstExprValue *scalar_out_val = &out_val->data.x_array.data.s_none.elements[i]; assert(scalar_op1_val->type == scalar_type); assert(scalar_op2_val->type == scalar_type); assert(scalar_out_val->type == scalar_type); ErrorMsg *msg = ir_eval_math_op_scalar(ira, source_instr, scalar_type, scalar_op1_val, op_id, scalar_op2_val, scalar_out_val); if (msg != nullptr) { add_error_note(ira->codegen, msg, source_instr->source_node, buf_sprintf("when computing vector element at index %" ZIG_PRI_usize, i)); return ira->codegen->invalid_instruction; } } out_val->type = type_entry; out_val->special = ConstValSpecialStatic; } else { if (ir_eval_math_op_scalar(ira, source_instr, type_entry, op1_val, op_id, op2_val, out_val) != nullptr) { return ira->codegen->invalid_instruction; } } return ir_implicit_cast(ira, result_instruction, type_entry); } static IrInstruction *ir_analyze_bit_shift(IrAnalyze *ira, IrInstructionBinOp *bin_op_instruction) { IrInstruction *op1 = bin_op_instruction->op1->child; if (type_is_invalid(op1->value.type)) return ira->codegen->invalid_instruction; if (op1->value.type->id != ZigTypeIdInt && op1->value.type->id != ZigTypeIdComptimeInt) { ir_add_error(ira, &bin_op_instruction->base, buf_sprintf("bit shifting operation expected integer type, found '%s'", buf_ptr(&op1->value.type->name))); return ira->codegen->invalid_instruction; } IrInstruction *op2 = bin_op_instruction->op2->child; if (type_is_invalid(op2->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_op2; IrBinOp op_id = bin_op_instruction->op_id; if (op1->value.type->id == ZigTypeIdComptimeInt) { casted_op2 = op2; if (op_id == IrBinOpBitShiftLeftLossy) { op_id = IrBinOpBitShiftLeftExact; } if (casted_op2->value.data.x_bigint.is_negative) { Buf *val_buf = buf_alloc(); bigint_append_buf(val_buf, &casted_op2->value.data.x_bigint, 10); ir_add_error(ira, casted_op2, buf_sprintf("shift by negative value %s", buf_ptr(val_buf))); return ira->codegen->invalid_instruction; } } else { ZigType *shift_amt_type = get_smallest_unsigned_int_type(ira->codegen, op1->value.type->data.integral.bit_count - 1); if (bin_op_instruction->op_id == IrBinOpBitShiftLeftLossy && op2->value.type->id == ZigTypeIdComptimeInt) { if (!bigint_fits_in_bits(&op2->value.data.x_bigint, shift_amt_type->data.integral.bit_count, op2->value.data.x_bigint.is_negative)) { Buf *val_buf = buf_alloc(); bigint_append_buf(val_buf, &op2->value.data.x_bigint, 10); ErrorMsg* msg = ir_add_error(ira, &bin_op_instruction->base, buf_sprintf("RHS of shift is too large for LHS type")); add_error_note( ira->codegen, msg, op2->source_node, buf_sprintf("value %s cannot fit into type %s", buf_ptr(val_buf), buf_ptr(&shift_amt_type->name))); return ira->codegen->invalid_instruction; } } casted_op2 = ir_implicit_cast(ira, op2, shift_amt_type); if (casted_op2 == ira->codegen->invalid_instruction) return ira->codegen->invalid_instruction; } if (instr_is_comptime(op1) && instr_is_comptime(casted_op2)) { ConstExprValue *op1_val = ir_resolve_const(ira, op1, UndefBad); if (op1_val == nullptr) return ira->codegen->invalid_instruction; ConstExprValue *op2_val = ir_resolve_const(ira, casted_op2, UndefBad); if (op2_val == nullptr) return ira->codegen->invalid_instruction; return ir_analyze_math_op(ira, &bin_op_instruction->base, op1->value.type, op1_val, op_id, op2_val); } else if (op1->value.type->id == ZigTypeIdComptimeInt) { ir_add_error(ira, &bin_op_instruction->base, buf_sprintf("LHS of shift must be an integer type, or RHS must be compile-time known")); return ira->codegen->invalid_instruction; } else if (instr_is_comptime(casted_op2) && bigint_cmp_zero(&casted_op2->value.data.x_bigint) == CmpEQ) { IrInstruction *result = ir_build_cast(&ira->new_irb, bin_op_instruction->base.scope, bin_op_instruction->base.source_node, op1->value.type, op1, CastOpNoop); result->value.type = op1->value.type; return result; } IrInstruction *result = ir_build_bin_op(&ira->new_irb, bin_op_instruction->base.scope, bin_op_instruction->base.source_node, op_id, op1, casted_op2, bin_op_instruction->safety_check_on); result->value.type = op1->value.type; return result; } static bool ok_float_op(IrBinOp op) { switch (op) { case IrBinOpInvalid: zig_unreachable(); case IrBinOpAdd: case IrBinOpSub: case IrBinOpMult: case IrBinOpDivUnspecified: case IrBinOpDivTrunc: case IrBinOpDivFloor: case IrBinOpDivExact: case IrBinOpRemRem: case IrBinOpRemMod: return true; case IrBinOpBoolOr: case IrBinOpBoolAnd: case IrBinOpCmpEq: case IrBinOpCmpNotEq: case IrBinOpCmpLessThan: case IrBinOpCmpGreaterThan: case IrBinOpCmpLessOrEq: case IrBinOpCmpGreaterOrEq: case IrBinOpBinOr: case IrBinOpBinXor: case IrBinOpBinAnd: case IrBinOpBitShiftLeftLossy: case IrBinOpBitShiftLeftExact: case IrBinOpBitShiftRightLossy: case IrBinOpBitShiftRightExact: case IrBinOpAddWrap: case IrBinOpSubWrap: case IrBinOpMultWrap: case IrBinOpRemUnspecified: case IrBinOpArrayCat: case IrBinOpArrayMult: case IrBinOpMergeErrorSets: return false; } zig_unreachable(); } static bool is_pointer_arithmetic_allowed(ZigType *lhs_type, IrBinOp op) { if (lhs_type->id != ZigTypeIdPointer) return false; switch (op) { case IrBinOpAdd: case IrBinOpSub: break; default: return false; } switch (lhs_type->data.pointer.ptr_len) { case PtrLenSingle: return false; case PtrLenUnknown: case PtrLenC: break; } return true; } static IrInstruction *ir_analyze_bin_op_math(IrAnalyze *ira, IrInstructionBinOp *instruction) { Error err; IrInstruction *op1 = instruction->op1->child; if (type_is_invalid(op1->value.type)) return ira->codegen->invalid_instruction; IrInstruction *op2 = instruction->op2->child; if (type_is_invalid(op2->value.type)) return ira->codegen->invalid_instruction; IrBinOp op_id = instruction->op_id; // look for pointer math if (is_pointer_arithmetic_allowed(op1->value.type, op_id)) { IrInstruction *casted_op2 = ir_implicit_cast(ira, op2, ira->codegen->builtin_types.entry_usize); if (type_is_invalid(casted_op2->value.type)) return ira->codegen->invalid_instruction; // If either operand is undef, result is undef. ConstExprValue *op1_val = nullptr; ConstExprValue *op2_val = nullptr; if (instr_is_comptime(op1)) { op1_val = ir_resolve_const(ira, op1, UndefOk); if (op1_val == nullptr) return ira->codegen->invalid_instruction; if (op1_val->special == ConstValSpecialUndef) return ir_const_undef(ira, &instruction->base, op1->value.type); } if (instr_is_comptime(casted_op2)) { op2_val = ir_resolve_const(ira, casted_op2, UndefOk); if (op2_val == nullptr) return ira->codegen->invalid_instruction; if (op2_val->special == ConstValSpecialUndef) return ir_const_undef(ira, &instruction->base, op1->value.type); } if (op2_val != nullptr && op1_val != nullptr && (op1->value.data.x_ptr.special == ConstPtrSpecialHardCodedAddr || op1->value.data.x_ptr.special == ConstPtrSpecialNull)) { uint64_t start_addr = (op1_val->data.x_ptr.special == ConstPtrSpecialNull) ? 0 : op1_val->data.x_ptr.data.hard_coded_addr.addr; uint64_t elem_offset; if (!ir_resolve_usize(ira, casted_op2, &elem_offset)) return ira->codegen->invalid_instruction; ZigType *elem_type = op1_val->type->data.pointer.child_type; if ((err = type_resolve(ira->codegen, elem_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; uint64_t byte_offset = type_size(ira->codegen, elem_type) * elem_offset; uint64_t new_addr; if (op_id == IrBinOpAdd) { new_addr = start_addr + byte_offset; } else if (op_id == IrBinOpSub) { new_addr = start_addr - byte_offset; } else { zig_unreachable(); } IrInstruction *result = ir_const(ira, &instruction->base, op1_val->type); result->value.data.x_ptr.special = ConstPtrSpecialHardCodedAddr; result->value.data.x_ptr.mut = ConstPtrMutRuntimeVar; result->value.data.x_ptr.data.hard_coded_addr.addr = new_addr; return result; } IrInstruction *result = ir_build_bin_op(&ira->new_irb, instruction->base.scope, instruction->base.source_node, op_id, op1, casted_op2, true); result->value.type = op1->value.type; return result; } IrInstruction *instructions[] = {op1, op2}; ZigType *resolved_type = ir_resolve_peer_types(ira, instruction->base.source_node, nullptr, instructions, 2); if (type_is_invalid(resolved_type)) return ira->codegen->invalid_instruction; bool is_int = resolved_type->id == ZigTypeIdInt || resolved_type->id == ZigTypeIdComptimeInt; bool is_float = resolved_type->id == ZigTypeIdFloat || resolved_type->id == ZigTypeIdComptimeFloat; bool is_signed_div = ( (resolved_type->id == ZigTypeIdInt && resolved_type->data.integral.is_signed) || resolved_type->id == ZigTypeIdFloat || (resolved_type->id == ZigTypeIdComptimeFloat && ((bigfloat_cmp_zero(&op1->value.data.x_bigfloat) != CmpGT) != (bigfloat_cmp_zero(&op2->value.data.x_bigfloat) != CmpGT))) || (resolved_type->id == ZigTypeIdComptimeInt && ((bigint_cmp_zero(&op1->value.data.x_bigint) != CmpGT) != (bigint_cmp_zero(&op2->value.data.x_bigint) != CmpGT))) ); if (op_id == IrBinOpDivUnspecified && is_int) { if (is_signed_div) { bool ok = false; if (instr_is_comptime(op1) && instr_is_comptime(op2)) { ConstExprValue *op1_val = ir_resolve_const(ira, op1, UndefBad); if (op1_val == nullptr) return ira->codegen->invalid_instruction; ConstExprValue *op2_val = ir_resolve_const(ira, op2, UndefBad); if (op2_val == nullptr) return ira->codegen->invalid_instruction; if (bigint_cmp_zero(&op2_val->data.x_bigint) == CmpEQ) { // the division by zero error will be caught later, but we don't have a // division function ambiguity problem. op_id = IrBinOpDivTrunc; ok = true; } else { BigInt trunc_result; BigInt floor_result; bigint_div_trunc(&trunc_result, &op1_val->data.x_bigint, &op2_val->data.x_bigint); bigint_div_floor(&floor_result, &op1_val->data.x_bigint, &op2_val->data.x_bigint); if (bigint_cmp(&trunc_result, &floor_result) == CmpEQ) { ok = true; op_id = IrBinOpDivTrunc; } } } if (!ok) { ir_add_error(ira, &instruction->base, buf_sprintf("division with '%s' and '%s': signed integers must use @divTrunc, @divFloor, or @divExact", buf_ptr(&op1->value.type->name), buf_ptr(&op2->value.type->name))); return ira->codegen->invalid_instruction; } } else { op_id = IrBinOpDivTrunc; } } else if (op_id == IrBinOpRemUnspecified) { if (is_signed_div && (is_int || is_float)) { bool ok = false; if (instr_is_comptime(op1) && instr_is_comptime(op2)) { ConstExprValue *op1_val = ir_resolve_const(ira, op1, UndefBad); if (op1_val == nullptr) return ira->codegen->invalid_instruction; if (is_int) { ConstExprValue *op2_val = ir_resolve_const(ira, op2, UndefBad); if (op2_val == nullptr) return ira->codegen->invalid_instruction; if (bigint_cmp_zero(&op2->value.data.x_bigint) == CmpEQ) { // the division by zero error will be caught later, but we don't // have a remainder function ambiguity problem ok = true; } else { BigInt rem_result; BigInt mod_result; bigint_rem(&rem_result, &op1_val->data.x_bigint, &op2_val->data.x_bigint); bigint_mod(&mod_result, &op1_val->data.x_bigint, &op2_val->data.x_bigint); ok = bigint_cmp(&rem_result, &mod_result) == CmpEQ; } } else { IrInstruction *casted_op2 = ir_implicit_cast(ira, op2, resolved_type); if (casted_op2 == ira->codegen->invalid_instruction) return ira->codegen->invalid_instruction; ConstExprValue *op2_val = ir_resolve_const(ira, casted_op2, UndefBad); if (op2_val == nullptr) return ira->codegen->invalid_instruction; if (float_cmp_zero(&casted_op2->value) == CmpEQ) { // the division by zero error will be caught later, but we don't // have a remainder function ambiguity problem ok = true; } else { ConstExprValue rem_result = {}; ConstExprValue mod_result = {}; float_rem(&rem_result, op1_val, op2_val); float_mod(&mod_result, op1_val, op2_val); ok = float_cmp(&rem_result, &mod_result) == CmpEQ; } } } if (!ok) { ir_add_error(ira, &instruction->base, buf_sprintf("remainder division with '%s' and '%s': signed integers and floats must use @rem or @mod", buf_ptr(&op1->value.type->name), buf_ptr(&op2->value.type->name))); return ira->codegen->invalid_instruction; } } op_id = IrBinOpRemRem; } bool ok = false; if (is_int) { ok = true; } else if (is_float && ok_float_op(op_id)) { ok = true; } else if (resolved_type->id == ZigTypeIdVector) { ZigType *elem_type = resolved_type->data.vector.elem_type; if (elem_type->id == ZigTypeIdInt || elem_type->id == ZigTypeIdComptimeInt) { ok = true; } else if ((elem_type->id == ZigTypeIdFloat || elem_type->id == ZigTypeIdComptimeFloat) && ok_float_op(op_id)) { ok = true; } } if (!ok) { AstNode *source_node = instruction->base.source_node; ir_add_error_node(ira, source_node, buf_sprintf("invalid operands to binary expression: '%s' and '%s'", buf_ptr(&op1->value.type->name), buf_ptr(&op2->value.type->name))); return ira->codegen->invalid_instruction; } if (resolved_type->id == ZigTypeIdComptimeInt) { if (op_id == IrBinOpAddWrap) { op_id = IrBinOpAdd; } else if (op_id == IrBinOpSubWrap) { op_id = IrBinOpSub; } else if (op_id == IrBinOpMultWrap) { op_id = IrBinOpMult; } } IrInstruction *casted_op1 = ir_implicit_cast(ira, op1, resolved_type); if (casted_op1 == ira->codegen->invalid_instruction) return ira->codegen->invalid_instruction; IrInstruction *casted_op2 = ir_implicit_cast(ira, op2, resolved_type); if (casted_op2 == ira->codegen->invalid_instruction) return ira->codegen->invalid_instruction; if (instr_is_comptime(casted_op1) && instr_is_comptime(casted_op2)) { ConstExprValue *op1_val = ir_resolve_const(ira, casted_op1, UndefBad); if (op1_val == nullptr) return ira->codegen->invalid_instruction; ConstExprValue *op2_val = ir_resolve_const(ira, casted_op2, UndefBad); if (op2_val == nullptr) return ira->codegen->invalid_instruction; return ir_analyze_math_op(ira, &instruction->base, resolved_type, op1_val, op_id, op2_val); } IrInstruction *result = ir_build_bin_op(&ira->new_irb, instruction->base.scope, instruction->base.source_node, op_id, casted_op1, casted_op2, instruction->safety_check_on); result->value.type = resolved_type; return result; } static IrInstruction *ir_analyze_array_cat(IrAnalyze *ira, IrInstructionBinOp *instruction) { IrInstruction *op1 = instruction->op1->child; ZigType *op1_type = op1->value.type; if (type_is_invalid(op1_type)) return ira->codegen->invalid_instruction; IrInstruction *op2 = instruction->op2->child; ZigType *op2_type = op2->value.type; if (type_is_invalid(op2_type)) return ira->codegen->invalid_instruction; ConstExprValue *op1_val = ir_resolve_const(ira, op1, UndefBad); if (!op1_val) return ira->codegen->invalid_instruction; ConstExprValue *op2_val = ir_resolve_const(ira, op2, UndefBad); if (!op2_val) return ira->codegen->invalid_instruction; ConstExprValue *op1_array_val; size_t op1_array_index; size_t op1_array_end; ZigType *child_type; if (op1_type->id == ZigTypeIdArray) { child_type = op1_type->data.array.child_type; op1_array_val = op1_val; op1_array_index = 0; op1_array_end = op1_type->data.array.len; } else if (op1_type->id == ZigTypeIdPointer && op1_type->data.pointer.child_type == ira->codegen->builtin_types.entry_u8 && op1_val->data.x_ptr.special == ConstPtrSpecialBaseArray && op1_val->data.x_ptr.data.base_array.is_cstr) { child_type = op1_type->data.pointer.child_type; op1_array_val = op1_val->data.x_ptr.data.base_array.array_val; op1_array_index = op1_val->data.x_ptr.data.base_array.elem_index; op1_array_end = op1_array_val->type->data.array.len - 1; } else if (is_slice(op1_type)) { ZigType *ptr_type = op1_type->data.structure.fields[slice_ptr_index].type_entry; child_type = ptr_type->data.pointer.child_type; ConstExprValue *ptr_val = &op1_val->data.x_struct.fields[slice_ptr_index]; assert(ptr_val->data.x_ptr.special == ConstPtrSpecialBaseArray); op1_array_val = ptr_val->data.x_ptr.data.base_array.array_val; op1_array_index = ptr_val->data.x_ptr.data.base_array.elem_index; ConstExprValue *len_val = &op1_val->data.x_struct.fields[slice_len_index]; op1_array_end = op1_array_index + bigint_as_usize(&len_val->data.x_bigint); } else { ir_add_error(ira, op1, buf_sprintf("expected array or C string literal, found '%s'", buf_ptr(&op1->value.type->name))); return ira->codegen->invalid_instruction; } ConstExprValue *op2_array_val; size_t op2_array_index; size_t op2_array_end; bool op2_type_valid; if (op2_type->id == ZigTypeIdArray) { op2_type_valid = op2_type->data.array.child_type == child_type; op2_array_val = op2_val; op2_array_index = 0; op2_array_end = op2_array_val->type->data.array.len; } else if (op2_type->id == ZigTypeIdPointer && op2_type->data.pointer.child_type == ira->codegen->builtin_types.entry_u8 && op2_val->data.x_ptr.special == ConstPtrSpecialBaseArray && op2_val->data.x_ptr.data.base_array.is_cstr) { op2_type_valid = child_type == ira->codegen->builtin_types.entry_u8; op2_array_val = op2_val->data.x_ptr.data.base_array.array_val; op2_array_index = op2_val->data.x_ptr.data.base_array.elem_index; op2_array_end = op2_array_val->type->data.array.len - 1; } else if (is_slice(op2_type)) { ZigType *ptr_type = op2_type->data.structure.fields[slice_ptr_index].type_entry; op2_type_valid = ptr_type->data.pointer.child_type == child_type; ConstExprValue *ptr_val = &op2_val->data.x_struct.fields[slice_ptr_index]; assert(ptr_val->data.x_ptr.special == ConstPtrSpecialBaseArray); op2_array_val = ptr_val->data.x_ptr.data.base_array.array_val; op2_array_index = ptr_val->data.x_ptr.data.base_array.elem_index; ConstExprValue *len_val = &op2_val->data.x_struct.fields[slice_len_index]; op2_array_end = op2_array_index + bigint_as_usize(&len_val->data.x_bigint); } else { ir_add_error(ira, op2, buf_sprintf("expected array or C string literal, found '%s'", buf_ptr(&op2->value.type->name))); return ira->codegen->invalid_instruction; } if (!op2_type_valid) { ir_add_error(ira, op2, buf_sprintf("expected array of type '%s', found '%s'", buf_ptr(&child_type->name), buf_ptr(&op2->value.type->name))); return ira->codegen->invalid_instruction; } // The type of result is populated in the following if blocks IrInstruction *result = ir_const(ira, &instruction->base, nullptr); ConstExprValue *out_val = &result->value; ConstExprValue *out_array_val; size_t new_len = (op1_array_end - op1_array_index) + (op2_array_end - op2_array_index); if (op1_type->id == ZigTypeIdArray || op2_type->id == ZigTypeIdArray) { result->value.type = get_array_type(ira->codegen, child_type, new_len); out_array_val = out_val; } else if (is_slice(op1_type) || is_slice(op2_type)) { ZigType *ptr_type = get_pointer_to_type_extra(ira->codegen, child_type, true, false, PtrLenUnknown, 0, 0, 0, false); result->value.type = get_slice_type(ira->codegen, ptr_type); out_array_val = create_const_vals(1); out_array_val->special = ConstValSpecialStatic; out_array_val->type = get_array_type(ira->codegen, child_type, new_len); out_val->data.x_struct.fields = create_const_vals(2); out_val->data.x_struct.fields[slice_ptr_index].type = ptr_type; out_val->data.x_struct.fields[slice_ptr_index].special = ConstValSpecialStatic; out_val->data.x_struct.fields[slice_ptr_index].data.x_ptr.special = ConstPtrSpecialBaseArray; out_val->data.x_struct.fields[slice_ptr_index].data.x_ptr.data.base_array.array_val = out_array_val; out_val->data.x_struct.fields[slice_ptr_index].data.x_ptr.data.base_array.elem_index = 0; out_val->data.x_struct.fields[slice_len_index].type = ira->codegen->builtin_types.entry_usize; out_val->data.x_struct.fields[slice_len_index].special = ConstValSpecialStatic; bigint_init_unsigned(&out_val->data.x_struct.fields[slice_len_index].data.x_bigint, new_len); } else { new_len += 1; // null byte // TODO make this `[*]null T` instead of `[*]T` result->value.type = get_pointer_to_type_extra(ira->codegen, child_type, true, false, PtrLenUnknown, 0, 0, 0, false); out_array_val = create_const_vals(1); out_array_val->special = ConstValSpecialStatic; out_array_val->type = get_array_type(ira->codegen, child_type, new_len); out_val->data.x_ptr.special = ConstPtrSpecialBaseArray; out_val->data.x_ptr.data.base_array.is_cstr = true; out_val->data.x_ptr.data.base_array.array_val = out_array_val; out_val->data.x_ptr.data.base_array.elem_index = 0; } if (op1_array_val->data.x_array.special == ConstArraySpecialUndef && op2_array_val->data.x_array.special == ConstArraySpecialUndef) { out_array_val->data.x_array.special = ConstArraySpecialUndef; return result; } out_array_val->data.x_array.data.s_none.elements = create_const_vals(new_len); // TODO handle the buf case here for an optimization expand_undef_array(ira->codegen, op1_array_val); expand_undef_array(ira->codegen, op2_array_val); size_t next_index = 0; for (size_t i = op1_array_index; i < op1_array_end; i += 1, next_index += 1) { copy_const_val(&out_array_val->data.x_array.data.s_none.elements[next_index], &op1_array_val->data.x_array.data.s_none.elements[i], true); } for (size_t i = op2_array_index; i < op2_array_end; i += 1, next_index += 1) { copy_const_val(&out_array_val->data.x_array.data.s_none.elements[next_index], &op2_array_val->data.x_array.data.s_none.elements[i], true); } if (next_index < new_len) { ConstExprValue *null_byte = &out_array_val->data.x_array.data.s_none.elements[next_index]; init_const_unsigned_negative(null_byte, child_type, 0, false); next_index += 1; } assert(next_index == new_len); return result; } static IrInstruction *ir_analyze_array_mult(IrAnalyze *ira, IrInstructionBinOp *instruction) { IrInstruction *op1 = instruction->op1->child; if (type_is_invalid(op1->value.type)) return ira->codegen->invalid_instruction; IrInstruction *op2 = instruction->op2->child; if (type_is_invalid(op2->value.type)) return ira->codegen->invalid_instruction; ConstExprValue *array_val = ir_resolve_const(ira, op1, UndefBad); if (!array_val) return ira->codegen->invalid_instruction; uint64_t mult_amt; if (!ir_resolve_usize(ira, op2, &mult_amt)) return ira->codegen->invalid_instruction; ZigType *array_type = op1->value.type; if (array_type->id != ZigTypeIdArray) { ir_add_error(ira, op1, buf_sprintf("expected array type, found '%s'", buf_ptr(&op1->value.type->name))); return ira->codegen->invalid_instruction; } uint64_t old_array_len = array_type->data.array.len; uint64_t new_array_len; if (mul_u64_overflow(old_array_len, mult_amt, &new_array_len)) { ir_add_error(ira, &instruction->base, buf_sprintf("operation results in overflow")); return ira->codegen->invalid_instruction; } ZigType *child_type = array_type->data.array.child_type; IrInstruction *result = ir_const(ira, &instruction->base, get_array_type(ira->codegen, child_type, new_array_len)); ConstExprValue *out_val = &result->value; if (array_val->data.x_array.special == ConstArraySpecialUndef) { out_val->data.x_array.special = ConstArraySpecialUndef; return result; } switch (type_has_one_possible_value(ira->codegen, result->value.type)) { case OnePossibleValueInvalid: return ira->codegen->invalid_instruction; case OnePossibleValueYes: return result; case OnePossibleValueNo: break; } // TODO optimize the buf case expand_undef_array(ira->codegen, array_val); out_val->data.x_array.data.s_none.elements = create_const_vals(new_array_len); uint64_t i = 0; for (uint64_t x = 0; x < mult_amt; x += 1) { for (uint64_t y = 0; y < old_array_len; y += 1) { ConstExprValue *elem_dest_val = &out_val->data.x_array.data.s_none.elements[i]; copy_const_val(elem_dest_val, &array_val->data.x_array.data.s_none.elements[y], false); elem_dest_val->parent.id = ConstParentIdArray; elem_dest_val->parent.data.p_array.array_val = out_val; elem_dest_val->parent.data.p_array.elem_index = i; i += 1; } } assert(i == new_array_len); return result; } static IrInstruction *ir_analyze_merge_error_sets(IrAnalyze *ira, IrInstructionBinOp *instruction) { ZigType *op1_type = ir_resolve_error_set_type(ira, &instruction->base, instruction->op1->child); if (type_is_invalid(op1_type)) return ira->codegen->invalid_instruction; ZigType *op2_type = ir_resolve_error_set_type(ira, &instruction->base, instruction->op2->child); if (type_is_invalid(op2_type)) return ira->codegen->invalid_instruction; if (type_is_global_error_set(op1_type) || type_is_global_error_set(op2_type)) { return ir_const_type(ira, &instruction->base, ira->codegen->builtin_types.entry_global_error_set); } if (!resolve_inferred_error_set(ira->codegen, op1_type, instruction->op1->child->source_node)) { return ira->codegen->invalid_instruction; } if (!resolve_inferred_error_set(ira->codegen, op2_type, instruction->op2->child->source_node)) { return ira->codegen->invalid_instruction; } ErrorTableEntry **errors = allocate(ira->codegen->errors_by_index.length); for (uint32_t i = 0, count = op1_type->data.error_set.err_count; i < count; i += 1) { ErrorTableEntry *error_entry = op1_type->data.error_set.errors[i]; assert(errors[error_entry->value] == nullptr); errors[error_entry->value] = error_entry; } ZigType *result_type = get_error_set_union(ira->codegen, errors, op1_type, op2_type); free(errors); return ir_const_type(ira, &instruction->base, result_type); } static IrInstruction *ir_analyze_instruction_bin_op(IrAnalyze *ira, IrInstructionBinOp *bin_op_instruction) { IrBinOp op_id = bin_op_instruction->op_id; switch (op_id) { case IrBinOpInvalid: zig_unreachable(); case IrBinOpBoolOr: case IrBinOpBoolAnd: return ir_analyze_bin_op_bool(ira, bin_op_instruction); case IrBinOpCmpEq: case IrBinOpCmpNotEq: case IrBinOpCmpLessThan: case IrBinOpCmpGreaterThan: case IrBinOpCmpLessOrEq: case IrBinOpCmpGreaterOrEq: return ir_analyze_bin_op_cmp(ira, bin_op_instruction); case IrBinOpBitShiftLeftLossy: case IrBinOpBitShiftLeftExact: case IrBinOpBitShiftRightLossy: case IrBinOpBitShiftRightExact: return ir_analyze_bit_shift(ira, bin_op_instruction); case IrBinOpBinOr: case IrBinOpBinXor: case IrBinOpBinAnd: case IrBinOpAdd: case IrBinOpAddWrap: case IrBinOpSub: case IrBinOpSubWrap: case IrBinOpMult: case IrBinOpMultWrap: case IrBinOpDivUnspecified: case IrBinOpDivTrunc: case IrBinOpDivFloor: case IrBinOpDivExact: case IrBinOpRemUnspecified: case IrBinOpRemRem: case IrBinOpRemMod: return ir_analyze_bin_op_math(ira, bin_op_instruction); case IrBinOpArrayCat: return ir_analyze_array_cat(ira, bin_op_instruction); case IrBinOpArrayMult: return ir_analyze_array_mult(ira, bin_op_instruction); case IrBinOpMergeErrorSets: return ir_analyze_merge_error_sets(ira, bin_op_instruction); } zig_unreachable(); } static IrInstruction *ir_analyze_instruction_decl_var(IrAnalyze *ira, IrInstructionDeclVarSrc *decl_var_instruction) { Error err; ZigVar *var = decl_var_instruction->var; ZigType *explicit_type = nullptr; IrInstruction *var_type = nullptr; if (decl_var_instruction->var_type != nullptr) { var_type = decl_var_instruction->var_type->child; ZigType *proposed_type = ir_resolve_type(ira, var_type); explicit_type = validate_var_type(ira->codegen, var_type->source_node, proposed_type); if (type_is_invalid(explicit_type)) { var->var_type = ira->codegen->builtin_types.entry_invalid; return ira->codegen->invalid_instruction; } } AstNode *source_node = decl_var_instruction->base.source_node; bool is_comptime_var = ir_get_var_is_comptime(var); bool var_class_requires_const = false; IrInstruction *var_ptr = decl_var_instruction->ptr->child; // if this is null, a compiler error happened and did not initialize the variable. // if there are no compile errors there may be a missing ir_expr_wrap in pass1 IR generation. if (var_ptr == nullptr || type_is_invalid(var_ptr->value.type)) { ir_assert(var_ptr != nullptr || ira->codegen->errors.length != 0, &decl_var_instruction->base); var->var_type = ira->codegen->builtin_types.entry_invalid; return ira->codegen->invalid_instruction; } // The ir_build_var_decl_src call is supposed to pass a pointer to the allocation, not an initialization value. ir_assert(var_ptr->value.type->id == ZigTypeIdPointer, &decl_var_instruction->base); ZigType *result_type = var_ptr->value.type->data.pointer.child_type; if (type_is_invalid(result_type)) { result_type = ira->codegen->builtin_types.entry_invalid; } else if (result_type->id == ZigTypeIdUnreachable || result_type->id == ZigTypeIdOpaque) { zig_unreachable(); } ConstExprValue *init_val = nullptr; if (instr_is_comptime(var_ptr) && var_ptr->value.data.x_ptr.mut != ConstPtrMutRuntimeVar) { init_val = const_ptr_pointee(ira, ira->codegen, &var_ptr->value, decl_var_instruction->base.source_node); if (is_comptime_var) { if (var->gen_is_const) { var->const_value = init_val; } else { var->const_value = create_const_vals(1); copy_const_val(var->const_value, init_val, false); } } } switch (type_requires_comptime(ira->codegen, result_type)) { case ReqCompTimeInvalid: result_type = ira->codegen->builtin_types.entry_invalid; break; case ReqCompTimeYes: var_class_requires_const = true; if (!var->gen_is_const && !is_comptime_var) { ir_add_error_node(ira, source_node, buf_sprintf("variable of type '%s' must be const or comptime", buf_ptr(&result_type->name))); result_type = ira->codegen->builtin_types.entry_invalid; } break; case ReqCompTimeNo: if (init_val != nullptr && value_is_comptime(init_val)) { if ((err = ir_resolve_const_val(ira->codegen, ira->new_irb.exec, decl_var_instruction->base.source_node, init_val, UndefOk))) { result_type = ira->codegen->builtin_types.entry_invalid; } else if (init_val->type->id == ZigTypeIdFn && init_val->special != ConstValSpecialUndef && init_val->data.x_ptr.special != ConstPtrSpecialHardCodedAddr && init_val->data.x_ptr.data.fn.fn_entry->fn_inline == FnInlineAlways) { var_class_requires_const = true; if (!var->src_is_const && !is_comptime_var) { ErrorMsg *msg = ir_add_error_node(ira, source_node, buf_sprintf("functions marked inline must be stored in const or comptime var")); AstNode *proto_node = init_val->data.x_ptr.data.fn.fn_entry->proto_node; add_error_note(ira->codegen, msg, proto_node, buf_sprintf("declared here")); result_type = ira->codegen->builtin_types.entry_invalid; } } } break; } if (var->var_type != nullptr && !is_comptime_var) { // This is at least the second time we've seen this variable declaration during analysis. // This means that this is actually a different variable due to, e.g. an inline while loop. // We make a new variable so that it can hold a different type, and so the debug info can // be distinct. ZigVar *new_var = create_local_var(ira->codegen, var->decl_node, var->child_scope, &var->name, var->src_is_const, var->gen_is_const, var->shadowable, var->is_comptime, true); new_var->owner_exec = var->owner_exec; new_var->align_bytes = var->align_bytes; if (var->mem_slot_index != SIZE_MAX) { ConstExprValue *vals = create_const_vals(1); new_var->mem_slot_index = ira->exec_context.mem_slot_list.length; ira->exec_context.mem_slot_list.append(vals); } var->next_var = new_var; var = new_var; } // This must be done after possibly creating a new variable above var->ref_count = 0; var->var_type = result_type; assert(var->var_type); if (type_is_invalid(result_type)) { return ir_const_void(ira, &decl_var_instruction->base); } if (decl_var_instruction->align_value == nullptr) { if ((err = type_resolve(ira->codegen, result_type, ResolveStatusAlignmentKnown))) { var->var_type = ira->codegen->builtin_types.entry_invalid; return ir_const_void(ira, &decl_var_instruction->base); } var->align_bytes = get_abi_alignment(ira->codegen, result_type); } else { if (!ir_resolve_align(ira, decl_var_instruction->align_value->child, &var->align_bytes)) { var->var_type = ira->codegen->builtin_types.entry_invalid; } } if (init_val != nullptr && value_is_comptime(init_val)) { // Resolve ConstPtrMutInfer if (var->gen_is_const) { var_ptr->value.data.x_ptr.mut = ConstPtrMutComptimeConst; } else if (is_comptime_var) { var_ptr->value.data.x_ptr.mut = ConstPtrMutComptimeVar; } else { // we need a runtime ptr but we have a comptime val. // since it's a comptime val there are no instructions for it. // we memcpy the init value here IrInstruction *deref = ir_get_deref(ira, var_ptr, var_ptr, nullptr); // If this assertion trips, something is wrong with the IR instructions, because // we expected the above deref to return a constant value, but it created a runtime // instruction. assert(deref->value.special != ConstValSpecialRuntime); var_ptr->value.special = ConstValSpecialRuntime; ir_analyze_store_ptr(ira, var_ptr, var_ptr, deref, false); } if (instr_is_comptime(var_ptr) && var->mem_slot_index != SIZE_MAX) { assert(var->mem_slot_index < ira->exec_context.mem_slot_list.length); ConstExprValue *mem_slot = ira->exec_context.mem_slot_list.at(var->mem_slot_index); copy_const_val(mem_slot, init_val, !is_comptime_var || var->gen_is_const); if (is_comptime_var || (var_class_requires_const && var->gen_is_const)) { return ir_const_void(ira, &decl_var_instruction->base); } } } else if (is_comptime_var) { ir_add_error(ira, &decl_var_instruction->base, buf_sprintf("cannot store runtime value in compile time variable")); var->var_type = ira->codegen->builtin_types.entry_invalid; return ira->codegen->invalid_instruction; } ZigFn *fn_entry = exec_fn_entry(ira->new_irb.exec); if (fn_entry) fn_entry->variable_list.append(var); return ir_build_var_decl_gen(ira, &decl_var_instruction->base, var, var_ptr); } static IrInstruction *ir_analyze_instruction_export(IrAnalyze *ira, IrInstructionExport *instruction) { IrInstruction *name = instruction->name->child; Buf *symbol_name = ir_resolve_str(ira, name); if (symbol_name == nullptr) { return ira->codegen->invalid_instruction; } IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) { return ira->codegen->invalid_instruction; } GlobalLinkageId global_linkage_id = GlobalLinkageIdStrong; if (instruction->linkage != nullptr) { IrInstruction *linkage_value = instruction->linkage->child; if (!ir_resolve_global_linkage(ira, linkage_value, &global_linkage_id)) { return ira->codegen->invalid_instruction; } } // TODO: This function needs to be audited. // It's not clear how all the different types are supposed to be handled. // Need comprehensive tests for exporting one thing in one file and declaring an extern var // in another file. TldFn *tld_fn = allocate(1); tld_fn->base.id = TldIdFn; tld_fn->base.source_node = instruction->base.source_node; auto entry = ira->codegen->exported_symbol_names.put_unique(symbol_name, &tld_fn->base); if (entry) { AstNode *other_export_node = entry->value->source_node; ErrorMsg *msg = ir_add_error(ira, &instruction->base, buf_sprintf("exported symbol collision: '%s'", buf_ptr(symbol_name))); add_error_note(ira->codegen, msg, other_export_node, buf_sprintf("other symbol is here")); return ira->codegen->invalid_instruction; } bool want_var_export = false; switch (target->value.type->id) { case ZigTypeIdInvalid: case ZigTypeIdUnreachable: zig_unreachable(); case ZigTypeIdFn: { assert(target->value.data.x_ptr.special == ConstPtrSpecialFunction); ZigFn *fn_entry = target->value.data.x_ptr.data.fn.fn_entry; tld_fn->fn_entry = fn_entry; CallingConvention cc = fn_entry->type_entry->data.fn.fn_type_id.cc; switch (cc) { case CallingConventionUnspecified: { ErrorMsg *msg = ir_add_error(ira, target, buf_sprintf("exported function must specify calling convention")); add_error_note(ira->codegen, msg, fn_entry->proto_node, buf_sprintf("declared here")); } break; case CallingConventionAsync: { ErrorMsg *msg = ir_add_error(ira, target, buf_sprintf("exported function cannot be async")); add_error_note(ira->codegen, msg, fn_entry->proto_node, buf_sprintf("declared here")); } break; case CallingConventionC: case CallingConventionNaked: case CallingConventionCold: case CallingConventionStdcall: add_fn_export(ira->codegen, fn_entry, symbol_name, global_linkage_id, cc == CallingConventionC); break; } } break; case ZigTypeIdStruct: if (is_slice(target->value.type)) { ir_add_error(ira, target, buf_sprintf("unable to export value of type '%s'", buf_ptr(&target->value.type->name))); } else if (target->value.type->data.structure.layout != ContainerLayoutExtern) { ErrorMsg *msg = ir_add_error(ira, target, buf_sprintf("exported struct value must be declared extern")); add_error_note(ira->codegen, msg, target->value.type->data.structure.decl_node, buf_sprintf("declared here")); } else { want_var_export = true; } break; case ZigTypeIdUnion: if (target->value.type->data.unionation.layout != ContainerLayoutExtern) { ErrorMsg *msg = ir_add_error(ira, target, buf_sprintf("exported union value must be declared extern")); add_error_note(ira->codegen, msg, target->value.type->data.unionation.decl_node, buf_sprintf("declared here")); } else { want_var_export = true; } break; case ZigTypeIdEnum: if (target->value.type->data.enumeration.layout != ContainerLayoutExtern) { ErrorMsg *msg = ir_add_error(ira, target, buf_sprintf("exported enum value must be declared extern")); add_error_note(ira->codegen, msg, target->value.type->data.enumeration.decl_node, buf_sprintf("declared here")); } else { want_var_export = true; } break; case ZigTypeIdArray: if (!type_allowed_in_extern(ira->codegen, target->value.type->data.array.child_type)) { ir_add_error(ira, target, buf_sprintf("array element type '%s' not extern-compatible", buf_ptr(&target->value.type->data.array.child_type->name))); } else { want_var_export = true; } break; case ZigTypeIdMetaType: { ZigType *type_value = target->value.data.x_type; switch (type_value->id) { case ZigTypeIdInvalid: zig_unreachable(); case ZigTypeIdStruct: if (is_slice(type_value)) { ir_add_error(ira, target, buf_sprintf("unable to export type '%s'", buf_ptr(&type_value->name))); } else if (type_value->data.structure.layout != ContainerLayoutExtern) { ErrorMsg *msg = ir_add_error(ira, target, buf_sprintf("exported struct must be declared extern")); add_error_note(ira->codegen, msg, type_value->data.structure.decl_node, buf_sprintf("declared here")); } break; case ZigTypeIdUnion: if (type_value->data.unionation.layout != ContainerLayoutExtern) { ErrorMsg *msg = ir_add_error(ira, target, buf_sprintf("exported union must be declared extern")); add_error_note(ira->codegen, msg, type_value->data.unionation.decl_node, buf_sprintf("declared here")); } break; case ZigTypeIdEnum: if (type_value->data.enumeration.layout != ContainerLayoutExtern) { ErrorMsg *msg = ir_add_error(ira, target, buf_sprintf("exported enum must be declared extern")); add_error_note(ira->codegen, msg, type_value->data.enumeration.decl_node, buf_sprintf("declared here")); } break; case ZigTypeIdFn: { if (type_value->data.fn.fn_type_id.cc == CallingConventionUnspecified) { ir_add_error(ira, target, buf_sprintf("exported function type must specify calling convention")); } } break; case ZigTypeIdInt: case ZigTypeIdFloat: case ZigTypeIdPointer: case ZigTypeIdArray: case ZigTypeIdBool: case ZigTypeIdVector: break; case ZigTypeIdMetaType: case ZigTypeIdVoid: case ZigTypeIdUnreachable: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdOptional: case ZigTypeIdErrorUnion: case ZigTypeIdErrorSet: case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdOpaque: case ZigTypeIdFnFrame: case ZigTypeIdAnyFrame: ir_add_error(ira, target, buf_sprintf("invalid export target '%s'", buf_ptr(&type_value->name))); break; } } break; case ZigTypeIdInt: break; case ZigTypeIdVoid: case ZigTypeIdBool: case ZigTypeIdFloat: case ZigTypeIdPointer: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdOptional: case ZigTypeIdErrorUnion: case ZigTypeIdErrorSet: case ZigTypeIdVector: zig_panic("TODO export const value of type %s", buf_ptr(&target->value.type->name)); case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdOpaque: case ZigTypeIdEnumLiteral: case ZigTypeIdFnFrame: case ZigTypeIdAnyFrame: ir_add_error(ira, target, buf_sprintf("invalid export target type '%s'", buf_ptr(&target->value.type->name))); break; } // TODO audit the various ways to use @export if (want_var_export && target->id == IrInstructionIdLoadPtrGen) { IrInstructionLoadPtrGen *load_ptr = reinterpret_cast(target); if (load_ptr->ptr->id == IrInstructionIdVarPtr) { IrInstructionVarPtr *var_ptr = reinterpret_cast(load_ptr->ptr); ZigVar *var = var_ptr->var; add_var_export(ira->codegen, var, symbol_name, global_linkage_id); } } return ir_const_void(ira, &instruction->base); } static bool exec_has_err_ret_trace(CodeGen *g, IrExecutable *exec) { ZigFn *fn_entry = exec_fn_entry(exec); return fn_entry != nullptr && fn_entry->calls_or_awaits_errorable_fn && g->have_err_ret_tracing; } static IrInstruction *ir_analyze_instruction_error_return_trace(IrAnalyze *ira, IrInstructionErrorReturnTrace *instruction) { ZigType *ptr_to_stack_trace_type = get_pointer_to_type(ira->codegen, get_stack_trace_type(ira->codegen), false); if (instruction->optional == IrInstructionErrorReturnTrace::Null) { ZigType *optional_type = get_optional_type(ira->codegen, ptr_to_stack_trace_type); if (!exec_has_err_ret_trace(ira->codegen, ira->new_irb.exec)) { IrInstruction *result = ir_const(ira, &instruction->base, optional_type); ConstExprValue *out_val = &result->value; assert(get_codegen_ptr_type(optional_type) != nullptr); out_val->data.x_ptr.special = ConstPtrSpecialHardCodedAddr; out_val->data.x_ptr.data.hard_coded_addr.addr = 0; return result; } IrInstruction *new_instruction = ir_build_error_return_trace(&ira->new_irb, instruction->base.scope, instruction->base.source_node, instruction->optional); new_instruction->value.type = optional_type; return new_instruction; } else { assert(ira->codegen->have_err_ret_tracing); IrInstruction *new_instruction = ir_build_error_return_trace(&ira->new_irb, instruction->base.scope, instruction->base.source_node, instruction->optional); new_instruction->value.type = ptr_to_stack_trace_type; return new_instruction; } } static IrInstruction *ir_analyze_instruction_error_union(IrAnalyze *ira, IrInstructionErrorUnion *instruction) { Error err; ZigType *err_set_type = ir_resolve_type(ira, instruction->err_set->child); if (type_is_invalid(err_set_type)) return ira->codegen->invalid_instruction; ZigType *payload_type = ir_resolve_type(ira, instruction->payload->child); if (type_is_invalid(payload_type)) return ira->codegen->invalid_instruction; if (err_set_type->id != ZigTypeIdErrorSet) { ir_add_error(ira, instruction->err_set->child, buf_sprintf("expected error set type, found type '%s'", buf_ptr(&err_set_type->name))); return ira->codegen->invalid_instruction; } if ((err = type_resolve(ira->codegen, payload_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; ZigType *result_type = get_error_union_type(ira->codegen, err_set_type, payload_type); return ir_const_type(ira, &instruction->base, result_type); } static IrInstruction *ir_analyze_alloca(IrAnalyze *ira, IrInstruction *source_inst, ZigType *var_type, uint32_t align, const char *name_hint, bool force_comptime) { Error err; ConstExprValue *pointee = create_const_vals(1); pointee->special = ConstValSpecialUndef; IrInstructionAllocaGen *result = ir_build_alloca_gen(ira, source_inst, align, name_hint); result->base.value.special = ConstValSpecialStatic; result->base.value.data.x_ptr.special = ConstPtrSpecialRef; result->base.value.data.x_ptr.mut = force_comptime ? ConstPtrMutComptimeVar : ConstPtrMutInfer; result->base.value.data.x_ptr.data.ref.pointee = pointee; if ((err = type_resolve(ira->codegen, var_type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; assert(result->base.value.data.x_ptr.special != ConstPtrSpecialInvalid); pointee->type = var_type; result->base.value.type = get_pointer_to_type_extra(ira->codegen, var_type, false, false, PtrLenSingle, align, 0, 0, false); ZigFn *fn_entry = exec_fn_entry(ira->new_irb.exec); if (fn_entry != nullptr) { fn_entry->alloca_gen_list.append(result); } result->base.is_gen = true; return &result->base; } static ZigType *ir_result_loc_expected_type(IrAnalyze *ira, IrInstruction *suspend_source_instr, ResultLoc *result_loc) { switch (result_loc->id) { case ResultLocIdInvalid: case ResultLocIdPeerParent: zig_unreachable(); case ResultLocIdNone: case ResultLocIdVar: case ResultLocIdBitCast: return nullptr; case ResultLocIdInstruction: return result_loc->source_instruction->child->value.type; case ResultLocIdReturn: return ira->explicit_return_type; case ResultLocIdPeer: return reinterpret_cast(result_loc)->parent->resolved_type; } zig_unreachable(); } static bool type_can_bit_cast(ZigType *t) { switch (t->id) { case ZigTypeIdInvalid: zig_unreachable(); case ZigTypeIdMetaType: case ZigTypeIdOpaque: case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdUnreachable: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdPointer: return false; default: // TODO list these types out explicitly, there are probably some other invalid ones here return true; } } static void set_up_result_loc_for_inferred_comptime(IrInstruction *ptr) { ConstExprValue *undef_child = create_const_vals(1); undef_child->type = ptr->value.type->data.pointer.child_type; undef_child->special = ConstValSpecialUndef; ptr->value.special = ConstValSpecialStatic; ptr->value.data.x_ptr.mut = ConstPtrMutInfer; ptr->value.data.x_ptr.special = ConstPtrSpecialRef; ptr->value.data.x_ptr.data.ref.pointee = undef_child; } // when calling this function, at the callsite must check for result type noreturn and propagate it up static IrInstruction *ir_resolve_result_raw(IrAnalyze *ira, IrInstruction *suspend_source_instr, ResultLoc *result_loc, ZigType *value_type, IrInstruction *value, bool force_runtime, bool non_null_comptime) { Error err; if (result_loc->resolved_loc != nullptr) { // allow to redo the result location if the value is known and comptime and the previous one isn't if (value == nullptr || !instr_is_comptime(value) || instr_is_comptime(result_loc->resolved_loc)) { return result_loc->resolved_loc; } } result_loc->gen_instruction = value; result_loc->implicit_elem_type = value_type; switch (result_loc->id) { case ResultLocIdInvalid: case ResultLocIdPeerParent: zig_unreachable(); case ResultLocIdNone: { if (value != nullptr) { return nullptr; } // need to return a result location and don't have one. use a stack allocation IrInstructionAllocaGen *alloca_gen = ir_build_alloca_gen(ira, suspend_source_instr, 0, ""); if ((err = type_resolve(ira->codegen, value_type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; alloca_gen->base.value.type = get_pointer_to_type_extra(ira->codegen, value_type, false, false, PtrLenSingle, 0, 0, 0, false); set_up_result_loc_for_inferred_comptime(&alloca_gen->base); ZigFn *fn_entry = exec_fn_entry(ira->new_irb.exec); if (fn_entry != nullptr) { fn_entry->alloca_gen_list.append(alloca_gen); } result_loc->written = true; result_loc->resolved_loc = &alloca_gen->base; return result_loc->resolved_loc; } case ResultLocIdVar: { ResultLocVar *result_loc_var = reinterpret_cast(result_loc); assert(result_loc->source_instruction->id == IrInstructionIdAllocaSrc); if (value_type->id == ZigTypeIdUnreachable || value_type->id == ZigTypeIdOpaque) { ir_add_error(ira, result_loc->source_instruction, buf_sprintf("variable of type '%s' not allowed", buf_ptr(&value_type->name))); return ira->codegen->invalid_instruction; } IrInstructionAllocaSrc *alloca_src = reinterpret_cast(result_loc->source_instruction); bool force_comptime; if (!ir_resolve_comptime(ira, alloca_src->is_comptime->child, &force_comptime)) return ira->codegen->invalid_instruction; bool is_comptime = force_comptime || (value != nullptr && value->value.special != ConstValSpecialRuntime && result_loc_var->var->gen_is_const); if (alloca_src->base.child == nullptr || is_comptime) { uint32_t align = 0; if (alloca_src->align != nullptr && !ir_resolve_align(ira, alloca_src->align->child, &align)) { return ira->codegen->invalid_instruction; } IrInstruction *alloca_gen; if (is_comptime && value != nullptr) { if (align > value->value.global_refs->align) { value->value.global_refs->align = align; } alloca_gen = ir_get_ref(ira, result_loc->source_instruction, value, true, false); } else { alloca_gen = ir_analyze_alloca(ira, result_loc->source_instruction, value_type, align, alloca_src->name_hint, force_comptime); } if (alloca_src->base.child != nullptr) { alloca_src->base.child->ref_count = 0; } alloca_src->base.child = alloca_gen; } result_loc->written = true; result_loc->resolved_loc = is_comptime ? nullptr : alloca_src->base.child; return result_loc->resolved_loc; } case ResultLocIdInstruction: { result_loc->written = true; result_loc->resolved_loc = result_loc->source_instruction->child; return result_loc->resolved_loc; } case ResultLocIdReturn: { if (!non_null_comptime) { bool is_comptime = value != nullptr && value->value.special != ConstValSpecialRuntime; if (is_comptime) return nullptr; } if ((err = type_resolve(ira->codegen, ira->explicit_return_type, ResolveStatusZeroBitsKnown))) { return ira->codegen->invalid_instruction; } if (!type_has_bits(ira->explicit_return_type) || !handle_is_ptr(ira->explicit_return_type)) { ZigFn *fn_entry = exec_fn_entry(ira->new_irb.exec); if (fn_entry == nullptr || fn_entry->inferred_async_node == nullptr) { return nullptr; } } ZigType *ptr_return_type = get_pointer_to_type(ira->codegen, ira->explicit_return_type, false); result_loc->written = true; result_loc->resolved_loc = ir_build_return_ptr(ira, result_loc->source_instruction, ptr_return_type); if (ir_should_inline(ira->old_irb.exec, result_loc->source_instruction->scope)) { set_up_result_loc_for_inferred_comptime(result_loc->resolved_loc); } return result_loc->resolved_loc; } case ResultLocIdPeer: { ResultLocPeer *result_peer = reinterpret_cast(result_loc); ResultLocPeerParent *peer_parent = result_peer->parent; if (peer_parent->peers.length == 1) { IrInstruction *parent_result_loc = ir_resolve_result(ira, suspend_source_instr, peer_parent->parent, value_type, value, force_runtime, non_null_comptime, true); result_peer->suspend_pos.basic_block_index = SIZE_MAX; result_peer->suspend_pos.instruction_index = SIZE_MAX; if (parent_result_loc == nullptr || type_is_invalid(parent_result_loc->value.type) || parent_result_loc->value.type->id == ZigTypeIdUnreachable) { return parent_result_loc; } result_loc->written = true; result_loc->resolved_loc = parent_result_loc; return result_loc->resolved_loc; } bool is_comptime; if (!ir_resolve_comptime(ira, peer_parent->is_comptime->child, &is_comptime)) return ira->codegen->invalid_instruction; peer_parent->skipped = is_comptime; if (peer_parent->skipped) { if (non_null_comptime) { return ir_resolve_result(ira, suspend_source_instr, peer_parent->parent, value_type, value, force_runtime, non_null_comptime, true); } return nullptr; } if (peer_parent->resolved_type == nullptr) { if (peer_parent->end_bb->suspend_instruction_ref == nullptr) { peer_parent->end_bb->suspend_instruction_ref = suspend_source_instr; } IrInstruction *unreach_inst = ira_suspend(ira, suspend_source_instr, result_peer->next_bb, &result_peer->suspend_pos); if (result_peer->next_bb == nullptr) { ir_start_next_bb(ira); } return unreach_inst; } IrInstruction *parent_result_loc = ir_resolve_result(ira, suspend_source_instr, peer_parent->parent, peer_parent->resolved_type, nullptr, force_runtime, non_null_comptime, true); if (parent_result_loc == nullptr || type_is_invalid(parent_result_loc->value.type) || parent_result_loc->value.type->id == ZigTypeIdUnreachable) { return parent_result_loc; } // because is_comptime is false, we mark this a runtime pointer parent_result_loc->value.special = ConstValSpecialRuntime; result_loc->written = true; result_loc->resolved_loc = parent_result_loc; return result_loc->resolved_loc; } case ResultLocIdBitCast: { ResultLocBitCast *result_bit_cast = reinterpret_cast(result_loc); ZigType *dest_type = ir_resolve_type(ira, result_bit_cast->base.source_instruction->child); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; if (get_codegen_ptr_type(dest_type) != nullptr) { ir_add_error(ira, result_loc->source_instruction, buf_sprintf("unable to @bitCast to pointer type '%s'", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } if (!type_can_bit_cast(dest_type)) { ir_add_error(ira, result_loc->source_instruction, buf_sprintf("unable to @bitCast to type '%s'", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } if (get_codegen_ptr_type(value_type) != nullptr) { ir_add_error(ira, suspend_source_instr, buf_sprintf("unable to @bitCast from pointer type '%s'", buf_ptr(&value_type->name))); return ira->codegen->invalid_instruction; } if (!type_can_bit_cast(value_type)) { ir_add_error(ira, suspend_source_instr, buf_sprintf("unable to @bitCast from type '%s'", buf_ptr(&value_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *bitcasted_value; if (value != nullptr) { bitcasted_value = ir_analyze_bit_cast(ira, result_loc->source_instruction, value, dest_type); } else { bitcasted_value = nullptr; } IrInstruction *parent_result_loc = ir_resolve_result(ira, suspend_source_instr, result_bit_cast->parent, dest_type, bitcasted_value, force_runtime, non_null_comptime, true); if (parent_result_loc == nullptr || type_is_invalid(parent_result_loc->value.type) || parent_result_loc->value.type->id == ZigTypeIdUnreachable) { return parent_result_loc; } ZigType *parent_ptr_type = parent_result_loc->value.type; assert(parent_ptr_type->id == ZigTypeIdPointer); if ((err = type_resolve(ira->codegen, parent_ptr_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) { return ira->codegen->invalid_instruction; } uint64_t parent_ptr_align = get_ptr_align(ira->codegen, parent_ptr_type); if ((err = type_resolve(ira->codegen, value_type, ResolveStatusAlignmentKnown))) { return ira->codegen->invalid_instruction; } ZigType *ptr_type = get_pointer_to_type_extra(ira->codegen, value_type, parent_ptr_type->data.pointer.is_const, parent_ptr_type->data.pointer.is_volatile, PtrLenSingle, parent_ptr_align, 0, 0, parent_ptr_type->data.pointer.allow_zero); result_loc->written = true; result_loc->resolved_loc = ir_analyze_ptr_cast(ira, suspend_source_instr, parent_result_loc, ptr_type, result_bit_cast->base.source_instruction, false); return result_loc->resolved_loc; } } zig_unreachable(); } static IrInstruction *ir_resolve_result(IrAnalyze *ira, IrInstruction *suspend_source_instr, ResultLoc *result_loc_pass1, ZigType *value_type, IrInstruction *value, bool force_runtime, bool non_null_comptime, bool allow_discard) { if (!allow_discard && result_loc_pass1->id == ResultLocIdInstruction && instr_is_comptime(result_loc_pass1->source_instruction) && result_loc_pass1->source_instruction->value.type->id == ZigTypeIdPointer && result_loc_pass1->source_instruction->value.data.x_ptr.special == ConstPtrSpecialDiscard) { result_loc_pass1 = no_result_loc(); } IrInstruction *result_loc = ir_resolve_result_raw(ira, suspend_source_instr, result_loc_pass1, value_type, value, force_runtime, non_null_comptime); if (result_loc == nullptr || (instr_is_unreachable(result_loc) || type_is_invalid(result_loc->value.type))) return result_loc; if ((force_runtime || (value != nullptr && !instr_is_comptime(value))) && result_loc_pass1->written && result_loc->value.data.x_ptr.mut == ConstPtrMutInfer) { result_loc->value.special = ConstValSpecialRuntime; } ir_assert(result_loc->value.type->id == ZigTypeIdPointer, suspend_source_instr); ZigType *actual_elem_type = result_loc->value.type->data.pointer.child_type; if (actual_elem_type->id == ZigTypeIdOptional && value_type->id != ZigTypeIdOptional && value_type->id != ZigTypeIdNull) { return ir_analyze_unwrap_optional_payload(ira, suspend_source_instr, result_loc, false, true); } else if (actual_elem_type->id == ZigTypeIdErrorUnion && value_type->id != ZigTypeIdErrorUnion) { if (value_type->id == ZigTypeIdErrorSet) { return ir_analyze_unwrap_err_code(ira, suspend_source_instr, result_loc, true); } else { IrInstruction *unwrapped_err_ptr = ir_analyze_unwrap_error_payload(ira, suspend_source_instr, result_loc, false, true); ZigType *actual_payload_type = actual_elem_type->data.error_union.payload_type; if (actual_payload_type->id == ZigTypeIdOptional && value_type->id != ZigTypeIdOptional) { return ir_analyze_unwrap_optional_payload(ira, suspend_source_instr, unwrapped_err_ptr, false, true); } else { return unwrapped_err_ptr; } } } else if (is_slice(actual_elem_type) && value_type->id == ZigTypeIdArray) { // need to allow EndExpr to do the implicit cast from array to slice result_loc_pass1->written = false; } return result_loc; } static IrInstruction *ir_analyze_instruction_implicit_cast(IrAnalyze *ira, IrInstructionImplicitCast *instruction) { ZigType *dest_type = ir_resolve_type(ira, instruction->dest_type->child); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; return ir_implicit_cast_with_result(ira, target, dest_type, instruction->result_loc); } static IrInstruction *ir_analyze_instruction_resolve_result(IrAnalyze *ira, IrInstructionResolveResult *instruction) { ZigType *implicit_elem_type = ir_resolve_type(ira, instruction->ty->child); if (type_is_invalid(implicit_elem_type)) return ira->codegen->invalid_instruction; IrInstruction *result_loc = ir_resolve_result(ira, &instruction->base, instruction->result_loc, implicit_elem_type, nullptr, false, true, true); if (result_loc != nullptr) return result_loc; ZigFn *fn = exec_fn_entry(ira->new_irb.exec); if (fn != nullptr && fn->type_entry->data.fn.fn_type_id.cc == CallingConventionAsync && instruction->result_loc->id == ResultLocIdReturn) { result_loc = ir_resolve_result(ira, &instruction->base, no_result_loc(), implicit_elem_type, nullptr, false, true, true); if (result_loc != nullptr && (type_is_invalid(result_loc->value.type) || instr_is_unreachable(result_loc))) { return result_loc; } result_loc->value.special = ConstValSpecialRuntime; return result_loc; } IrInstruction *result = ir_const(ira, &instruction->base, implicit_elem_type); result->value.special = ConstValSpecialUndef; IrInstruction *ptr = ir_get_ref(ira, &instruction->base, result, false, false); ptr->value.data.x_ptr.mut = ConstPtrMutComptimeVar; return ptr; } static void ir_reset_result(ResultLoc *result_loc) { result_loc->written = false; result_loc->resolved_loc = nullptr; result_loc->gen_instruction = nullptr; result_loc->implicit_elem_type = nullptr; switch (result_loc->id) { case ResultLocIdInvalid: zig_unreachable(); case ResultLocIdPeerParent: { ResultLocPeerParent *peer_parent = reinterpret_cast(result_loc); peer_parent->skipped = false; peer_parent->done_resuming = false; peer_parent->resolved_type = nullptr; for (size_t i = 0; i < peer_parent->peers.length; i += 1) { ir_reset_result(&peer_parent->peers.at(i)->base); } break; } case ResultLocIdVar: { IrInstructionAllocaSrc *alloca_src = reinterpret_cast(result_loc->source_instruction); alloca_src->base.child = nullptr; break; } case ResultLocIdPeer: case ResultLocIdNone: case ResultLocIdReturn: case ResultLocIdInstruction: case ResultLocIdBitCast: break; } } static IrInstruction *ir_analyze_instruction_reset_result(IrAnalyze *ira, IrInstructionResetResult *instruction) { ir_reset_result(instruction->result_loc); return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_async_call(IrAnalyze *ira, IrInstructionCallSrc *call_instruction, ZigFn *fn_entry, ZigType *fn_type, IrInstruction *fn_ref, IrInstruction **casted_args, size_t arg_count, IrInstruction *casted_new_stack) { if (casted_new_stack != nullptr) { // this is an @asyncCall if (fn_type->data.fn.fn_type_id.cc != CallingConventionAsync) { ir_add_error(ira, fn_ref, buf_sprintf("expected async function, found '%s'", buf_ptr(&fn_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *ret_ptr = call_instruction->args[call_instruction->arg_count]->child; if (type_is_invalid(ret_ptr->value.type)) return ira->codegen->invalid_instruction; ZigType *anyframe_type = get_any_frame_type(ira->codegen, fn_type->data.fn.fn_type_id.return_type); IrInstructionCallGen *call_gen = ir_build_call_gen(ira, &call_instruction->base, nullptr, fn_ref, arg_count, casted_args, FnInlineAuto, true, casted_new_stack, ret_ptr, anyframe_type); return &call_gen->base; } else if (fn_entry == nullptr) { ir_add_error(ira, fn_ref, buf_sprintf("function is not comptime-known; @asyncCall required")); return ira->codegen->invalid_instruction; } ZigType *frame_type = get_fn_frame_type(ira->codegen, fn_entry); IrInstruction *result_loc = ir_resolve_result(ira, &call_instruction->base, call_instruction->result_loc, frame_type, nullptr, true, true, false); if (type_is_invalid(result_loc->value.type) || instr_is_unreachable(result_loc)) { return result_loc; } result_loc = ir_implicit_cast(ira, result_loc, get_pointer_to_type(ira->codegen, frame_type, false)); if (type_is_invalid(result_loc->value.type)) return ira->codegen->invalid_instruction; return &ir_build_call_gen(ira, &call_instruction->base, fn_entry, fn_ref, arg_count, casted_args, FnInlineAuto, true, nullptr, result_loc, frame_type)->base; } static bool ir_analyze_fn_call_inline_arg(IrAnalyze *ira, AstNode *fn_proto_node, IrInstruction *arg, Scope **exec_scope, size_t *next_proto_i) { AstNode *param_decl_node = fn_proto_node->data.fn_proto.params.at(*next_proto_i); assert(param_decl_node->type == NodeTypeParamDecl); IrInstruction *casted_arg; if (param_decl_node->data.param_decl.var_token == nullptr) { AstNode *param_type_node = param_decl_node->data.param_decl.type; ZigType *param_type = ir_analyze_type_expr(ira, *exec_scope, param_type_node); if (type_is_invalid(param_type)) return false; casted_arg = ir_implicit_cast(ira, arg, param_type); if (type_is_invalid(casted_arg->value.type)) return false; } else { casted_arg = arg; } ConstExprValue *arg_val = ir_resolve_const(ira, casted_arg, UndefOk); if (!arg_val) return false; Buf *param_name = param_decl_node->data.param_decl.name; ZigVar *var = add_variable(ira->codegen, param_decl_node, *exec_scope, param_name, true, arg_val, nullptr, arg_val->type); *exec_scope = var->child_scope; *next_proto_i += 1; return true; } static bool ir_analyze_fn_call_generic_arg(IrAnalyze *ira, AstNode *fn_proto_node, IrInstruction *arg, Scope **child_scope, size_t *next_proto_i, GenericFnTypeId *generic_id, FnTypeId *fn_type_id, IrInstruction **casted_args, ZigFn *impl_fn) { AstNode *param_decl_node = fn_proto_node->data.fn_proto.params.at(*next_proto_i); assert(param_decl_node->type == NodeTypeParamDecl); bool is_var_args = param_decl_node->data.param_decl.is_var_args; bool arg_part_of_generic_id = false; IrInstruction *casted_arg; if (is_var_args) { arg_part_of_generic_id = true; casted_arg = arg; } else { if (param_decl_node->data.param_decl.var_token == nullptr) { AstNode *param_type_node = param_decl_node->data.param_decl.type; ZigType *param_type = ir_analyze_type_expr(ira, *child_scope, param_type_node); if (type_is_invalid(param_type)) return false; casted_arg = ir_implicit_cast(ira, arg, param_type); if (type_is_invalid(casted_arg->value.type)) return false; } else { arg_part_of_generic_id = true; casted_arg = arg; } } bool comptime_arg = param_decl_node->data.param_decl.is_inline || casted_arg->value.type->id == ZigTypeIdComptimeInt || casted_arg->value.type->id == ZigTypeIdComptimeFloat; ConstExprValue *arg_val; if (comptime_arg) { arg_part_of_generic_id = true; arg_val = ir_resolve_const(ira, casted_arg, UndefBad); if (!arg_val) return false; } else { arg_val = create_const_runtime(casted_arg->value.type); } if (arg_part_of_generic_id) { copy_const_val(&generic_id->params[generic_id->param_count], arg_val, true); generic_id->param_count += 1; } Buf *param_name = param_decl_node->data.param_decl.name; if (!param_name) return false; if (!is_var_args) { ZigVar *var = add_variable(ira->codegen, param_decl_node, *child_scope, param_name, true, arg_val, nullptr, arg_val->type); *child_scope = var->child_scope; var->shadowable = !comptime_arg; *next_proto_i += 1; } else if (casted_arg->value.type->id == ZigTypeIdComptimeInt || casted_arg->value.type->id == ZigTypeIdComptimeFloat) { ir_add_error(ira, casted_arg, buf_sprintf("compiler bug: integer and float literals in var args function must be casted. https://github.com/ziglang/zig/issues/557")); return false; } if (!comptime_arg) { switch (type_requires_comptime(ira->codegen, casted_arg->value.type)) { case ReqCompTimeYes: ir_add_error(ira, casted_arg, buf_sprintf("parameter of type '%s' requires comptime", buf_ptr(&casted_arg->value.type->name))); return false; case ReqCompTimeInvalid: return false; case ReqCompTimeNo: break; } casted_args[fn_type_id->param_count] = casted_arg; FnTypeParamInfo *param_info = &fn_type_id->param_info[fn_type_id->param_count]; param_info->type = casted_arg->value.type; param_info->is_noalias = param_decl_node->data.param_decl.is_noalias; impl_fn->param_source_nodes[fn_type_id->param_count] = param_decl_node; fn_type_id->param_count += 1; } return true; } static ZigVar *get_fn_var_by_index(ZigFn *fn_entry, size_t index) { FnTypeParamInfo *src_param_info = &fn_entry->type_entry->data.fn.fn_type_id.param_info[index]; if (!type_has_bits(src_param_info->type)) return nullptr; size_t next_var_i = 0; for (size_t param_i = 0; param_i < index; param_i += 1) { FnTypeParamInfo *src_param_info = &fn_entry->type_entry->data.fn.fn_type_id.param_info[param_i]; if (!type_has_bits(src_param_info->type)) { continue; } next_var_i += 1; } return fn_entry->variable_list.at(next_var_i); } static IrInstruction *ir_get_var_ptr(IrAnalyze *ira, IrInstruction *instruction, ZigVar *var) { while (var->next_var != nullptr) { var = var->next_var; } if (var->mem_slot_index != SIZE_MAX && var->owner_exec->analysis == nullptr) { assert(ira->codegen->errors.length != 0); return ira->codegen->invalid_instruction; } if (var->var_type == nullptr || type_is_invalid(var->var_type)) return ira->codegen->invalid_instruction; ConstExprValue *mem_slot = nullptr; bool comptime_var_mem = ir_get_var_is_comptime(var); bool linkage_makes_it_runtime = var->decl_node->data.variable_declaration.is_extern; bool is_volatile = false; IrInstruction *result = ir_build_var_ptr(&ira->new_irb, instruction->scope, instruction->source_node, var); result->value.type = get_pointer_to_type_extra(ira->codegen, var->var_type, var->src_is_const, is_volatile, PtrLenSingle, var->align_bytes, 0, 0, false); if (linkage_makes_it_runtime) goto no_mem_slot; if (value_is_comptime(var->const_value)) { mem_slot = var->const_value; } else if (var->mem_slot_index != SIZE_MAX && (comptime_var_mem || var->gen_is_const)) { // find the relevant exec_context assert(var->owner_exec != nullptr); assert(var->owner_exec->analysis != nullptr); IrExecContext *exec_context = &var->owner_exec->analysis->exec_context; assert(var->mem_slot_index < exec_context->mem_slot_list.length); mem_slot = exec_context->mem_slot_list.at(var->mem_slot_index); } if (mem_slot != nullptr) { switch (mem_slot->special) { case ConstValSpecialRuntime: goto no_mem_slot; case ConstValSpecialStatic: // fallthrough case ConstValSpecialLazy: // fallthrough case ConstValSpecialUndef: { ConstPtrMut ptr_mut; if (comptime_var_mem) { ptr_mut = ConstPtrMutComptimeVar; } else if (var->gen_is_const) { ptr_mut = ConstPtrMutComptimeConst; } else { assert(!comptime_var_mem); ptr_mut = ConstPtrMutRuntimeVar; } result->value.special = ConstValSpecialStatic; result->value.data.x_ptr.mut = ptr_mut; result->value.data.x_ptr.special = ConstPtrSpecialRef; result->value.data.x_ptr.data.ref.pointee = mem_slot; return result; } } zig_unreachable(); } no_mem_slot: bool in_fn_scope = (scope_fn_entry(var->parent_scope) != nullptr); result->value.data.rh_ptr = in_fn_scope ? RuntimeHintPtrStack : RuntimeHintPtrNonStack; return result; } // This function is called when a comptime value becomes accessible at runtime. static void mark_comptime_value_escape(IrAnalyze *ira, IrInstruction *source_instr, ConstExprValue *val) { ir_assert(value_is_comptime(val), source_instr); if (val->special == ConstValSpecialUndef) return; if (val->type->id == ZigTypeIdFn && val->type->data.fn.fn_type_id.cc == CallingConventionUnspecified) { ir_assert(val->data.x_ptr.special == ConstPtrSpecialFunction, source_instr); if (val->data.x_ptr.data.fn.fn_entry->non_async_node == nullptr) { val->data.x_ptr.data.fn.fn_entry->non_async_node = source_instr->source_node; } } } static IrInstruction *ir_analyze_store_ptr(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *ptr, IrInstruction *uncasted_value, bool allow_write_through_const) { assert(ptr->value.type->id == ZigTypeIdPointer); if (ptr->value.data.x_ptr.special == ConstPtrSpecialDiscard) { if (uncasted_value->value.type->id == ZigTypeIdErrorUnion || uncasted_value->value.type->id == ZigTypeIdErrorSet) { ir_add_error(ira, source_instr, buf_sprintf("error is discarded")); return ira->codegen->invalid_instruction; } return ir_const_void(ira, source_instr); } ZigType *child_type = ptr->value.type->data.pointer.child_type; if (ptr->value.type->data.pointer.is_const && !allow_write_through_const) { ir_add_error(ira, source_instr, buf_sprintf("cannot assign to constant")); return ira->codegen->invalid_instruction; } IrInstruction *value = ir_implicit_cast(ira, uncasted_value, child_type); if (value == ira->codegen->invalid_instruction) return ira->codegen->invalid_instruction; switch (type_has_one_possible_value(ira->codegen, child_type)) { case OnePossibleValueInvalid: return ira->codegen->invalid_instruction; case OnePossibleValueYes: return ir_const_void(ira, source_instr); case OnePossibleValueNo: break; } if (instr_is_comptime(ptr) && ptr->value.data.x_ptr.special != ConstPtrSpecialHardCodedAddr) { if (ptr->value.data.x_ptr.mut == ConstPtrMutComptimeConst) { ir_add_error(ira, source_instr, buf_sprintf("cannot assign to constant")); return ira->codegen->invalid_instruction; } if (ptr->value.data.x_ptr.mut == ConstPtrMutComptimeVar || ptr->value.data.x_ptr.mut == ConstPtrMutInfer) { if (instr_is_comptime(value)) { ConstExprValue *dest_val = const_ptr_pointee(ira, ira->codegen, &ptr->value, source_instr->source_node); if (dest_val == nullptr) return ira->codegen->invalid_instruction; if (dest_val->special != ConstValSpecialRuntime) { // TODO this allows a value stored to have the original value modified and then // have that affect what should be a copy. We need some kind of advanced copy-on-write // system to make these two tests pass at the same time: // * "string literal used as comptime slice is memoized" // * "comptime modification of const struct field" - except modified to avoid // ConstPtrMutComptimeVar, thus defeating the logic below. bool same_global_refs = ptr->value.data.x_ptr.mut != ConstPtrMutComptimeVar; copy_const_val(dest_val, &value->value, same_global_refs); if (ptr->value.data.x_ptr.mut == ConstPtrMutComptimeVar && !ira->new_irb.current_basic_block->must_be_comptime_source_instr) { ira->new_irb.current_basic_block->must_be_comptime_source_instr = source_instr; } return ir_const_void(ira, source_instr); } } if (ptr->value.data.x_ptr.mut == ConstPtrMutInfer) { ptr->value.special = ConstValSpecialRuntime; } else { ir_add_error(ira, source_instr, buf_sprintf("cannot store runtime value in compile time variable")); ConstExprValue *dest_val = const_ptr_pointee_unchecked(ira->codegen, &ptr->value); dest_val->type = ira->codegen->builtin_types.entry_invalid; return ira->codegen->invalid_instruction; } } } switch (type_requires_comptime(ira->codegen, child_type)) { case ReqCompTimeInvalid: return ira->codegen->invalid_instruction; case ReqCompTimeYes: switch (type_has_one_possible_value(ira->codegen, ptr->value.type)) { case OnePossibleValueInvalid: return ira->codegen->invalid_instruction; case OnePossibleValueNo: ir_add_error(ira, source_instr, buf_sprintf("cannot store runtime value in type '%s'", buf_ptr(&child_type->name))); return ira->codegen->invalid_instruction; case OnePossibleValueYes: return ir_const_void(ira, source_instr); } zig_unreachable(); case ReqCompTimeNo: break; } if (instr_is_comptime(value)) { mark_comptime_value_escape(ira, source_instr, &value->value); } IrInstructionStorePtr *store_ptr = ir_build_store_ptr(&ira->new_irb, source_instr->scope, source_instr->source_node, ptr, value); return &store_ptr->base; } static IrInstruction *ir_analyze_fn_call(IrAnalyze *ira, IrInstructionCallSrc *call_instruction, ZigFn *fn_entry, ZigType *fn_type, IrInstruction *fn_ref, IrInstruction *first_arg_ptr, bool comptime_fn_call, FnInline fn_inline) { Error err; FnTypeId *fn_type_id = &fn_type->data.fn.fn_type_id; size_t first_arg_1_or_0 = first_arg_ptr ? 1 : 0; // for extern functions, the var args argument is not counted. // for zig functions, it is. size_t var_args_1_or_0; if (fn_type_id->cc == CallingConventionC) { var_args_1_or_0 = 0; } else { var_args_1_or_0 = fn_type_id->is_var_args ? 1 : 0; } size_t src_param_count = fn_type_id->param_count - var_args_1_or_0; size_t call_param_count = call_instruction->arg_count + first_arg_1_or_0; for (size_t i = 0; i < call_instruction->arg_count; i += 1) { ConstExprValue *arg_tuple_value = &call_instruction->args[i]->child->value; if (arg_tuple_value->type->id == ZigTypeIdArgTuple) { call_param_count -= 1; call_param_count += arg_tuple_value->data.x_arg_tuple.end_index - arg_tuple_value->data.x_arg_tuple.start_index; } } AstNode *source_node = call_instruction->base.source_node; AstNode *fn_proto_node = fn_entry ? fn_entry->proto_node : nullptr;; if (fn_type_id->cc == CallingConventionNaked) { ErrorMsg *msg = ir_add_error(ira, fn_ref, buf_sprintf("unable to call function with naked calling convention")); if (fn_proto_node) { add_error_note(ira->codegen, msg, fn_proto_node, buf_sprintf("declared here")); } return ira->codegen->invalid_instruction; } if (fn_type_id->is_var_args) { if (call_param_count < src_param_count) { ErrorMsg *msg = ir_add_error_node(ira, source_node, buf_sprintf("expected at least %" ZIG_PRI_usize " arguments, found %" ZIG_PRI_usize "", src_param_count, call_param_count)); if (fn_proto_node) { add_error_note(ira->codegen, msg, fn_proto_node, buf_sprintf("declared here")); } return ira->codegen->invalid_instruction; } } else if (src_param_count != call_param_count) { ErrorMsg *msg = ir_add_error_node(ira, source_node, buf_sprintf("expected %" ZIG_PRI_usize " arguments, found %" ZIG_PRI_usize "", src_param_count, call_param_count)); if (fn_proto_node) { add_error_note(ira->codegen, msg, fn_proto_node, buf_sprintf("declared here")); } return ira->codegen->invalid_instruction; } if (comptime_fn_call) { // No special handling is needed for compile time evaluation of generic functions. if (!fn_entry || fn_entry->body_node == nullptr) { ir_add_error(ira, fn_ref, buf_sprintf("unable to evaluate constant expression")); return ira->codegen->invalid_instruction; } if (!ir_emit_backward_branch(ira, &call_instruction->base)) return ira->codegen->invalid_instruction; // Fork a scope of the function with known values for the parameters. Scope *exec_scope = &fn_entry->fndef_scope->base; size_t next_proto_i = 0; if (first_arg_ptr) { assert(first_arg_ptr->value.type->id == ZigTypeIdPointer); bool first_arg_known_bare = false; if (fn_type_id->next_param_index >= 1) { ZigType *param_type = fn_type_id->param_info[next_proto_i].type; if (type_is_invalid(param_type)) return ira->codegen->invalid_instruction; first_arg_known_bare = param_type->id != ZigTypeIdPointer; } IrInstruction *first_arg; if (!first_arg_known_bare && handle_is_ptr(first_arg_ptr->value.type->data.pointer.child_type)) { first_arg = first_arg_ptr; } else { first_arg = ir_get_deref(ira, first_arg_ptr, first_arg_ptr, nullptr); if (type_is_invalid(first_arg->value.type)) return ira->codegen->invalid_instruction; } if (!ir_analyze_fn_call_inline_arg(ira, fn_proto_node, first_arg, &exec_scope, &next_proto_i)) return ira->codegen->invalid_instruction; } if (fn_proto_node->data.fn_proto.is_var_args) { ir_add_error(ira, &call_instruction->base, buf_sprintf("compiler bug: unable to call var args function at compile time. https://github.com/ziglang/zig/issues/313")); return ira->codegen->invalid_instruction; } for (size_t call_i = 0; call_i < call_instruction->arg_count; call_i += 1) { IrInstruction *old_arg = call_instruction->args[call_i]->child; if (type_is_invalid(old_arg->value.type)) return ira->codegen->invalid_instruction; if (!ir_analyze_fn_call_inline_arg(ira, fn_proto_node, old_arg, &exec_scope, &next_proto_i)) return ira->codegen->invalid_instruction; } AstNode *return_type_node = fn_proto_node->data.fn_proto.return_type; ZigType *specified_return_type = ir_analyze_type_expr(ira, exec_scope, return_type_node); if (type_is_invalid(specified_return_type)) return ira->codegen->invalid_instruction; ZigType *return_type; ZigType *inferred_err_set_type = nullptr; if (fn_proto_node->data.fn_proto.auto_err_set) { inferred_err_set_type = get_auto_err_set_type(ira->codegen, fn_entry); if ((err = type_resolve(ira->codegen, specified_return_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; return_type = get_error_union_type(ira->codegen, inferred_err_set_type, specified_return_type); } else { return_type = specified_return_type; } bool cacheable = fn_eval_cacheable(exec_scope, return_type); ConstExprValue *result = nullptr; if (cacheable) { auto entry = ira->codegen->memoized_fn_eval_table.maybe_get(exec_scope); if (entry) result = entry->value; } if (result == nullptr) { // Analyze the fn body block like any other constant expression. AstNode *body_node = fn_entry->body_node; result = ir_eval_const_value(ira->codegen, exec_scope, body_node, return_type, ira->new_irb.exec->backward_branch_count, ira->new_irb.exec->backward_branch_quota, fn_entry, nullptr, call_instruction->base.source_node, nullptr, ira->new_irb.exec, return_type_node, UndefOk); if (inferred_err_set_type != nullptr) { inferred_err_set_type->data.error_set.infer_fn = nullptr; if (result->type->id == ZigTypeIdErrorUnion) { ErrorTableEntry *err = result->data.x_err_union.error_set->data.x_err_set; if (err != nullptr) { inferred_err_set_type->data.error_set.err_count = 1; inferred_err_set_type->data.error_set.errors = allocate(1); inferred_err_set_type->data.error_set.errors[0] = err; } ZigType *fn_inferred_err_set_type = result->type->data.error_union.err_set_type; inferred_err_set_type->data.error_set.err_count = fn_inferred_err_set_type->data.error_set.err_count; inferred_err_set_type->data.error_set.errors = fn_inferred_err_set_type->data.error_set.errors; } else if (result->type->id == ZigTypeIdErrorSet) { inferred_err_set_type->data.error_set.err_count = result->type->data.error_set.err_count; inferred_err_set_type->data.error_set.errors = result->type->data.error_set.errors; } } if (cacheable) { ira->codegen->memoized_fn_eval_table.put(exec_scope, result); } if (type_is_invalid(result->type)) { return ira->codegen->invalid_instruction; } } IrInstruction *new_instruction = ir_const(ira, &call_instruction->base, result->type); copy_const_val(&new_instruction->value, result, true); new_instruction->value.type = return_type; return ir_finish_anal(ira, new_instruction); } IrInstruction *casted_new_stack = nullptr; if (call_instruction->new_stack != nullptr) { ZigType *u8_ptr = get_pointer_to_type_extra(ira->codegen, ira->codegen->builtin_types.entry_u8, false, false, PtrLenUnknown, target_fn_align(ira->codegen->zig_target), 0, 0, false); ZigType *u8_slice = get_slice_type(ira->codegen, u8_ptr); IrInstruction *new_stack = call_instruction->new_stack->child; if (type_is_invalid(new_stack->value.type)) return ira->codegen->invalid_instruction; casted_new_stack = ir_implicit_cast(ira, new_stack, u8_slice); if (type_is_invalid(casted_new_stack->value.type)) return ira->codegen->invalid_instruction; } if (fn_type->data.fn.is_generic) { if (!fn_entry) { ir_add_error(ira, call_instruction->fn_ref, buf_sprintf("calling a generic function requires compile-time known function value")); return ira->codegen->invalid_instruction; } // Count the arguments of the function type id we are creating size_t new_fn_arg_count = first_arg_1_or_0; for (size_t call_i = 0; call_i < call_instruction->arg_count; call_i += 1) { IrInstruction *arg = call_instruction->args[call_i]->child; if (type_is_invalid(arg->value.type)) return ira->codegen->invalid_instruction; if (arg->value.type->id == ZigTypeIdArgTuple) { new_fn_arg_count += arg->value.data.x_arg_tuple.end_index - arg->value.data.x_arg_tuple.start_index; } else { new_fn_arg_count += 1; } } IrInstruction **casted_args = allocate(new_fn_arg_count); // Fork a scope of the function with known values for the parameters. Scope *parent_scope = fn_entry->fndef_scope->base.parent; ZigFn *impl_fn = create_fn(ira->codegen, fn_proto_node); impl_fn->param_source_nodes = allocate(new_fn_arg_count); buf_init_from_buf(&impl_fn->symbol_name, &fn_entry->symbol_name); impl_fn->fndef_scope = create_fndef_scope(ira->codegen, impl_fn->body_node, parent_scope, impl_fn); impl_fn->child_scope = &impl_fn->fndef_scope->base; FnTypeId inst_fn_type_id = {0}; init_fn_type_id(&inst_fn_type_id, fn_proto_node, new_fn_arg_count); inst_fn_type_id.param_count = 0; inst_fn_type_id.is_var_args = false; // TODO maybe GenericFnTypeId can be replaced with using the child_scope directly // as the key in generic_table GenericFnTypeId *generic_id = allocate(1); generic_id->fn_entry = fn_entry; generic_id->param_count = 0; generic_id->params = create_const_vals(new_fn_arg_count); size_t next_proto_i = 0; if (first_arg_ptr) { assert(first_arg_ptr->value.type->id == ZigTypeIdPointer); bool first_arg_known_bare = false; if (fn_type_id->next_param_index >= 1) { ZigType *param_type = fn_type_id->param_info[next_proto_i].type; if (type_is_invalid(param_type)) return ira->codegen->invalid_instruction; first_arg_known_bare = param_type->id != ZigTypeIdPointer; } IrInstruction *first_arg; if (!first_arg_known_bare && handle_is_ptr(first_arg_ptr->value.type->data.pointer.child_type)) { first_arg = first_arg_ptr; } else { first_arg = ir_get_deref(ira, first_arg_ptr, first_arg_ptr, nullptr); if (type_is_invalid(first_arg->value.type)) return ira->codegen->invalid_instruction; } if (!ir_analyze_fn_call_generic_arg(ira, fn_proto_node, first_arg, &impl_fn->child_scope, &next_proto_i, generic_id, &inst_fn_type_id, casted_args, impl_fn)) { return ira->codegen->invalid_instruction; } } bool found_first_var_arg = false; size_t first_var_arg; ZigFn *parent_fn_entry = exec_fn_entry(ira->new_irb.exec); assert(parent_fn_entry); for (size_t call_i = 0; call_i < call_instruction->arg_count; call_i += 1) { IrInstruction *arg = call_instruction->args[call_i]->child; if (type_is_invalid(arg->value.type)) return ira->codegen->invalid_instruction; if (arg->value.type->id == ZigTypeIdArgTuple) { for (size_t arg_tuple_i = arg->value.data.x_arg_tuple.start_index; arg_tuple_i < arg->value.data.x_arg_tuple.end_index; arg_tuple_i += 1) { AstNode *param_decl_node = fn_proto_node->data.fn_proto.params.at(next_proto_i); assert(param_decl_node->type == NodeTypeParamDecl); bool is_var_args = param_decl_node->data.param_decl.is_var_args; if (is_var_args && !found_first_var_arg) { first_var_arg = inst_fn_type_id.param_count; found_first_var_arg = true; } ZigVar *arg_var = get_fn_var_by_index(parent_fn_entry, arg_tuple_i); if (arg_var == nullptr) { ir_add_error(ira, arg, buf_sprintf("compiler bug: var args can't handle void. https://github.com/ziglang/zig/issues/557")); return ira->codegen->invalid_instruction; } IrInstruction *arg_var_ptr_inst = ir_get_var_ptr(ira, arg, arg_var); if (type_is_invalid(arg_var_ptr_inst->value.type)) return ira->codegen->invalid_instruction; IrInstruction *arg_tuple_arg = ir_get_deref(ira, arg, arg_var_ptr_inst, nullptr); if (type_is_invalid(arg_tuple_arg->value.type)) return ira->codegen->invalid_instruction; if (!ir_analyze_fn_call_generic_arg(ira, fn_proto_node, arg_tuple_arg, &impl_fn->child_scope, &next_proto_i, generic_id, &inst_fn_type_id, casted_args, impl_fn)) { return ira->codegen->invalid_instruction; } } } else { AstNode *param_decl_node = fn_proto_node->data.fn_proto.params.at(next_proto_i); assert(param_decl_node->type == NodeTypeParamDecl); bool is_var_args = param_decl_node->data.param_decl.is_var_args; if (is_var_args && !found_first_var_arg) { first_var_arg = inst_fn_type_id.param_count; found_first_var_arg = true; } if (!ir_analyze_fn_call_generic_arg(ira, fn_proto_node, arg, &impl_fn->child_scope, &next_proto_i, generic_id, &inst_fn_type_id, casted_args, impl_fn)) { return ira->codegen->invalid_instruction; } } } if (fn_proto_node->data.fn_proto.is_var_args) { AstNode *param_decl_node = fn_proto_node->data.fn_proto.params.at(next_proto_i); Buf *param_name = param_decl_node->data.param_decl.name; if (!found_first_var_arg) { first_var_arg = inst_fn_type_id.param_count; } ConstExprValue *var_args_val = create_const_arg_tuple(ira->codegen, first_var_arg, inst_fn_type_id.param_count); ZigVar *var = add_variable(ira->codegen, param_decl_node, impl_fn->child_scope, param_name, true, var_args_val, nullptr, var_args_val->type); impl_fn->child_scope = var->child_scope; } if (fn_proto_node->data.fn_proto.align_expr != nullptr) { ConstExprValue *align_result = ir_eval_const_value(ira->codegen, impl_fn->child_scope, fn_proto_node->data.fn_proto.align_expr, get_align_amt_type(ira->codegen), ira->new_irb.exec->backward_branch_count, ira->new_irb.exec->backward_branch_quota, nullptr, nullptr, fn_proto_node->data.fn_proto.align_expr, nullptr, ira->new_irb.exec, nullptr, UndefBad); IrInstructionConst *const_instruction = ir_create_instruction(&ira->new_irb, impl_fn->child_scope, fn_proto_node->data.fn_proto.align_expr); copy_const_val(&const_instruction->base.value, align_result, true); uint32_t align_bytes = 0; ir_resolve_align(ira, &const_instruction->base, &align_bytes); impl_fn->align_bytes = align_bytes; inst_fn_type_id.alignment = align_bytes; } if (fn_proto_node->data.fn_proto.return_var_token == nullptr) { AstNode *return_type_node = fn_proto_node->data.fn_proto.return_type; ZigType *specified_return_type = ir_analyze_type_expr(ira, impl_fn->child_scope, return_type_node); if (type_is_invalid(specified_return_type)) return ira->codegen->invalid_instruction; if (fn_proto_node->data.fn_proto.auto_err_set) { ZigType *inferred_err_set_type = get_auto_err_set_type(ira->codegen, impl_fn); if ((err = type_resolve(ira->codegen, specified_return_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; inst_fn_type_id.return_type = get_error_union_type(ira->codegen, inferred_err_set_type, specified_return_type); } else { inst_fn_type_id.return_type = specified_return_type; } switch (type_requires_comptime(ira->codegen, specified_return_type)) { case ReqCompTimeYes: // Throw out our work and call the function as if it were comptime. return ir_analyze_fn_call(ira, call_instruction, fn_entry, fn_type, fn_ref, first_arg_ptr, true, FnInlineAuto); case ReqCompTimeInvalid: return ira->codegen->invalid_instruction; case ReqCompTimeNo: break; } } auto existing_entry = ira->codegen->generic_table.put_unique(generic_id, impl_fn); if (existing_entry) { // throw away all our work and use the existing function impl_fn = existing_entry->value; } else { // finish instantiating the function impl_fn->type_entry = get_fn_type(ira->codegen, &inst_fn_type_id); if (type_is_invalid(impl_fn->type_entry)) return ira->codegen->invalid_instruction; impl_fn->ir_executable.source_node = call_instruction->base.source_node; impl_fn->ir_executable.parent_exec = ira->new_irb.exec; impl_fn->analyzed_executable.source_node = call_instruction->base.source_node; impl_fn->analyzed_executable.parent_exec = ira->new_irb.exec; impl_fn->analyzed_executable.backward_branch_quota = ira->new_irb.exec->backward_branch_quota; impl_fn->analyzed_executable.is_generic_instantiation = true; ira->codegen->fn_defs.append(impl_fn); } FnTypeId *impl_fn_type_id = &impl_fn->type_entry->data.fn.fn_type_id; IrInstruction *result_loc; if (handle_is_ptr(impl_fn_type_id->return_type)) { result_loc = ir_resolve_result(ira, &call_instruction->base, call_instruction->result_loc, impl_fn_type_id->return_type, nullptr, true, true, false); if (result_loc != nullptr) { if (type_is_invalid(result_loc->value.type) || instr_is_unreachable(result_loc)) { return result_loc; } if (!handle_is_ptr(result_loc->value.type->data.pointer.child_type)) { ir_reset_result(call_instruction->result_loc); result_loc = nullptr; } } } else { result_loc = nullptr; } if (fn_type_can_fail(impl_fn_type_id)) { parent_fn_entry->calls_or_awaits_errorable_fn = true; } size_t impl_param_count = impl_fn_type_id->param_count; if (call_instruction->is_async) { IrInstruction *result = ir_analyze_async_call(ira, call_instruction, impl_fn, impl_fn->type_entry, nullptr, casted_args, impl_param_count, casted_new_stack); return ir_finish_anal(ira, result); } if (impl_fn_type_id->cc == CallingConventionAsync && parent_fn_entry->inferred_async_node == nullptr) { parent_fn_entry->inferred_async_node = fn_ref->source_node; parent_fn_entry->inferred_async_fn = impl_fn; } IrInstructionCallGen *new_call_instruction = ir_build_call_gen(ira, &call_instruction->base, impl_fn, nullptr, impl_param_count, casted_args, fn_inline, false, casted_new_stack, result_loc, impl_fn_type_id->return_type); parent_fn_entry->call_list.append(new_call_instruction); return ir_finish_anal(ira, &new_call_instruction->base); } ZigFn *parent_fn_entry = exec_fn_entry(ira->new_irb.exec); assert(fn_type_id->return_type != nullptr); assert(parent_fn_entry != nullptr); if (fn_type_can_fail(fn_type_id)) { parent_fn_entry->calls_or_awaits_errorable_fn = true; } IrInstruction **casted_args = allocate(call_param_count); size_t next_arg_index = 0; if (first_arg_ptr) { assert(first_arg_ptr->value.type->id == ZigTypeIdPointer); ZigType *param_type = fn_type_id->param_info[next_arg_index].type; if (type_is_invalid(param_type)) return ira->codegen->invalid_instruction; IrInstruction *first_arg; if (param_type->id == ZigTypeIdPointer && handle_is_ptr(first_arg_ptr->value.type->data.pointer.child_type)) { first_arg = first_arg_ptr; } else { first_arg = ir_get_deref(ira, first_arg_ptr, first_arg_ptr, nullptr); if (type_is_invalid(first_arg->value.type)) return ira->codegen->invalid_instruction; } IrInstruction *casted_arg = ir_implicit_cast(ira, first_arg, param_type); if (type_is_invalid(casted_arg->value.type)) return ira->codegen->invalid_instruction; casted_args[next_arg_index] = casted_arg; next_arg_index += 1; } for (size_t call_i = 0; call_i < call_instruction->arg_count; call_i += 1) { IrInstruction *old_arg = call_instruction->args[call_i]->child; if (type_is_invalid(old_arg->value.type)) return ira->codegen->invalid_instruction; if (old_arg->value.type->id == ZigTypeIdArgTuple) { for (size_t arg_tuple_i = old_arg->value.data.x_arg_tuple.start_index; arg_tuple_i < old_arg->value.data.x_arg_tuple.end_index; arg_tuple_i += 1) { ZigVar *arg_var = get_fn_var_by_index(parent_fn_entry, arg_tuple_i); if (arg_var == nullptr) { ir_add_error(ira, old_arg, buf_sprintf("compiler bug: var args can't handle void. https://github.com/ziglang/zig/issues/557")); return ira->codegen->invalid_instruction; } IrInstruction *arg_var_ptr_inst = ir_get_var_ptr(ira, old_arg, arg_var); if (type_is_invalid(arg_var_ptr_inst->value.type)) return ira->codegen->invalid_instruction; IrInstruction *arg_tuple_arg = ir_get_deref(ira, old_arg, arg_var_ptr_inst, nullptr); if (type_is_invalid(arg_tuple_arg->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_arg; if (next_arg_index < src_param_count) { ZigType *param_type = fn_type_id->param_info[next_arg_index].type; if (type_is_invalid(param_type)) return ira->codegen->invalid_instruction; casted_arg = ir_implicit_cast(ira, arg_tuple_arg, param_type); if (type_is_invalid(casted_arg->value.type)) return ira->codegen->invalid_instruction; } else { casted_arg = arg_tuple_arg; } casted_args[next_arg_index] = casted_arg; next_arg_index += 1; } } else { IrInstruction *casted_arg; if (next_arg_index < src_param_count) { ZigType *param_type = fn_type_id->param_info[next_arg_index].type; if (type_is_invalid(param_type)) return ira->codegen->invalid_instruction; casted_arg = ir_implicit_cast(ira, old_arg, param_type); if (type_is_invalid(casted_arg->value.type)) return ira->codegen->invalid_instruction; } else { casted_arg = old_arg; } casted_args[next_arg_index] = casted_arg; next_arg_index += 1; } } assert(next_arg_index == call_param_count); ZigType *return_type = fn_type_id->return_type; if (type_is_invalid(return_type)) return ira->codegen->invalid_instruction; if (fn_entry != nullptr && fn_entry->fn_inline == FnInlineAlways && fn_inline == FnInlineNever) { ir_add_error(ira, &call_instruction->base, buf_sprintf("no-inline call of inline function")); return ira->codegen->invalid_instruction; } if (call_instruction->is_async) { IrInstruction *result = ir_analyze_async_call(ira, call_instruction, fn_entry, fn_type, fn_ref, casted_args, call_param_count, casted_new_stack); return ir_finish_anal(ira, result); } if (fn_type_id->cc == CallingConventionAsync && parent_fn_entry->inferred_async_node == nullptr) { parent_fn_entry->inferred_async_node = fn_ref->source_node; parent_fn_entry->inferred_async_fn = fn_entry; } IrInstruction *result_loc; if (handle_is_ptr(return_type)) { result_loc = ir_resolve_result(ira, &call_instruction->base, call_instruction->result_loc, return_type, nullptr, true, true, false); if (result_loc != nullptr) { if (type_is_invalid(result_loc->value.type) || instr_is_unreachable(result_loc)) { return result_loc; } if (!handle_is_ptr(result_loc->value.type->data.pointer.child_type)) { ir_reset_result(call_instruction->result_loc); result_loc = nullptr; } } } else { result_loc = nullptr; } IrInstructionCallGen *new_call_instruction = ir_build_call_gen(ira, &call_instruction->base, fn_entry, fn_ref, call_param_count, casted_args, fn_inline, false, casted_new_stack, result_loc, return_type); parent_fn_entry->call_list.append(new_call_instruction); return ir_finish_anal(ira, &new_call_instruction->base); } static IrInstruction *ir_analyze_instruction_call(IrAnalyze *ira, IrInstructionCallSrc *call_instruction) { IrInstruction *fn_ref = call_instruction->fn_ref->child; if (type_is_invalid(fn_ref->value.type)) return ira->codegen->invalid_instruction; bool is_comptime = call_instruction->is_comptime || ir_should_inline(ira->new_irb.exec, call_instruction->base.scope); if (is_comptime || instr_is_comptime(fn_ref)) { if (fn_ref->value.type->id == ZigTypeIdMetaType) { ZigType *dest_type = ir_resolve_type(ira, fn_ref); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; size_t actual_param_count = call_instruction->arg_count; if (actual_param_count != 1) { ir_add_error_node(ira, call_instruction->base.source_node, buf_sprintf("cast expression expects exactly one parameter")); return ira->codegen->invalid_instruction; } IrInstruction *arg = call_instruction->args[0]->child; IrInstruction *cast_instruction = ir_analyze_cast(ira, &call_instruction->base, dest_type, arg, call_instruction->result_loc); if (type_is_invalid(cast_instruction->value.type)) return ira->codegen->invalid_instruction; return ir_finish_anal(ira, cast_instruction); } else if (fn_ref->value.type->id == ZigTypeIdFn) { ZigFn *fn_table_entry = ir_resolve_fn(ira, fn_ref); if (fn_table_entry == nullptr) return ira->codegen->invalid_instruction; return ir_analyze_fn_call(ira, call_instruction, fn_table_entry, fn_table_entry->type_entry, fn_ref, nullptr, is_comptime, call_instruction->fn_inline); } else if (fn_ref->value.type->id == ZigTypeIdBoundFn) { assert(fn_ref->value.special == ConstValSpecialStatic); ZigFn *fn_table_entry = fn_ref->value.data.x_bound_fn.fn; IrInstruction *first_arg_ptr = fn_ref->value.data.x_bound_fn.first_arg; return ir_analyze_fn_call(ira, call_instruction, fn_table_entry, fn_table_entry->type_entry, fn_ref, first_arg_ptr, is_comptime, call_instruction->fn_inline); } else { ir_add_error_node(ira, fn_ref->source_node, buf_sprintf("type '%s' not a function", buf_ptr(&fn_ref->value.type->name))); return ira->codegen->invalid_instruction; } } if (fn_ref->value.type->id == ZigTypeIdFn) { return ir_analyze_fn_call(ira, call_instruction, nullptr, fn_ref->value.type, fn_ref, nullptr, false, FnInlineAuto); } else { ir_add_error_node(ira, fn_ref->source_node, buf_sprintf("type '%s' not a function", buf_ptr(&fn_ref->value.type->name))); return ira->codegen->invalid_instruction; } } // out_val->type must be the type to read the pointer as // if the type is different than the actual type then it does a comptime byte reinterpretation static Error ir_read_const_ptr(IrAnalyze *ira, CodeGen *codegen, AstNode *source_node, ConstExprValue *out_val, ConstExprValue *ptr_val) { Error err; assert(out_val->type != nullptr); ConstExprValue *pointee = const_ptr_pointee_unchecked(codegen, ptr_val); if ((err = type_resolve(codegen, pointee->type, ResolveStatusSizeKnown))) return ErrorSemanticAnalyzeFail; if ((err = type_resolve(codegen, out_val->type, ResolveStatusSizeKnown))) return ErrorSemanticAnalyzeFail; size_t src_size = type_size(codegen, pointee->type); size_t dst_size = type_size(codegen, out_val->type); if (dst_size <= src_size) { if (src_size == dst_size && types_have_same_zig_comptime_repr(pointee->type, out_val->type)) { copy_const_val(out_val, pointee, ptr_val->data.x_ptr.mut != ConstPtrMutComptimeVar); return ErrorNone; } Buf buf = BUF_INIT; buf_resize(&buf, src_size); buf_write_value_bytes(codegen, (uint8_t*)buf_ptr(&buf), pointee); if ((err = buf_read_value_bytes(ira, codegen, source_node, (uint8_t*)buf_ptr(&buf), out_val))) return err; return ErrorNone; } switch (ptr_val->data.x_ptr.special) { case ConstPtrSpecialInvalid: zig_unreachable(); case ConstPtrSpecialNull: if (dst_size == 0) return ErrorNone; opt_ir_add_error_node(ira, codegen, source_node, buf_sprintf("attempt to read %" ZIG_PRI_usize " bytes from null pointer", dst_size)); return ErrorSemanticAnalyzeFail; case ConstPtrSpecialRef: { opt_ir_add_error_node(ira, codegen, source_node, buf_sprintf("attempt to read %" ZIG_PRI_usize " bytes from pointer to %s which is %" ZIG_PRI_usize " bytes", dst_size, buf_ptr(&pointee->type->name), src_size)); return ErrorSemanticAnalyzeFail; } case ConstPtrSpecialBaseArray: { ConstExprValue *array_val = ptr_val->data.x_ptr.data.base_array.array_val; assert(array_val->type->id == ZigTypeIdArray); if (array_val->data.x_array.special != ConstArraySpecialNone) zig_panic("TODO"); size_t elem_size = src_size; size_t elem_index = ptr_val->data.x_ptr.data.base_array.elem_index; src_size = elem_size * (array_val->type->data.array.len - elem_index); if (dst_size > src_size) { opt_ir_add_error_node(ira, codegen, source_node, buf_sprintf("attempt to read %" ZIG_PRI_usize " bytes from %s at index %" ZIG_PRI_usize " which is %" ZIG_PRI_usize " bytes", dst_size, buf_ptr(&array_val->type->name), elem_index, src_size)); return ErrorSemanticAnalyzeFail; } size_t elem_count = (dst_size % elem_size == 0) ? (dst_size / elem_size) : (dst_size / elem_size + 1); Buf buf = BUF_INIT; buf_resize(&buf, elem_count * elem_size); for (size_t i = 0; i < elem_count; i += 1) { ConstExprValue *elem_val = &array_val->data.x_array.data.s_none.elements[elem_index + i]; buf_write_value_bytes(codegen, (uint8_t*)buf_ptr(&buf) + (i * elem_size), elem_val); } if ((err = buf_read_value_bytes(ira, codegen, source_node, (uint8_t*)buf_ptr(&buf), out_val))) return err; return ErrorNone; } case ConstPtrSpecialBaseStruct: case ConstPtrSpecialBaseErrorUnionCode: case ConstPtrSpecialBaseErrorUnionPayload: case ConstPtrSpecialBaseOptionalPayload: case ConstPtrSpecialDiscard: case ConstPtrSpecialHardCodedAddr: case ConstPtrSpecialFunction: zig_panic("TODO"); } zig_unreachable(); } static IrInstruction *ir_analyze_optional_type(IrAnalyze *ira, IrInstructionUnOp *instruction) { IrInstruction *result = ir_const(ira, &instruction->base, ira->codegen->builtin_types.entry_type); result->value.special = ConstValSpecialLazy; LazyValueOptType *lazy_opt_type = allocate(1); result->value.data.x_lazy = &lazy_opt_type->base; lazy_opt_type->base.id = LazyValueIdOptType; lazy_opt_type->base.exec = ira->new_irb.exec; lazy_opt_type->payload_type_val = ir_resolve_type_lazy(ira, instruction->value->child); if (lazy_opt_type->payload_type_val == nullptr) return ira->codegen->invalid_instruction; lazy_opt_type->payload_type_src_node = instruction->value->source_node; return result; } static ErrorMsg *ir_eval_negation_scalar(IrAnalyze *ira, IrInstruction *source_instr, ZigType *scalar_type, ConstExprValue *operand_val, ConstExprValue *scalar_out_val, bool is_wrap_op) { bool is_float = (scalar_type->id == ZigTypeIdFloat || scalar_type->id == ZigTypeIdComptimeFloat); bool ok_type = ((scalar_type->id == ZigTypeIdInt && scalar_type->data.integral.is_signed) || scalar_type->id == ZigTypeIdComptimeInt || (is_float && !is_wrap_op)); if (!ok_type) { const char *fmt = is_wrap_op ? "invalid wrapping negation type: '%s'" : "invalid negation type: '%s'"; return ir_add_error(ira, source_instr, buf_sprintf(fmt, buf_ptr(&scalar_type->name))); } if (is_float) { float_negate(scalar_out_val, operand_val); } else if (is_wrap_op) { bigint_negate_wrap(&scalar_out_val->data.x_bigint, &operand_val->data.x_bigint, scalar_type->data.integral.bit_count); } else { bigint_negate(&scalar_out_val->data.x_bigint, &operand_val->data.x_bigint); } scalar_out_val->type = scalar_type; scalar_out_val->special = ConstValSpecialStatic; if (is_wrap_op || is_float || scalar_type->id == ZigTypeIdComptimeInt) { return nullptr; } if (!bigint_fits_in_bits(&scalar_out_val->data.x_bigint, scalar_type->data.integral.bit_count, true)) { return ir_add_error(ira, source_instr, buf_sprintf("negation caused overflow")); } return nullptr; } static IrInstruction *ir_analyze_negation(IrAnalyze *ira, IrInstructionUnOp *instruction) { IrInstruction *value = instruction->value->child; ZigType *expr_type = value->value.type; if (type_is_invalid(expr_type)) return ira->codegen->invalid_instruction; bool is_wrap_op = (instruction->op_id == IrUnOpNegationWrap); ZigType *scalar_type = (expr_type->id == ZigTypeIdVector) ? expr_type->data.vector.elem_type : expr_type; if (instr_is_comptime(value)) { ConstExprValue *operand_val = ir_resolve_const(ira, value, UndefBad); if (!operand_val) return ira->codegen->invalid_instruction; IrInstruction *result_instruction = ir_const(ira, &instruction->base, expr_type); ConstExprValue *out_val = &result_instruction->value; if (expr_type->id == ZigTypeIdVector) { expand_undef_array(ira->codegen, operand_val); out_val->special = ConstValSpecialUndef; expand_undef_array(ira->codegen, out_val); size_t len = expr_type->data.vector.len; for (size_t i = 0; i < len; i += 1) { ConstExprValue *scalar_operand_val = &operand_val->data.x_array.data.s_none.elements[i]; ConstExprValue *scalar_out_val = &out_val->data.x_array.data.s_none.elements[i]; assert(scalar_operand_val->type == scalar_type); assert(scalar_out_val->type == scalar_type); ErrorMsg *msg = ir_eval_negation_scalar(ira, &instruction->base, scalar_type, scalar_operand_val, scalar_out_val, is_wrap_op); if (msg != nullptr) { add_error_note(ira->codegen, msg, instruction->base.source_node, buf_sprintf("when computing vector element at index %" ZIG_PRI_usize, i)); return ira->codegen->invalid_instruction; } } out_val->type = expr_type; out_val->special = ConstValSpecialStatic; } else { if (ir_eval_negation_scalar(ira, &instruction->base, scalar_type, operand_val, out_val, is_wrap_op) != nullptr) { return ira->codegen->invalid_instruction; } } return result_instruction; } IrInstruction *result = ir_build_un_op(&ira->new_irb, instruction->base.scope, instruction->base.source_node, instruction->op_id, value); result->value.type = expr_type; return result; } static IrInstruction *ir_analyze_bin_not(IrAnalyze *ira, IrInstructionUnOp *instruction) { IrInstruction *value = instruction->value->child; ZigType *expr_type = value->value.type; if (type_is_invalid(expr_type)) return ira->codegen->invalid_instruction; if (expr_type->id == ZigTypeIdInt) { if (instr_is_comptime(value)) { ConstExprValue *target_const_val = ir_resolve_const(ira, value, UndefBad); if (target_const_val == nullptr) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, &instruction->base, expr_type); bigint_not(&result->value.data.x_bigint, &target_const_val->data.x_bigint, expr_type->data.integral.bit_count, expr_type->data.integral.is_signed); return result; } IrInstruction *result = ir_build_un_op(&ira->new_irb, instruction->base.scope, instruction->base.source_node, IrUnOpBinNot, value); result->value.type = expr_type; return result; } ir_add_error(ira, &instruction->base, buf_sprintf("unable to perform binary not operation on type '%s'", buf_ptr(&expr_type->name))); return ira->codegen->invalid_instruction; } static IrInstruction *ir_analyze_instruction_un_op(IrAnalyze *ira, IrInstructionUnOp *instruction) { IrUnOp op_id = instruction->op_id; switch (op_id) { case IrUnOpInvalid: zig_unreachable(); case IrUnOpBinNot: return ir_analyze_bin_not(ira, instruction); case IrUnOpNegation: case IrUnOpNegationWrap: return ir_analyze_negation(ira, instruction); case IrUnOpDereference: { IrInstruction *ptr = instruction->value->child; if (type_is_invalid(ptr->value.type)) return ira->codegen->invalid_instruction; ZigType *ptr_type = ptr->value.type; if (ptr_type->id == ZigTypeIdPointer && ptr_type->data.pointer.ptr_len == PtrLenUnknown) { ir_add_error_node(ira, instruction->base.source_node, buf_sprintf("index syntax required for unknown-length pointer type '%s'", buf_ptr(&ptr_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *result = ir_get_deref(ira, &instruction->base, ptr, instruction->result_loc); if (result == ira->codegen->invalid_instruction) return ira->codegen->invalid_instruction; // If the result needs to be an lvalue, type check it if (instruction->lval == LValPtr && result->value.type->id != ZigTypeIdPointer) { ir_add_error(ira, &instruction->base, buf_sprintf("attempt to dereference non-pointer type '%s'", buf_ptr(&result->value.type->name))); return ira->codegen->invalid_instruction; } return result; } case IrUnOpOptional: return ir_analyze_optional_type(ira, instruction); } zig_unreachable(); } static void ir_push_resume(IrAnalyze *ira, IrSuspendPosition pos) { IrBasicBlock *old_bb = ira->old_irb.exec->basic_block_list.at(pos.basic_block_index); if (old_bb->in_resume_stack) return; ira->resume_stack.append(pos); old_bb->in_resume_stack = true; } static void ir_push_resume_block(IrAnalyze *ira, IrBasicBlock *old_bb) { if (ira->resume_stack.length != 0) { ir_push_resume(ira, {old_bb->index, 0}); } } static IrInstruction *ir_analyze_instruction_br(IrAnalyze *ira, IrInstructionBr *br_instruction) { IrBasicBlock *old_dest_block = br_instruction->dest_block; bool is_comptime; if (!ir_resolve_comptime(ira, br_instruction->is_comptime->child, &is_comptime)) return ir_unreach_error(ira); if (is_comptime || (old_dest_block->ref_count == 1 && old_dest_block->suspend_instruction_ref == nullptr)) return ir_inline_bb(ira, &br_instruction->base, old_dest_block); IrBasicBlock *new_bb = ir_get_new_bb_runtime(ira, old_dest_block, &br_instruction->base); if (new_bb == nullptr) return ir_unreach_error(ira); ir_push_resume_block(ira, old_dest_block); IrInstruction *result = ir_build_br(&ira->new_irb, br_instruction->base.scope, br_instruction->base.source_node, new_bb, nullptr); result->value.type = ira->codegen->builtin_types.entry_unreachable; return ir_finish_anal(ira, result); } static IrInstruction *ir_analyze_instruction_cond_br(IrAnalyze *ira, IrInstructionCondBr *cond_br_instruction) { IrInstruction *condition = cond_br_instruction->condition->child; if (type_is_invalid(condition->value.type)) return ir_unreach_error(ira); bool is_comptime; if (!ir_resolve_comptime(ira, cond_br_instruction->is_comptime->child, &is_comptime)) return ir_unreach_error(ira); ZigType *bool_type = ira->codegen->builtin_types.entry_bool; IrInstruction *casted_condition = ir_implicit_cast(ira, condition, bool_type); if (type_is_invalid(casted_condition->value.type)) return ir_unreach_error(ira); if (is_comptime || instr_is_comptime(casted_condition)) { bool cond_is_true; if (!ir_resolve_bool(ira, casted_condition, &cond_is_true)) return ir_unreach_error(ira); IrBasicBlock *old_dest_block = cond_is_true ? cond_br_instruction->then_block : cond_br_instruction->else_block; if (is_comptime || (old_dest_block->ref_count == 1 && old_dest_block->suspend_instruction_ref == nullptr)) return ir_inline_bb(ira, &cond_br_instruction->base, old_dest_block); IrBasicBlock *new_dest_block = ir_get_new_bb_runtime(ira, old_dest_block, &cond_br_instruction->base); if (new_dest_block == nullptr) return ir_unreach_error(ira); ir_push_resume_block(ira, old_dest_block); IrInstruction *result = ir_build_br(&ira->new_irb, cond_br_instruction->base.scope, cond_br_instruction->base.source_node, new_dest_block, nullptr); result->value.type = ira->codegen->builtin_types.entry_unreachable; return ir_finish_anal(ira, result); } assert(cond_br_instruction->then_block != cond_br_instruction->else_block); IrBasicBlock *new_then_block = ir_get_new_bb_runtime(ira, cond_br_instruction->then_block, &cond_br_instruction->base); if (new_then_block == nullptr) return ir_unreach_error(ira); IrBasicBlock *new_else_block = ir_get_new_bb_runtime(ira, cond_br_instruction->else_block, &cond_br_instruction->base); if (new_else_block == nullptr) return ir_unreach_error(ira); ir_push_resume_block(ira, cond_br_instruction->else_block); ir_push_resume_block(ira, cond_br_instruction->then_block); IrInstruction *result = ir_build_cond_br(&ira->new_irb, cond_br_instruction->base.scope, cond_br_instruction->base.source_node, casted_condition, new_then_block, new_else_block, nullptr); result->value.type = ira->codegen->builtin_types.entry_unreachable; return ir_finish_anal(ira, result); } static IrInstruction *ir_analyze_instruction_unreachable(IrAnalyze *ira, IrInstructionUnreachable *unreachable_instruction) { IrInstruction *result = ir_build_unreachable(&ira->new_irb, unreachable_instruction->base.scope, unreachable_instruction->base.source_node); result->value.type = ira->codegen->builtin_types.entry_unreachable; return ir_finish_anal(ira, result); } static IrInstruction *ir_analyze_instruction_phi(IrAnalyze *ira, IrInstructionPhi *phi_instruction) { if (ira->const_predecessor_bb) { for (size_t i = 0; i < phi_instruction->incoming_count; i += 1) { IrBasicBlock *predecessor = phi_instruction->incoming_blocks[i]; if (predecessor != ira->const_predecessor_bb) continue; IrInstruction *value = phi_instruction->incoming_values[i]->child; assert(value->value.type); if (type_is_invalid(value->value.type)) return ira->codegen->invalid_instruction; if (value->value.special != ConstValSpecialRuntime) { IrInstruction *result = ir_const(ira, &phi_instruction->base, nullptr); copy_const_val(&result->value, &value->value, true); return result; } else { return value; } } zig_unreachable(); } ResultLocPeerParent *peer_parent = phi_instruction->peer_parent; if (peer_parent != nullptr && !peer_parent->skipped && !peer_parent->done_resuming && peer_parent->peers.length >= 2) { if (peer_parent->resolved_type == nullptr) { IrInstruction **instructions = allocate(peer_parent->peers.length); for (size_t i = 0; i < peer_parent->peers.length; i += 1) { ResultLocPeer *this_peer = peer_parent->peers.at(i); IrInstruction *gen_instruction = this_peer->base.gen_instruction; if (gen_instruction == nullptr) { // unreachable instructions will cause implicit_elem_type to be null if (this_peer->base.implicit_elem_type == nullptr) { instructions[i] = ir_const_unreachable(ira, this_peer->base.source_instruction); } else { instructions[i] = ir_const(ira, this_peer->base.source_instruction, this_peer->base.implicit_elem_type); instructions[i]->value.special = ConstValSpecialRuntime; } } else { instructions[i] = gen_instruction; } } ZigType *expected_type = ir_result_loc_expected_type(ira, &phi_instruction->base, peer_parent->parent); peer_parent->resolved_type = ir_resolve_peer_types(ira, peer_parent->base.source_instruction->source_node, expected_type, instructions, peer_parent->peers.length); // the logic below assumes there are no instructions in the new current basic block yet ir_assert(ira->new_irb.current_basic_block->instruction_list.length == 0, &phi_instruction->base); // In case resolving the parent activates a suspend, do it now IrInstruction *parent_result_loc = ir_resolve_result(ira, &phi_instruction->base, peer_parent->parent, peer_parent->resolved_type, nullptr, false, false, true); if (parent_result_loc != nullptr && (type_is_invalid(parent_result_loc->value.type) || instr_is_unreachable(parent_result_loc))) { return parent_result_loc; } // If the above code generated any instructions in the current basic block, we need // to move them to the peer parent predecessor. ZigList instrs_to_move = {}; while (ira->new_irb.current_basic_block->instruction_list.length != 0) { instrs_to_move.append(ira->new_irb.current_basic_block->instruction_list.pop()); } if (instrs_to_move.length != 0) { IrBasicBlock *predecessor = peer_parent->base.source_instruction->child->owner_bb; IrInstruction *branch_instruction = predecessor->instruction_list.pop(); ir_assert(branch_instruction->value.type->id == ZigTypeIdUnreachable, &phi_instruction->base); while (instrs_to_move.length != 0) { predecessor->instruction_list.append(instrs_to_move.pop()); } predecessor->instruction_list.append(branch_instruction); } } IrSuspendPosition suspend_pos; ira_suspend(ira, &phi_instruction->base, nullptr, &suspend_pos); ir_push_resume(ira, suspend_pos); for (size_t i = 0; i < peer_parent->peers.length; i += 1) { ResultLocPeer *opposite_peer = peer_parent->peers.at(peer_parent->peers.length - i - 1); if (opposite_peer->base.implicit_elem_type != nullptr && opposite_peer->base.implicit_elem_type->id != ZigTypeIdUnreachable) { ir_push_resume(ira, opposite_peer->suspend_pos); } } peer_parent->done_resuming = true; return ira_resume(ira); } ZigList new_incoming_blocks = {0}; ZigList new_incoming_values = {0}; for (size_t i = 0; i < phi_instruction->incoming_count; i += 1) { IrBasicBlock *predecessor = phi_instruction->incoming_blocks[i]; if (predecessor->ref_count == 0) continue; IrInstruction *old_value = phi_instruction->incoming_values[i]; assert(old_value); IrInstruction *new_value = old_value->child; if (!new_value || new_value->value.type->id == ZigTypeIdUnreachable || predecessor->other == nullptr) continue; if (type_is_invalid(new_value->value.type)) return ira->codegen->invalid_instruction; assert(predecessor->other); new_incoming_blocks.append(predecessor->other); new_incoming_values.append(new_value); } if (new_incoming_blocks.length == 0) { IrInstruction *result = ir_build_unreachable(&ira->new_irb, phi_instruction->base.scope, phi_instruction->base.source_node); result->value.type = ira->codegen->builtin_types.entry_unreachable; return ir_finish_anal(ira, result); } if (new_incoming_blocks.length == 1) { return new_incoming_values.at(0); } ZigType *resolved_type = ir_resolve_peer_types(ira, phi_instruction->base.source_node, nullptr, new_incoming_values.items, new_incoming_values.length); if (type_is_invalid(resolved_type)) return ira->codegen->invalid_instruction; switch (type_has_one_possible_value(ira->codegen, resolved_type)) { case OnePossibleValueInvalid: return ira->codegen->invalid_instruction; case OnePossibleValueYes: return ir_const(ira, &phi_instruction->base, resolved_type); case OnePossibleValueNo: break; } switch (type_requires_comptime(ira->codegen, resolved_type)) { case ReqCompTimeInvalid: return ira->codegen->invalid_instruction; case ReqCompTimeYes: ir_add_error_node(ira, phi_instruction->base.source_node, buf_sprintf("values of type '%s' must be comptime known", buf_ptr(&resolved_type->name))); return ira->codegen->invalid_instruction; case ReqCompTimeNo: break; } bool all_stack_ptrs = (resolved_type->id == ZigTypeIdPointer); // cast all values to the resolved type. however we can't put cast instructions in front of the phi instruction. // so we go back and insert the casts as the last instruction in the corresponding predecessor blocks, and // then make sure the branch instruction is preserved. IrBasicBlock *cur_bb = ira->new_irb.current_basic_block; for (size_t i = 0; i < new_incoming_values.length; i += 1) { IrInstruction *new_value = new_incoming_values.at(i); IrBasicBlock *predecessor = new_incoming_blocks.at(i); ir_assert(predecessor->instruction_list.length != 0, &phi_instruction->base); IrInstruction *branch_instruction = predecessor->instruction_list.pop(); ir_set_cursor_at_end(&ira->new_irb, predecessor); IrInstruction *casted_value = ir_implicit_cast(ira, new_value, resolved_type); if (type_is_invalid(casted_value->value.type)) { return ira->codegen->invalid_instruction; } new_incoming_values.items[i] = casted_value; predecessor->instruction_list.append(branch_instruction); if (all_stack_ptrs && (casted_value->value.special != ConstValSpecialRuntime || casted_value->value.data.rh_ptr != RuntimeHintPtrStack)) { all_stack_ptrs = false; } } ir_set_cursor_at_end(&ira->new_irb, cur_bb); IrInstruction *result = ir_build_phi(&ira->new_irb, phi_instruction->base.scope, phi_instruction->base.source_node, new_incoming_blocks.length, new_incoming_blocks.items, new_incoming_values.items, nullptr); result->value.type = resolved_type; if (all_stack_ptrs) { assert(result->value.special == ConstValSpecialRuntime); result->value.data.rh_ptr = RuntimeHintPtrStack; } return result; } static IrInstruction *ir_analyze_instruction_var_ptr(IrAnalyze *ira, IrInstructionVarPtr *instruction) { ZigVar *var = instruction->var; IrInstruction *result = ir_get_var_ptr(ira, &instruction->base, var); if (instruction->crossed_fndef_scope != nullptr && !instr_is_comptime(result)) { ErrorMsg *msg = ir_add_error(ira, &instruction->base, buf_sprintf("'%s' not accessible from inner function", buf_ptr(&var->name))); add_error_note(ira->codegen, msg, instruction->crossed_fndef_scope->base.source_node, buf_sprintf("crossed function definition here")); add_error_note(ira->codegen, msg, var->decl_node, buf_sprintf("declared here")); return ira->codegen->invalid_instruction; } return result; } static ZigType *adjust_ptr_align(CodeGen *g, ZigType *ptr_type, uint32_t new_align) { assert(ptr_type->id == ZigTypeIdPointer); return get_pointer_to_type_extra(g, ptr_type->data.pointer.child_type, ptr_type->data.pointer.is_const, ptr_type->data.pointer.is_volatile, ptr_type->data.pointer.ptr_len, new_align, ptr_type->data.pointer.bit_offset_in_host, ptr_type->data.pointer.host_int_bytes, ptr_type->data.pointer.allow_zero); } static ZigType *adjust_slice_align(CodeGen *g, ZigType *slice_type, uint32_t new_align) { assert(is_slice(slice_type)); ZigType *ptr_type = adjust_ptr_align(g, slice_type->data.structure.fields[slice_ptr_index].type_entry, new_align); return get_slice_type(g, ptr_type); } static ZigType *adjust_ptr_len(CodeGen *g, ZigType *ptr_type, PtrLen ptr_len) { assert(ptr_type->id == ZigTypeIdPointer); return get_pointer_to_type_extra(g, ptr_type->data.pointer.child_type, ptr_type->data.pointer.is_const, ptr_type->data.pointer.is_volatile, ptr_len, ptr_type->data.pointer.explicit_alignment, ptr_type->data.pointer.bit_offset_in_host, ptr_type->data.pointer.host_int_bytes, ptr_type->data.pointer.allow_zero); } static IrInstruction *ir_analyze_instruction_elem_ptr(IrAnalyze *ira, IrInstructionElemPtr *elem_ptr_instruction) { Error err; IrInstruction *array_ptr = elem_ptr_instruction->array_ptr->child; if (type_is_invalid(array_ptr->value.type)) return ira->codegen->invalid_instruction; ConstExprValue *orig_array_ptr_val = &array_ptr->value; IrInstruction *elem_index = elem_ptr_instruction->elem_index->child; if (type_is_invalid(elem_index->value.type)) return ira->codegen->invalid_instruction; ZigType *ptr_type = orig_array_ptr_val->type; assert(ptr_type->id == ZigTypeIdPointer); ZigType *array_type = ptr_type->data.pointer.child_type; // At first return_type will be the pointer type we want to return, except with an optimistic alignment. // We will adjust return_type's alignment before returning it. ZigType *return_type; if (type_is_invalid(array_type)) { return ira->codegen->invalid_instruction; } else if (array_type->id == ZigTypeIdArray || (array_type->id == ZigTypeIdPointer && array_type->data.pointer.ptr_len == PtrLenSingle && array_type->data.pointer.child_type->id == ZigTypeIdArray)) { if (array_type->id == ZigTypeIdPointer) { array_type = array_type->data.pointer.child_type; ptr_type = ptr_type->data.pointer.child_type; if (orig_array_ptr_val->special != ConstValSpecialRuntime) { orig_array_ptr_val = const_ptr_pointee(ira, ira->codegen, orig_array_ptr_val, elem_ptr_instruction->base.source_node); if (orig_array_ptr_val == nullptr) return ira->codegen->invalid_instruction; } } if (array_type->data.array.len == 0) { ir_add_error_node(ira, elem_ptr_instruction->base.source_node, buf_sprintf("index 0 outside array of size 0")); return ira->codegen->invalid_instruction; } ZigType *child_type = array_type->data.array.child_type; if (ptr_type->data.pointer.host_int_bytes == 0) { return_type = get_pointer_to_type_extra(ira->codegen, child_type, ptr_type->data.pointer.is_const, ptr_type->data.pointer.is_volatile, elem_ptr_instruction->ptr_len, ptr_type->data.pointer.explicit_alignment, 0, 0, false); } else { uint64_t elem_val_scalar; if (!ir_resolve_usize(ira, elem_index, &elem_val_scalar)) return ira->codegen->invalid_instruction; size_t bit_width = type_size_bits(ira->codegen, child_type); size_t bit_offset = bit_width * elem_val_scalar; return_type = get_pointer_to_type_extra(ira->codegen, child_type, ptr_type->data.pointer.is_const, ptr_type->data.pointer.is_volatile, elem_ptr_instruction->ptr_len, 1, (uint32_t)bit_offset, ptr_type->data.pointer.host_int_bytes, false); } } else if (array_type->id == ZigTypeIdPointer) { if (array_type->data.pointer.ptr_len == PtrLenSingle) { ir_add_error_node(ira, elem_ptr_instruction->base.source_node, buf_sprintf("index of single-item pointer")); return ira->codegen->invalid_instruction; } return_type = adjust_ptr_len(ira->codegen, array_type, elem_ptr_instruction->ptr_len); } else if (is_slice(array_type)) { return_type = adjust_ptr_len(ira->codegen, array_type->data.structure.fields[slice_ptr_index].type_entry, elem_ptr_instruction->ptr_len); } else if (array_type->id == ZigTypeIdArgTuple) { ConstExprValue *ptr_val = ir_resolve_const(ira, array_ptr, UndefBad); if (!ptr_val) return ira->codegen->invalid_instruction; ConstExprValue *args_val = const_ptr_pointee(ira, ira->codegen, ptr_val, elem_ptr_instruction->base.source_node); if (args_val == nullptr) return ira->codegen->invalid_instruction; size_t start = args_val->data.x_arg_tuple.start_index; size_t end = args_val->data.x_arg_tuple.end_index; uint64_t elem_index_val; if (!ir_resolve_usize(ira, elem_index, &elem_index_val)) return ira->codegen->invalid_instruction; size_t index = elem_index_val; size_t len = end - start; if (index >= len) { ir_add_error(ira, &elem_ptr_instruction->base, buf_sprintf("index %" ZIG_PRI_usize " outside argument list of size %" ZIG_PRI_usize "", index, len)); return ira->codegen->invalid_instruction; } size_t abs_index = start + index; ZigFn *fn_entry = exec_fn_entry(ira->new_irb.exec); assert(fn_entry); ZigVar *var = get_fn_var_by_index(fn_entry, abs_index); bool is_const = true; bool is_volatile = false; if (var) { return ir_get_var_ptr(ira, &elem_ptr_instruction->base, var); } else { return ir_get_const_ptr(ira, &elem_ptr_instruction->base, &ira->codegen->const_void_val, ira->codegen->builtin_types.entry_void, ConstPtrMutComptimeConst, is_const, is_volatile, 0); } } else { ir_add_error_node(ira, elem_ptr_instruction->base.source_node, buf_sprintf("array access of non-array type '%s'", buf_ptr(&array_type->name))); return ira->codegen->invalid_instruction; } ZigType *usize = ira->codegen->builtin_types.entry_usize; IrInstruction *casted_elem_index = ir_implicit_cast(ira, elem_index, usize); if (casted_elem_index == ira->codegen->invalid_instruction) return ira->codegen->invalid_instruction; bool safety_check_on = elem_ptr_instruction->safety_check_on; if ((err = type_resolve(ira->codegen, return_type->data.pointer.child_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; uint64_t elem_size = type_size(ira->codegen, return_type->data.pointer.child_type); uint64_t abi_align = get_abi_alignment(ira->codegen, return_type->data.pointer.child_type); uint64_t ptr_align = get_ptr_align(ira->codegen, return_type); if (instr_is_comptime(casted_elem_index)) { uint64_t index = bigint_as_u64(&casted_elem_index->value.data.x_bigint); if (array_type->id == ZigTypeIdArray) { uint64_t array_len = array_type->data.array.len; if (index >= array_len) { ir_add_error_node(ira, elem_ptr_instruction->base.source_node, buf_sprintf("index %" ZIG_PRI_u64 " outside array of size %" ZIG_PRI_u64, index, array_len)); return ira->codegen->invalid_instruction; } safety_check_on = false; } { // figure out the largest alignment possible uint64_t chosen_align = abi_align; if (ptr_align >= abi_align) { while (ptr_align > abi_align) { if ((index * elem_size) % ptr_align == 0) { chosen_align = ptr_align; break; } ptr_align >>= 1; } } else if (elem_size >= ptr_align && elem_size % ptr_align == 0) { chosen_align = ptr_align; } else { // can't get here because guaranteed elem_size >= abi_align zig_unreachable(); } return_type = adjust_ptr_align(ira->codegen, return_type, chosen_align); } if (orig_array_ptr_val->special != ConstValSpecialRuntime && (orig_array_ptr_val->data.x_ptr.mut != ConstPtrMutRuntimeVar || array_type->id == ZigTypeIdArray)) { ConstExprValue *array_ptr_val = const_ptr_pointee(ira, ira->codegen, orig_array_ptr_val, elem_ptr_instruction->base.source_node); if (array_ptr_val == nullptr) return ira->codegen->invalid_instruction; if (array_ptr_val->special == ConstValSpecialUndef && elem_ptr_instruction->init_array_type != nullptr) { if (array_type->id == ZigTypeIdArray) { array_ptr_val->data.x_array.special = ConstArraySpecialNone; array_ptr_val->data.x_array.data.s_none.elements = create_const_vals(array_type->data.array.len); array_ptr_val->special = ConstValSpecialStatic; for (size_t i = 0; i < array_type->data.array.len; i += 1) { ConstExprValue *elem_val = &array_ptr_val->data.x_array.data.s_none.elements[i]; elem_val->special = ConstValSpecialUndef; elem_val->type = array_type->data.array.child_type; elem_val->parent.id = ConstParentIdArray; elem_val->parent.data.p_array.array_val = array_ptr_val; elem_val->parent.data.p_array.elem_index = i; } } else if (is_slice(array_type)) { ZigType *actual_array_type = ir_resolve_type(ira, elem_ptr_instruction->init_array_type->child); if (type_is_invalid(actual_array_type)) return ira->codegen->invalid_instruction; if (actual_array_type->id != ZigTypeIdArray) { ir_add_error(ira, elem_ptr_instruction->init_array_type, buf_sprintf("expected array type or [_], found slice")); return ira->codegen->invalid_instruction; } ConstExprValue *array_init_val = create_const_vals(1); array_init_val->special = ConstValSpecialStatic; array_init_val->type = actual_array_type; array_init_val->data.x_array.special = ConstArraySpecialNone; array_init_val->data.x_array.data.s_none.elements = create_const_vals(actual_array_type->data.array.len); array_init_val->special = ConstValSpecialStatic; for (size_t i = 0; i < actual_array_type->data.array.len; i += 1) { ConstExprValue *elem_val = &array_init_val->data.x_array.data.s_none.elements[i]; elem_val->special = ConstValSpecialUndef; elem_val->type = actual_array_type->data.array.child_type; elem_val->parent.id = ConstParentIdArray; elem_val->parent.data.p_array.array_val = array_init_val; elem_val->parent.data.p_array.elem_index = i; } init_const_slice(ira->codegen, array_ptr_val, array_init_val, 0, actual_array_type->data.array.len, false); array_ptr_val->data.x_struct.fields[slice_ptr_index].data.x_ptr.mut = ConstPtrMutInfer; } else { zig_unreachable(); } } if (array_ptr_val->special != ConstValSpecialRuntime && (array_type->id != ZigTypeIdPointer || array_ptr_val->data.x_ptr.special != ConstPtrSpecialHardCodedAddr)) { if (array_type->id == ZigTypeIdPointer) { IrInstruction *result = ir_const(ira, &elem_ptr_instruction->base, return_type); ConstExprValue *out_val = &result->value; out_val->data.x_ptr.mut = array_ptr_val->data.x_ptr.mut; size_t new_index; size_t mem_size; size_t old_size; switch (array_ptr_val->data.x_ptr.special) { case ConstPtrSpecialInvalid: case ConstPtrSpecialDiscard: zig_unreachable(); case ConstPtrSpecialRef: mem_size = 1; old_size = 1; new_index = index; out_val->data.x_ptr.special = ConstPtrSpecialRef; out_val->data.x_ptr.data.ref.pointee = array_ptr_val->data.x_ptr.data.ref.pointee; break; case ConstPtrSpecialBaseArray: { size_t offset = array_ptr_val->data.x_ptr.data.base_array.elem_index; new_index = offset + index; mem_size = array_ptr_val->data.x_ptr.data.base_array.array_val->type->data.array.len; old_size = mem_size - offset; assert(array_ptr_val->data.x_ptr.data.base_array.array_val); out_val->data.x_ptr.special = ConstPtrSpecialBaseArray; out_val->data.x_ptr.data.base_array.array_val = array_ptr_val->data.x_ptr.data.base_array.array_val; out_val->data.x_ptr.data.base_array.elem_index = new_index; out_val->data.x_ptr.data.base_array.is_cstr = array_ptr_val->data.x_ptr.data.base_array.is_cstr; break; } case ConstPtrSpecialBaseStruct: zig_panic("TODO elem ptr on a const inner struct"); case ConstPtrSpecialBaseErrorUnionCode: zig_panic("TODO elem ptr on a const inner error union code"); case ConstPtrSpecialBaseErrorUnionPayload: zig_panic("TODO elem ptr on a const inner error union payload"); case ConstPtrSpecialBaseOptionalPayload: zig_panic("TODO elem ptr on a const inner optional payload"); case ConstPtrSpecialHardCodedAddr: zig_unreachable(); case ConstPtrSpecialFunction: zig_panic("TODO element ptr of a function casted to a ptr"); case ConstPtrSpecialNull: zig_panic("TODO elem ptr on a null pointer"); } if (new_index >= mem_size) { ir_add_error_node(ira, elem_ptr_instruction->base.source_node, buf_sprintf("index %" ZIG_PRI_u64 " outside pointer of size %" ZIG_PRI_usize "", index, old_size)); return ira->codegen->invalid_instruction; } return result; } else if (is_slice(array_type)) { ConstExprValue *ptr_field = &array_ptr_val->data.x_struct.fields[slice_ptr_index]; ir_assert(ptr_field != nullptr, &elem_ptr_instruction->base); if (ptr_field->data.x_ptr.special == ConstPtrSpecialHardCodedAddr) { IrInstruction *result = ir_build_elem_ptr(&ira->new_irb, elem_ptr_instruction->base.scope, elem_ptr_instruction->base.source_node, array_ptr, casted_elem_index, false, elem_ptr_instruction->ptr_len, nullptr); result->value.type = return_type; return result; } ConstExprValue *len_field = &array_ptr_val->data.x_struct.fields[slice_len_index]; IrInstruction *result = ir_const(ira, &elem_ptr_instruction->base, return_type); ConstExprValue *out_val = &result->value; uint64_t slice_len = bigint_as_u64(&len_field->data.x_bigint); if (index >= slice_len) { ir_add_error_node(ira, elem_ptr_instruction->base.source_node, buf_sprintf("index %" ZIG_PRI_u64 " outside slice of size %" ZIG_PRI_u64, index, slice_len)); return ira->codegen->invalid_instruction; } out_val->data.x_ptr.mut = ptr_field->data.x_ptr.mut; switch (ptr_field->data.x_ptr.special) { case ConstPtrSpecialInvalid: case ConstPtrSpecialDiscard: zig_unreachable(); case ConstPtrSpecialRef: out_val->data.x_ptr.special = ConstPtrSpecialRef; out_val->data.x_ptr.data.ref.pointee = ptr_field->data.x_ptr.data.ref.pointee; break; case ConstPtrSpecialBaseArray: { size_t offset = ptr_field->data.x_ptr.data.base_array.elem_index; uint64_t new_index = offset + index; assert(new_index < ptr_field->data.x_ptr.data.base_array.array_val->type->data.array.len); out_val->data.x_ptr.special = ConstPtrSpecialBaseArray; out_val->data.x_ptr.data.base_array.array_val = ptr_field->data.x_ptr.data.base_array.array_val; out_val->data.x_ptr.data.base_array.elem_index = new_index; out_val->data.x_ptr.data.base_array.is_cstr = ptr_field->data.x_ptr.data.base_array.is_cstr; break; } case ConstPtrSpecialBaseStruct: zig_panic("TODO elem ptr on a slice backed by const inner struct"); case ConstPtrSpecialBaseErrorUnionCode: zig_panic("TODO elem ptr on a slice backed by const inner error union code"); case ConstPtrSpecialBaseErrorUnionPayload: zig_panic("TODO elem ptr on a slice backed by const inner error union payload"); case ConstPtrSpecialBaseOptionalPayload: zig_panic("TODO elem ptr on a slice backed by const optional payload"); case ConstPtrSpecialHardCodedAddr: zig_unreachable(); case ConstPtrSpecialFunction: zig_panic("TODO elem ptr on a slice that was ptrcast from a function"); case ConstPtrSpecialNull: zig_panic("TODO elem ptr on a slice has a null pointer"); } return result; } else if (array_type->id == ZigTypeIdArray) { IrInstruction *result; if (orig_array_ptr_val->data.x_ptr.mut == ConstPtrMutInfer) { result = ir_build_elem_ptr(&ira->new_irb, elem_ptr_instruction->base.scope, elem_ptr_instruction->base.source_node, array_ptr, casted_elem_index, false, elem_ptr_instruction->ptr_len, elem_ptr_instruction->init_array_type); result->value.type = return_type; result->value.special = ConstValSpecialStatic; } else { result = ir_const(ira, &elem_ptr_instruction->base, return_type); } ConstExprValue *out_val = &result->value; out_val->data.x_ptr.special = ConstPtrSpecialBaseArray; out_val->data.x_ptr.mut = orig_array_ptr_val->data.x_ptr.mut; out_val->data.x_ptr.data.base_array.array_val = array_ptr_val; out_val->data.x_ptr.data.base_array.elem_index = index; return result; } else { zig_unreachable(); } } } } else { // runtime known element index switch (type_requires_comptime(ira->codegen, return_type)) { case ReqCompTimeYes: ir_add_error(ira, elem_index, buf_sprintf("values of type '%s' must be comptime known, but index value is runtime known", buf_ptr(&return_type->data.pointer.child_type->name))); return ira->codegen->invalid_instruction; case ReqCompTimeInvalid: return ira->codegen->invalid_instruction; case ReqCompTimeNo: break; } if (ptr_align < abi_align) { if (elem_size >= ptr_align && elem_size % ptr_align == 0) { return_type = adjust_ptr_align(ira->codegen, return_type, ptr_align); } else { // can't get here because guaranteed elem_size >= abi_align zig_unreachable(); } } else { return_type = adjust_ptr_align(ira->codegen, return_type, abi_align); } } IrInstruction *result = ir_build_elem_ptr(&ira->new_irb, elem_ptr_instruction->base.scope, elem_ptr_instruction->base.source_node, array_ptr, casted_elem_index, safety_check_on, elem_ptr_instruction->ptr_len, elem_ptr_instruction->init_array_type); result->value.type = return_type; return result; } static IrInstruction *ir_analyze_container_member_access_inner(IrAnalyze *ira, ZigType *bare_struct_type, Buf *field_name, IrInstruction *source_instr, IrInstruction *container_ptr, ZigType *container_type) { if (!is_slice(bare_struct_type)) { ScopeDecls *container_scope = get_container_scope(bare_struct_type); assert(container_scope != nullptr); auto entry = container_scope->decl_table.maybe_get(field_name); Tld *tld = entry ? entry->value : nullptr; if (tld && tld->id == TldIdFn) { resolve_top_level_decl(ira->codegen, tld, source_instr->source_node, false); if (tld->resolution == TldResolutionInvalid) return ira->codegen->invalid_instruction; TldFn *tld_fn = (TldFn *)tld; ZigFn *fn_entry = tld_fn->fn_entry; if (type_is_invalid(fn_entry->type_entry)) return ira->codegen->invalid_instruction; IrInstruction *bound_fn_value = ir_build_const_bound_fn(&ira->new_irb, source_instr->scope, source_instr->source_node, fn_entry, container_ptr); return ir_get_ref(ira, source_instr, bound_fn_value, true, false); } } const char *prefix_name; if (is_slice(bare_struct_type)) { prefix_name = ""; } else if (bare_struct_type->id == ZigTypeIdStruct) { prefix_name = "struct "; } else if (bare_struct_type->id == ZigTypeIdEnum) { prefix_name = "enum "; } else if (bare_struct_type->id == ZigTypeIdUnion) { prefix_name = "union "; } else { prefix_name = ""; } ir_add_error_node(ira, source_instr->source_node, buf_sprintf("no member named '%s' in %s'%s'", buf_ptr(field_name), prefix_name, buf_ptr(&bare_struct_type->name))); return ira->codegen->invalid_instruction; } static IrInstruction *ir_analyze_struct_field_ptr(IrAnalyze *ira, IrInstruction *source_instr, TypeStructField *field, IrInstruction *struct_ptr, ZigType *struct_type, bool initializing) { switch (type_has_one_possible_value(ira->codegen, field->type_entry)) { case OnePossibleValueInvalid: return ira->codegen->invalid_instruction; case OnePossibleValueYes: { IrInstruction *elem = ir_const(ira, source_instr, field->type_entry); return ir_get_ref(ira, source_instr, elem, false, false); } case OnePossibleValueNo: break; } assert(struct_ptr->value.type->id == ZigTypeIdPointer); bool is_packed = (struct_type->data.structure.layout == ContainerLayoutPacked); uint32_t align_bytes = is_packed ? 1 : get_abi_alignment(ira->codegen, field->type_entry); uint32_t ptr_bit_offset = struct_ptr->value.type->data.pointer.bit_offset_in_host; uint32_t ptr_host_int_bytes = struct_ptr->value.type->data.pointer.host_int_bytes; uint32_t host_int_bytes_for_result_type = (ptr_host_int_bytes == 0) ? get_host_int_bytes(ira->codegen, struct_type, field) : ptr_host_int_bytes; bool is_const = struct_ptr->value.type->data.pointer.is_const; bool is_volatile = struct_ptr->value.type->data.pointer.is_volatile; ZigType *ptr_type = get_pointer_to_type_extra(ira->codegen, field->type_entry, is_const, is_volatile, PtrLenSingle, align_bytes, (uint32_t)(ptr_bit_offset + field->bit_offset_in_host), (uint32_t)host_int_bytes_for_result_type, false); if (instr_is_comptime(struct_ptr)) { ConstExprValue *ptr_val = ir_resolve_const(ira, struct_ptr, UndefBad); if (!ptr_val) return ira->codegen->invalid_instruction; if (ptr_val->data.x_ptr.special != ConstPtrSpecialHardCodedAddr) { ConstExprValue *struct_val = const_ptr_pointee(ira, ira->codegen, ptr_val, source_instr->source_node); if (struct_val == nullptr) return ira->codegen->invalid_instruction; if (type_is_invalid(struct_val->type)) return ira->codegen->invalid_instruction; if (initializing && struct_val->special == ConstValSpecialUndef) { struct_val->data.x_struct.fields = create_const_vals(struct_type->data.structure.src_field_count); struct_val->special = ConstValSpecialStatic; for (size_t i = 0; i < struct_type->data.structure.src_field_count; i += 1) { ConstExprValue *field_val = &struct_val->data.x_struct.fields[i]; field_val->special = ConstValSpecialUndef; field_val->type = struct_type->data.structure.fields[i].type_entry; field_val->parent.id = ConstParentIdStruct; field_val->parent.data.p_struct.struct_val = struct_val; field_val->parent.data.p_struct.field_index = i; } } IrInstruction *result; if (ptr_val->data.x_ptr.mut == ConstPtrMutInfer) { result = ir_build_struct_field_ptr(&ira->new_irb, source_instr->scope, source_instr->source_node, struct_ptr, field); result->value.type = ptr_type; result->value.special = ConstValSpecialStatic; } else { result = ir_const(ira, source_instr, ptr_type); } ConstExprValue *const_val = &result->value; const_val->data.x_ptr.special = ConstPtrSpecialBaseStruct; const_val->data.x_ptr.mut = ptr_val->data.x_ptr.mut; const_val->data.x_ptr.data.base_struct.struct_val = struct_val; const_val->data.x_ptr.data.base_struct.field_index = field->src_index; return result; } } IrInstruction *result = ir_build_struct_field_ptr(&ira->new_irb, source_instr->scope, source_instr->source_node, struct_ptr, field); result->value.type = ptr_type; return result; } static IrInstruction *ir_analyze_container_field_ptr(IrAnalyze *ira, Buf *field_name, IrInstruction *source_instr, IrInstruction *container_ptr, ZigType *container_type, bool initializing) { Error err; ZigType *bare_type = container_ref_type(container_type); if ((err = type_resolve(ira->codegen, bare_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; assert(container_ptr->value.type->id == ZigTypeIdPointer); if (bare_type->id == ZigTypeIdStruct) { TypeStructField *field = find_struct_type_field(bare_type, field_name); if (field != nullptr) { return ir_analyze_struct_field_ptr(ira, source_instr, field, container_ptr, bare_type, initializing); } else { return ir_analyze_container_member_access_inner(ira, bare_type, field_name, source_instr, container_ptr, container_type); } } if (bare_type->id == ZigTypeIdEnum) { return ir_analyze_container_member_access_inner(ira, bare_type, field_name, source_instr, container_ptr, container_type); } if (bare_type->id == ZigTypeIdUnion) { bool is_const = container_ptr->value.type->data.pointer.is_const; bool is_volatile = container_ptr->value.type->data.pointer.is_volatile; TypeUnionField *field = find_union_type_field(bare_type, field_name); if (field == nullptr) { return ir_analyze_container_member_access_inner(ira, bare_type, field_name, source_instr, container_ptr, container_type); } ZigType *ptr_type = get_pointer_to_type_extra(ira->codegen, field->type_entry, is_const, is_volatile, PtrLenSingle, 0, 0, 0, false); if (instr_is_comptime(container_ptr)) { ConstExprValue *ptr_val = ir_resolve_const(ira, container_ptr, UndefBad); if (!ptr_val) return ira->codegen->invalid_instruction; if (ptr_val->data.x_ptr.special != ConstPtrSpecialHardCodedAddr) { ConstExprValue *union_val = const_ptr_pointee(ira, ira->codegen, ptr_val, source_instr->source_node); if (union_val == nullptr) return ira->codegen->invalid_instruction; if (type_is_invalid(union_val->type)) return ira->codegen->invalid_instruction; if (initializing) { ConstExprValue *payload_val = create_const_vals(1); payload_val->special = ConstValSpecialUndef; payload_val->type = field->type_entry; payload_val->parent.id = ConstParentIdUnion; payload_val->parent.data.p_union.union_val = union_val; union_val->special = ConstValSpecialStatic; bigint_init_bigint(&union_val->data.x_union.tag, &field->enum_field->value); union_val->data.x_union.payload = payload_val; } else { TypeUnionField *actual_field = find_union_field_by_tag(bare_type, &union_val->data.x_union.tag); if (actual_field == nullptr) zig_unreachable(); if (field != actual_field) { ir_add_error_node(ira, source_instr->source_node, buf_sprintf("accessing union field '%s' while field '%s' is set", buf_ptr(field_name), buf_ptr(actual_field->name))); return ira->codegen->invalid_instruction; } } ConstExprValue *payload_val = union_val->data.x_union.payload; IrInstruction *result; if (ptr_val->data.x_ptr.mut == ConstPtrMutInfer) { result = ir_build_union_field_ptr(&ira->new_irb, source_instr->scope, source_instr->source_node, container_ptr, field, true, initializing); result->value.type = ptr_type; result->value.special = ConstValSpecialStatic; } else { result = ir_const(ira, source_instr, ptr_type); } ConstExprValue *const_val = &result->value; const_val->data.x_ptr.special = ConstPtrSpecialRef; const_val->data.x_ptr.mut = container_ptr->value.data.x_ptr.mut; const_val->data.x_ptr.data.ref.pointee = payload_val; return result; } } IrInstruction *result = ir_build_union_field_ptr(&ira->new_irb, source_instr->scope, source_instr->source_node, container_ptr, field, true, initializing); result->value.type = ptr_type; return result; } zig_unreachable(); } static void add_link_lib_symbol(IrAnalyze *ira, Buf *lib_name, Buf *symbol_name, AstNode *source_node) { bool is_libc = target_is_libc_lib_name(ira->codegen->zig_target, buf_ptr(lib_name)); if (is_libc && ira->codegen->libc_link_lib == nullptr && !ira->codegen->reported_bad_link_libc_error) { ir_add_error_node(ira, source_node, buf_sprintf("dependency on library c must be explicitly specified in the build command")); ira->codegen->reported_bad_link_libc_error = true; } LinkLib *link_lib = add_link_lib(ira->codegen, lib_name); for (size_t i = 0; i < link_lib->symbols.length; i += 1) { Buf *existing_symbol_name = link_lib->symbols.at(i); if (buf_eql_buf(existing_symbol_name, symbol_name)) { return; } } if (!is_libc && !target_is_wasm(ira->codegen->zig_target) && !ira->codegen->have_pic && !ira->codegen->reported_bad_link_libc_error) { ErrorMsg *msg = ir_add_error_node(ira, source_node, buf_sprintf("dependency on dynamic library '%s' requires enabling Position Independent Code", buf_ptr(lib_name))); add_error_note(ira->codegen, msg, source_node, buf_sprintf("fixed by `--library %s` or `-fPIC`", buf_ptr(lib_name))); ira->codegen->reported_bad_link_libc_error = true; } for (size_t i = 0; i < ira->codegen->forbidden_libs.length; i += 1) { Buf *forbidden_lib_name = ira->codegen->forbidden_libs.at(i); if (buf_eql_buf(lib_name, forbidden_lib_name)) { ir_add_error_node(ira, source_node, buf_sprintf("linking against forbidden library '%s'", buf_ptr(symbol_name))); } } link_lib->symbols.append(symbol_name); } static IrInstruction *ir_error_dependency_loop(IrAnalyze *ira, IrInstruction *source_instr) { ir_add_error(ira, source_instr, buf_sprintf("dependency loop detected")); return ira->codegen->invalid_instruction; } static IrInstruction *ir_analyze_decl_ref(IrAnalyze *ira, IrInstruction *source_instruction, Tld *tld) { resolve_top_level_decl(ira->codegen, tld, source_instruction->source_node, true); if (tld->resolution == TldResolutionInvalid) { return ira->codegen->invalid_instruction; } switch (tld->id) { case TldIdContainer: case TldIdCompTime: case TldIdUsingNamespace: zig_unreachable(); case TldIdVar: { TldVar *tld_var = (TldVar *)tld; ZigVar *var = tld_var->var; if (var == nullptr) { return ir_error_dependency_loop(ira, source_instruction); } if (tld_var->extern_lib_name != nullptr) { add_link_lib_symbol(ira, tld_var->extern_lib_name, &var->name, source_instruction->source_node); } return ir_get_var_ptr(ira, source_instruction, var); } case TldIdFn: { TldFn *tld_fn = (TldFn *)tld; ZigFn *fn_entry = tld_fn->fn_entry; assert(fn_entry->type_entry); if (type_is_invalid(fn_entry->type_entry)) return ira->codegen->invalid_instruction; if (tld_fn->extern_lib_name != nullptr) { add_link_lib_symbol(ira, tld_fn->extern_lib_name, &fn_entry->symbol_name, source_instruction->source_node); } IrInstruction *fn_inst = ir_create_const_fn(&ira->new_irb, source_instruction->scope, source_instruction->source_node, fn_entry); return ir_get_ref(ira, source_instruction, fn_inst, true, false); } } zig_unreachable(); } static ErrorTableEntry *find_err_table_entry(ZigType *err_set_type, Buf *field_name) { assert(err_set_type->id == ZigTypeIdErrorSet); for (uint32_t i = 0; i < err_set_type->data.error_set.err_count; i += 1) { ErrorTableEntry *err_table_entry = err_set_type->data.error_set.errors[i]; if (buf_eql_buf(&err_table_entry->name, field_name)) { return err_table_entry; } } return nullptr; } static IrInstruction *ir_analyze_instruction_field_ptr(IrAnalyze *ira, IrInstructionFieldPtr *field_ptr_instruction) { Error err; IrInstruction *container_ptr = field_ptr_instruction->container_ptr->child; if (type_is_invalid(container_ptr->value.type)) return ira->codegen->invalid_instruction; ZigType *container_type = container_ptr->value.type->data.pointer.child_type; Buf *field_name = field_ptr_instruction->field_name_buffer; if (!field_name) { IrInstruction *field_name_expr = field_ptr_instruction->field_name_expr->child; field_name = ir_resolve_str(ira, field_name_expr); if (!field_name) return ira->codegen->invalid_instruction; } AstNode *source_node = field_ptr_instruction->base.source_node; if (type_is_invalid(container_type)) { return ira->codegen->invalid_instruction; } else if (is_slice(container_type) || is_container_ref(container_type)) { assert(container_ptr->value.type->id == ZigTypeIdPointer); if (container_type->id == ZigTypeIdPointer) { ZigType *bare_type = container_ref_type(container_type); IrInstruction *container_child = ir_get_deref(ira, &field_ptr_instruction->base, container_ptr, nullptr); IrInstruction *result = ir_analyze_container_field_ptr(ira, field_name, &field_ptr_instruction->base, container_child, bare_type, field_ptr_instruction->initializing); return result; } else { IrInstruction *result = ir_analyze_container_field_ptr(ira, field_name, &field_ptr_instruction->base, container_ptr, container_type, field_ptr_instruction->initializing); return result; } } else if (is_array_ref(container_type) && !field_ptr_instruction->initializing) { if (buf_eql_str(field_name, "len")) { ConstExprValue *len_val = create_const_vals(1); if (container_type->id == ZigTypeIdPointer) { init_const_usize(ira->codegen, len_val, container_type->data.pointer.child_type->data.array.len); } else { init_const_usize(ira->codegen, len_val, container_type->data.array.len); } ZigType *usize = ira->codegen->builtin_types.entry_usize; bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, len_val, usize, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else { ir_add_error_node(ira, source_node, buf_sprintf("no member named '%s' in '%s'", buf_ptr(field_name), buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } } else if (container_type->id == ZigTypeIdArgTuple) { ConstExprValue *container_ptr_val = ir_resolve_const(ira, container_ptr, UndefBad); if (!container_ptr_val) return ira->codegen->invalid_instruction; assert(container_ptr->value.type->id == ZigTypeIdPointer); ConstExprValue *child_val = const_ptr_pointee(ira, ira->codegen, container_ptr_val, source_node); if (child_val == nullptr) return ira->codegen->invalid_instruction; if (buf_eql_str(field_name, "len")) { ConstExprValue *len_val = create_const_vals(1); size_t len = child_val->data.x_arg_tuple.end_index - child_val->data.x_arg_tuple.start_index; init_const_usize(ira->codegen, len_val, len); ZigType *usize = ira->codegen->builtin_types.entry_usize; bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, len_val, usize, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else { ir_add_error_node(ira, source_node, buf_sprintf("no member named '%s' in '%s'", buf_ptr(field_name), buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } } else if (container_type->id == ZigTypeIdMetaType) { ConstExprValue *container_ptr_val = ir_resolve_const(ira, container_ptr, UndefBad); if (!container_ptr_val) return ira->codegen->invalid_instruction; assert(container_ptr->value.type->id == ZigTypeIdPointer); ConstExprValue *child_val = const_ptr_pointee(ira, ira->codegen, container_ptr_val, source_node); if (child_val == nullptr) return ira->codegen->invalid_instruction; ZigType *child_type = child_val->data.x_type; if (type_is_invalid(child_type)) { return ira->codegen->invalid_instruction; } else if (is_container(child_type)) { if (child_type->id == ZigTypeIdEnum) { if ((err = type_resolve(ira->codegen, child_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; TypeEnumField *field = find_enum_type_field(child_type, field_name); if (field) { bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_enum(child_type, &field->value), child_type, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } } ScopeDecls *container_scope = get_container_scope(child_type); Tld *tld = find_container_decl(ira->codegen, container_scope, field_name); if (tld) { if (tld->visib_mod == VisibModPrivate && tld->import != get_scope_import(field_ptr_instruction->base.scope)) { ErrorMsg *msg = ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("'%s' is private", buf_ptr(field_name))); add_error_note(ira->codegen, msg, tld->source_node, buf_sprintf("declared here")); return ira->codegen->invalid_instruction; } return ir_analyze_decl_ref(ira, &field_ptr_instruction->base, tld); } if (child_type->id == ZigTypeIdUnion && (child_type->data.unionation.decl_node->data.container_decl.init_arg_expr != nullptr || child_type->data.unionation.decl_node->data.container_decl.auto_enum)) { if ((err = type_resolve(ira->codegen, child_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; TypeUnionField *field = find_union_type_field(child_type, field_name); if (field) { ZigType *enum_type = child_type->data.unionation.tag_type; bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_enum(enum_type, &field->enum_field->value), enum_type, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } } const char *container_name = (child_type == ira->codegen->root_import) ? "root source file" : buf_ptr(buf_sprintf("container '%s'", buf_ptr(&child_type->name))); ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("%s has no member called '%s'", container_name, buf_ptr(field_name))); return ira->codegen->invalid_instruction; } else if (child_type->id == ZigTypeIdErrorSet) { ErrorTableEntry *err_entry; ZigType *err_set_type; if (type_is_global_error_set(child_type)) { auto existing_entry = ira->codegen->error_table.maybe_get(field_name); if (existing_entry) { err_entry = existing_entry->value; } else { err_entry = allocate(1); err_entry->decl_node = field_ptr_instruction->base.source_node; buf_init_from_buf(&err_entry->name, field_name); size_t error_value_count = ira->codegen->errors_by_index.length; assert((uint32_t)error_value_count < (((uint32_t)1) << (uint32_t)ira->codegen->err_tag_type->data.integral.bit_count)); err_entry->value = error_value_count; ira->codegen->errors_by_index.append(err_entry); ira->codegen->error_table.put(field_name, err_entry); } if (err_entry->set_with_only_this_in_it == nullptr) { err_entry->set_with_only_this_in_it = make_err_set_with_one_item(ira->codegen, field_ptr_instruction->base.scope, field_ptr_instruction->base.source_node, err_entry); } err_set_type = err_entry->set_with_only_this_in_it; } else { if (!resolve_inferred_error_set(ira->codegen, child_type, field_ptr_instruction->base.source_node)) { return ira->codegen->invalid_instruction; } err_entry = find_err_table_entry(child_type, field_name); if (err_entry == nullptr) { ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("no error named '%s' in '%s'", buf_ptr(field_name), buf_ptr(&child_type->name))); return ira->codegen->invalid_instruction; } err_set_type = child_type; } ConstExprValue *const_val = create_const_vals(1); const_val->special = ConstValSpecialStatic; const_val->type = err_set_type; const_val->data.x_err_set = err_entry; bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, const_val, err_set_type, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else if (child_type->id == ZigTypeIdInt) { if (buf_eql_str(field_name, "bit_count")) { bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_unsigned_negative(ira->codegen->builtin_types.entry_num_lit_int, child_type->data.integral.bit_count, false), ira->codegen->builtin_types.entry_num_lit_int, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else if (buf_eql_str(field_name, "is_signed")) { bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_bool(ira->codegen, child_type->data.integral.is_signed), ira->codegen->builtin_types.entry_bool, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else { ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("type '%s' has no member called '%s'", buf_ptr(&child_type->name), buf_ptr(field_name))); return ira->codegen->invalid_instruction; } } else if (child_type->id == ZigTypeIdFloat) { if (buf_eql_str(field_name, "bit_count")) { bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_unsigned_negative(ira->codegen->builtin_types.entry_num_lit_int, child_type->data.floating.bit_count, false), ira->codegen->builtin_types.entry_num_lit_int, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else { ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("type '%s' has no member called '%s'", buf_ptr(&child_type->name), buf_ptr(field_name))); return ira->codegen->invalid_instruction; } } else if (child_type->id == ZigTypeIdPointer) { if (buf_eql_str(field_name, "Child")) { bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_type(ira->codegen, child_type->data.pointer.child_type), ira->codegen->builtin_types.entry_type, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else if (buf_eql_str(field_name, "alignment")) { bool ptr_is_const = true; bool ptr_is_volatile = false; if ((err = type_resolve(ira->codegen, child_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) { return ira->codegen->invalid_instruction; } return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_unsigned_negative(ira->codegen->builtin_types.entry_num_lit_int, get_ptr_align(ira->codegen, child_type), false), ira->codegen->builtin_types.entry_num_lit_int, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else { ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("type '%s' has no member called '%s'", buf_ptr(&child_type->name), buf_ptr(field_name))); return ira->codegen->invalid_instruction; } } else if (child_type->id == ZigTypeIdArray) { if (buf_eql_str(field_name, "Child")) { bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_type(ira->codegen, child_type->data.array.child_type), ira->codegen->builtin_types.entry_type, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else if (buf_eql_str(field_name, "len")) { bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_unsigned_negative(ira->codegen->builtin_types.entry_num_lit_int, child_type->data.array.len, false), ira->codegen->builtin_types.entry_num_lit_int, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else { ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("type '%s' has no member called '%s'", buf_ptr(&child_type->name), buf_ptr(field_name))); return ira->codegen->invalid_instruction; } } else if (child_type->id == ZigTypeIdErrorUnion) { if (buf_eql_str(field_name, "Payload")) { bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_type(ira->codegen, child_type->data.error_union.payload_type), ira->codegen->builtin_types.entry_type, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else if (buf_eql_str(field_name, "ErrorSet")) { bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_type(ira->codegen, child_type->data.error_union.err_set_type), ira->codegen->builtin_types.entry_type, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else { ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("type '%s' has no member called '%s'", buf_ptr(&child_type->name), buf_ptr(field_name))); return ira->codegen->invalid_instruction; } } else if (child_type->id == ZigTypeIdOptional) { if (buf_eql_str(field_name, "Child")) { bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_type(ira->codegen, child_type->data.maybe.child_type), ira->codegen->builtin_types.entry_type, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else { ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("type '%s' has no member called '%s'", buf_ptr(&child_type->name), buf_ptr(field_name))); return ira->codegen->invalid_instruction; } } else if (child_type->id == ZigTypeIdFn) { if (buf_eql_str(field_name, "ReturnType")) { if (child_type->data.fn.fn_type_id.return_type == nullptr) { // Return type can only ever be null, if the function is generic assert(child_type->data.fn.is_generic); ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("ReturnType has not been resolved because '%s' is generic", buf_ptr(&child_type->name))); return ira->codegen->invalid_instruction; } bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_type(ira->codegen, child_type->data.fn.fn_type_id.return_type), ira->codegen->builtin_types.entry_type, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else if (buf_eql_str(field_name, "is_var_args")) { bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_bool(ira->codegen, child_type->data.fn.fn_type_id.is_var_args), ira->codegen->builtin_types.entry_bool, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else if (buf_eql_str(field_name, "arg_count")) { bool ptr_is_const = true; bool ptr_is_volatile = false; return ir_get_const_ptr(ira, &field_ptr_instruction->base, create_const_usize(ira->codegen, child_type->data.fn.fn_type_id.param_count), ira->codegen->builtin_types.entry_usize, ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile, 0); } else { ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("type '%s' has no member called '%s'", buf_ptr(&child_type->name), buf_ptr(field_name))); return ira->codegen->invalid_instruction; } } else { ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("type '%s' does not support field access", buf_ptr(&child_type->name))); return ira->codegen->invalid_instruction; } } else if (field_ptr_instruction->initializing) { ir_add_error(ira, &field_ptr_instruction->base, buf_sprintf("type '%s' does not support struct initialization syntax", buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } else { ir_add_error_node(ira, field_ptr_instruction->base.source_node, buf_sprintf("type '%s' does not support field access", buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } } static IrInstruction *ir_analyze_instruction_store_ptr(IrAnalyze *ira, IrInstructionStorePtr *instruction) { IrInstruction *ptr = instruction->ptr->child; if (type_is_invalid(ptr->value.type)) return ira->codegen->invalid_instruction; IrInstruction *value = instruction->value->child; if (type_is_invalid(value->value.type)) return ira->codegen->invalid_instruction; return ir_analyze_store_ptr(ira, &instruction->base, ptr, value, instruction->allow_write_through_const); } static IrInstruction *ir_analyze_instruction_load_ptr(IrAnalyze *ira, IrInstructionLoadPtr *instruction) { IrInstruction *ptr = instruction->ptr->child; if (type_is_invalid(ptr->value.type)) return ira->codegen->invalid_instruction; return ir_get_deref(ira, &instruction->base, ptr, nullptr); } static IrInstruction *ir_analyze_instruction_typeof(IrAnalyze *ira, IrInstructionTypeOf *typeof_instruction) { IrInstruction *expr_value = typeof_instruction->value->child; ZigType *type_entry = expr_value->value.type; if (type_is_invalid(type_entry)) return ira->codegen->invalid_instruction; return ir_const_type(ira, &typeof_instruction->base, type_entry); } static IrInstruction *ir_analyze_instruction_set_cold(IrAnalyze *ira, IrInstructionSetCold *instruction) { if (ira->new_irb.exec->is_inline) { // ignore setCold when running functions at compile time return ir_const_void(ira, &instruction->base); } IrInstruction *is_cold_value = instruction->is_cold->child; bool want_cold; if (!ir_resolve_bool(ira, is_cold_value, &want_cold)) return ira->codegen->invalid_instruction; ZigFn *fn_entry = scope_fn_entry(instruction->base.scope); if (fn_entry == nullptr) { ir_add_error(ira, &instruction->base, buf_sprintf("@setCold outside function")); return ira->codegen->invalid_instruction; } if (fn_entry->set_cold_node != nullptr) { ErrorMsg *msg = ir_add_error(ira, &instruction->base, buf_sprintf("cold set twice in same function")); add_error_note(ira->codegen, msg, fn_entry->set_cold_node, buf_sprintf("first set here")); return ira->codegen->invalid_instruction; } fn_entry->set_cold_node = instruction->base.source_node; fn_entry->is_cold = want_cold; return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_set_runtime_safety(IrAnalyze *ira, IrInstructionSetRuntimeSafety *set_runtime_safety_instruction) { if (ira->new_irb.exec->is_inline) { // ignore setRuntimeSafety when running functions at compile time return ir_const_void(ira, &set_runtime_safety_instruction->base); } bool *safety_off_ptr; AstNode **safety_set_node_ptr; Scope *scope = set_runtime_safety_instruction->base.scope; while (scope != nullptr) { if (scope->id == ScopeIdBlock) { ScopeBlock *block_scope = (ScopeBlock *)scope; safety_off_ptr = &block_scope->safety_off; safety_set_node_ptr = &block_scope->safety_set_node; break; } else if (scope->id == ScopeIdFnDef) { ScopeFnDef *def_scope = (ScopeFnDef *)scope; ZigFn *target_fn = def_scope->fn_entry; assert(target_fn->def_scope != nullptr); safety_off_ptr = &target_fn->def_scope->safety_off; safety_set_node_ptr = &target_fn->def_scope->safety_set_node; break; } else if (scope->id == ScopeIdDecls) { ScopeDecls *decls_scope = (ScopeDecls *)scope; safety_off_ptr = &decls_scope->safety_off; safety_set_node_ptr = &decls_scope->safety_set_node; break; } else { scope = scope->parent; continue; } } assert(scope != nullptr); IrInstruction *safety_on_value = set_runtime_safety_instruction->safety_on->child; bool want_runtime_safety; if (!ir_resolve_bool(ira, safety_on_value, &want_runtime_safety)) return ira->codegen->invalid_instruction; AstNode *source_node = set_runtime_safety_instruction->base.source_node; if (*safety_set_node_ptr) { ErrorMsg *msg = ir_add_error_node(ira, source_node, buf_sprintf("runtime safety set twice for same scope")); add_error_note(ira->codegen, msg, *safety_set_node_ptr, buf_sprintf("first set here")); return ira->codegen->invalid_instruction; } *safety_set_node_ptr = source_node; *safety_off_ptr = !want_runtime_safety; return ir_const_void(ira, &set_runtime_safety_instruction->base); } static IrInstruction *ir_analyze_instruction_set_float_mode(IrAnalyze *ira, IrInstructionSetFloatMode *instruction) { if (ira->new_irb.exec->is_inline) { // ignore setFloatMode when running functions at compile time return ir_const_void(ira, &instruction->base); } bool *fast_math_on_ptr; AstNode **fast_math_set_node_ptr; Scope *scope = instruction->base.scope; while (scope != nullptr) { if (scope->id == ScopeIdBlock) { ScopeBlock *block_scope = (ScopeBlock *)scope; fast_math_on_ptr = &block_scope->fast_math_on; fast_math_set_node_ptr = &block_scope->fast_math_set_node; break; } else if (scope->id == ScopeIdFnDef) { ScopeFnDef *def_scope = (ScopeFnDef *)scope; ZigFn *target_fn = def_scope->fn_entry; assert(target_fn->def_scope != nullptr); fast_math_on_ptr = &target_fn->def_scope->fast_math_on; fast_math_set_node_ptr = &target_fn->def_scope->fast_math_set_node; break; } else if (scope->id == ScopeIdDecls) { ScopeDecls *decls_scope = (ScopeDecls *)scope; fast_math_on_ptr = &decls_scope->fast_math_on; fast_math_set_node_ptr = &decls_scope->fast_math_set_node; break; } else { scope = scope->parent; continue; } } assert(scope != nullptr); IrInstruction *float_mode_value = instruction->mode_value->child; FloatMode float_mode_scalar; if (!ir_resolve_float_mode(ira, float_mode_value, &float_mode_scalar)) return ira->codegen->invalid_instruction; AstNode *source_node = instruction->base.source_node; if (*fast_math_set_node_ptr) { ErrorMsg *msg = ir_add_error_node(ira, source_node, buf_sprintf("float mode set twice for same scope")); add_error_note(ira->codegen, msg, *fast_math_set_node_ptr, buf_sprintf("first set here")); return ira->codegen->invalid_instruction; } *fast_math_set_node_ptr = source_node; *fast_math_on_ptr = (float_mode_scalar == FloatModeOptimized); return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_any_frame_type(IrAnalyze *ira, IrInstructionAnyFrameType *instruction) { ZigType *payload_type = nullptr; if (instruction->payload_type != nullptr) { payload_type = ir_resolve_type(ira, instruction->payload_type->child); if (type_is_invalid(payload_type)) return ira->codegen->invalid_instruction; } ZigType *any_frame_type = get_any_frame_type(ira->codegen, payload_type); return ir_const_type(ira, &instruction->base, any_frame_type); } static IrInstruction *ir_analyze_instruction_slice_type(IrAnalyze *ira, IrInstructionSliceType *slice_type_instruction) { IrInstruction *result = ir_const(ira, &slice_type_instruction->base, ira->codegen->builtin_types.entry_type); result->value.special = ConstValSpecialLazy; LazyValueSliceType *lazy_slice_type = allocate(1); result->value.data.x_lazy = &lazy_slice_type->base; lazy_slice_type->base.id = LazyValueIdSliceType; lazy_slice_type->base.exec = ira->new_irb.exec; if (slice_type_instruction->align_value != nullptr) { lazy_slice_type->align_val = ir_resolve_const(ira, slice_type_instruction->align_value->child, LazyOk); if (lazy_slice_type->align_val == nullptr) return ira->codegen->invalid_instruction; } lazy_slice_type->elem_type = ir_resolve_type(ira, slice_type_instruction->child_type->child); if (type_is_invalid(lazy_slice_type->elem_type)) return ira->codegen->invalid_instruction; lazy_slice_type->is_const = slice_type_instruction->is_const; lazy_slice_type->is_volatile = slice_type_instruction->is_volatile; lazy_slice_type->is_allowzero = slice_type_instruction->is_allow_zero; switch (lazy_slice_type->elem_type->id) { case ZigTypeIdInvalid: // handled above zig_unreachable(); case ZigTypeIdUnreachable: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdArgTuple: case ZigTypeIdOpaque: ir_add_error_node(ira, slice_type_instruction->base.source_node, buf_sprintf("slice of type '%s' not allowed", buf_ptr(&lazy_slice_type->elem_type->name))); return ira->codegen->invalid_instruction; case ZigTypeIdMetaType: case ZigTypeIdVoid: case ZigTypeIdBool: case ZigTypeIdInt: case ZigTypeIdFloat: case ZigTypeIdPointer: case ZigTypeIdArray: case ZigTypeIdStruct: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdOptional: case ZigTypeIdErrorUnion: case ZigTypeIdErrorSet: case ZigTypeIdEnum: case ZigTypeIdUnion: case ZigTypeIdFn: case ZigTypeIdBoundFn: case ZigTypeIdVector: case ZigTypeIdFnFrame: case ZigTypeIdAnyFrame: break; } return result; } static IrInstruction *ir_analyze_instruction_global_asm(IrAnalyze *ira, IrInstructionGlobalAsm *instruction) { buf_append_char(&ira->codegen->global_asm, '\n'); buf_append_buf(&ira->codegen->global_asm, instruction->asm_code); return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_asm(IrAnalyze *ira, IrInstructionAsm *asm_instruction) { assert(asm_instruction->base.source_node->type == NodeTypeAsmExpr); AstNodeAsmExpr *asm_expr = &asm_instruction->base.source_node->data.asm_expr; if (!ir_emit_global_runtime_side_effect(ira, &asm_instruction->base)) return ira->codegen->invalid_instruction; // TODO validate the output types and variable types IrInstruction **input_list = allocate(asm_expr->input_list.length); IrInstruction **output_types = allocate(asm_expr->output_list.length); ZigType *return_type = ira->codegen->builtin_types.entry_void; for (size_t i = 0; i < asm_expr->output_list.length; i += 1) { AsmOutput *asm_output = asm_expr->output_list.at(i); if (asm_output->return_type) { output_types[i] = asm_instruction->output_types[i]->child; return_type = ir_resolve_type(ira, output_types[i]); if (type_is_invalid(return_type)) return ira->codegen->invalid_instruction; } } for (size_t i = 0; i < asm_expr->input_list.length; i += 1) { IrInstruction *const input_value = asm_instruction->input_list[i]->child; if (type_is_invalid(input_value->value.type)) return ira->codegen->invalid_instruction; if (instr_is_comptime(input_value) && (input_value->value.type->id == ZigTypeIdComptimeInt || input_value->value.type->id == ZigTypeIdComptimeFloat)) { ir_add_error_node(ira, input_value->source_node, buf_sprintf("expected sized integer or sized float, found %s", buf_ptr(&input_value->value.type->name))); return ira->codegen->invalid_instruction; } input_list[i] = input_value; } IrInstruction *result = ir_build_asm(&ira->new_irb, asm_instruction->base.scope, asm_instruction->base.source_node, asm_instruction->asm_template, asm_instruction->token_list, asm_instruction->token_list_len, input_list, output_types, asm_instruction->output_vars, asm_instruction->return_count, asm_instruction->has_side_effects); result->value.type = return_type; return result; } static IrInstruction *ir_analyze_instruction_array_type(IrAnalyze *ira, IrInstructionArrayType *array_type_instruction) { Error err; IrInstruction *size_value = array_type_instruction->size->child; uint64_t size; if (!ir_resolve_usize(ira, size_value, &size)) return ira->codegen->invalid_instruction; IrInstruction *child_type_value = array_type_instruction->child_type->child; ZigType *child_type = ir_resolve_type(ira, child_type_value); if (type_is_invalid(child_type)) return ira->codegen->invalid_instruction; switch (child_type->id) { case ZigTypeIdInvalid: // handled above zig_unreachable(); case ZigTypeIdUnreachable: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdArgTuple: case ZigTypeIdOpaque: ir_add_error_node(ira, array_type_instruction->base.source_node, buf_sprintf("array of type '%s' not allowed", buf_ptr(&child_type->name))); return ira->codegen->invalid_instruction; case ZigTypeIdMetaType: case ZigTypeIdVoid: case ZigTypeIdBool: case ZigTypeIdInt: case ZigTypeIdFloat: case ZigTypeIdPointer: case ZigTypeIdArray: case ZigTypeIdStruct: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdOptional: case ZigTypeIdErrorUnion: case ZigTypeIdErrorSet: case ZigTypeIdEnum: case ZigTypeIdUnion: case ZigTypeIdFn: case ZigTypeIdBoundFn: case ZigTypeIdVector: case ZigTypeIdFnFrame: case ZigTypeIdAnyFrame: { if ((err = type_resolve(ira->codegen, child_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; ZigType *result_type = get_array_type(ira->codegen, child_type, size); return ir_const_type(ira, &array_type_instruction->base, result_type); } } zig_unreachable(); } static IrInstruction *ir_analyze_instruction_size_of(IrAnalyze *ira, IrInstructionSizeOf *size_of_instruction) { Error err; IrInstruction *type_value = size_of_instruction->type_value->child; ZigType *type_entry = ir_resolve_type(ira, type_value); if ((err = type_resolve(ira->codegen, type_entry, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; switch (type_entry->id) { case ZigTypeIdInvalid: // handled above zig_unreachable(); case ZigTypeIdUnreachable: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdOpaque: ir_add_error_node(ira, type_value->source_node, buf_sprintf("no size available for type '%s'", buf_ptr(&type_entry->name))); return ira->codegen->invalid_instruction; case ZigTypeIdMetaType: case ZigTypeIdEnumLiteral: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdVoid: case ZigTypeIdBool: case ZigTypeIdInt: case ZigTypeIdFloat: case ZigTypeIdPointer: case ZigTypeIdArray: case ZigTypeIdStruct: case ZigTypeIdOptional: case ZigTypeIdErrorUnion: case ZigTypeIdErrorSet: case ZigTypeIdEnum: case ZigTypeIdUnion: case ZigTypeIdFn: case ZigTypeIdVector: case ZigTypeIdFnFrame: case ZigTypeIdAnyFrame: { uint64_t size_in_bytes = type_size(ira->codegen, type_entry); return ir_const_unsigned(ira, &size_of_instruction->base, size_in_bytes); } } zig_unreachable(); } static IrInstruction *ir_analyze_test_non_null(IrAnalyze *ira, IrInstruction *source_inst, IrInstruction *value) { ZigType *type_entry = value->value.type; if (type_entry->id == ZigTypeIdPointer && type_entry->data.pointer.allow_zero) { if (instr_is_comptime(value)) { ConstExprValue *c_ptr_val = ir_resolve_const(ira, value, UndefOk); if (c_ptr_val == nullptr) return ira->codegen->invalid_instruction; if (c_ptr_val->special == ConstValSpecialUndef) return ir_const_undef(ira, source_inst, ira->codegen->builtin_types.entry_bool); bool is_null = c_ptr_val->data.x_ptr.special == ConstPtrSpecialNull || (c_ptr_val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr && c_ptr_val->data.x_ptr.data.hard_coded_addr.addr == 0); return ir_const_bool(ira, source_inst, !is_null); } IrInstruction *result = ir_build_test_nonnull(&ira->new_irb, source_inst->scope, source_inst->source_node, value); result->value.type = ira->codegen->builtin_types.entry_bool; return result; } else if (type_entry->id == ZigTypeIdOptional) { if (instr_is_comptime(value)) { ConstExprValue *maybe_val = ir_resolve_const(ira, value, UndefOk); if (maybe_val == nullptr) return ira->codegen->invalid_instruction; if (maybe_val->special == ConstValSpecialUndef) return ir_const_undef(ira, source_inst, ira->codegen->builtin_types.entry_bool); return ir_const_bool(ira, source_inst, !optional_value_is_null(maybe_val)); } IrInstruction *result = ir_build_test_nonnull(&ira->new_irb, source_inst->scope, source_inst->source_node, value); result->value.type = ira->codegen->builtin_types.entry_bool; return result; } else if (type_entry->id == ZigTypeIdNull) { return ir_const_bool(ira, source_inst, false); } else { return ir_const_bool(ira, source_inst, true); } } static IrInstruction *ir_analyze_instruction_test_non_null(IrAnalyze *ira, IrInstructionTestNonNull *instruction) { IrInstruction *value = instruction->value->child; if (type_is_invalid(value->value.type)) return ira->codegen->invalid_instruction; return ir_analyze_test_non_null(ira, &instruction->base, value); } static IrInstruction *ir_analyze_unwrap_optional_payload(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *base_ptr, bool safety_check_on, bool initializing) { ZigType *ptr_type = base_ptr->value.type; assert(ptr_type->id == ZigTypeIdPointer); ZigType *type_entry = ptr_type->data.pointer.child_type; if (type_is_invalid(type_entry)) return ira->codegen->invalid_instruction; if (type_entry->id == ZigTypeIdPointer && type_entry->data.pointer.ptr_len == PtrLenC) { if (instr_is_comptime(base_ptr)) { ConstExprValue *val = ir_resolve_const(ira, base_ptr, UndefBad); if (!val) return ira->codegen->invalid_instruction; if (val->data.x_ptr.mut != ConstPtrMutRuntimeVar) { ConstExprValue *c_ptr_val = const_ptr_pointee(ira, ira->codegen, val, source_instr->source_node); if (c_ptr_val == nullptr) return ira->codegen->invalid_instruction; bool is_null = c_ptr_val->data.x_ptr.special == ConstPtrSpecialNull || (c_ptr_val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr && c_ptr_val->data.x_ptr.data.hard_coded_addr.addr == 0); if (is_null) { ir_add_error(ira, source_instr, buf_sprintf("unable to unwrap null")); return ira->codegen->invalid_instruction; } return base_ptr; } } if (!safety_check_on) return base_ptr; IrInstruction *c_ptr_val = ir_get_deref(ira, source_instr, base_ptr, nullptr); ir_build_assert_non_null(ira, source_instr, c_ptr_val); return base_ptr; } if (type_entry->id != ZigTypeIdOptional) { ir_add_error_node(ira, base_ptr->source_node, buf_sprintf("expected optional type, found '%s'", buf_ptr(&type_entry->name))); return ira->codegen->invalid_instruction; } ZigType *child_type = type_entry->data.maybe.child_type; ZigType *result_type = get_pointer_to_type_extra(ira->codegen, child_type, ptr_type->data.pointer.is_const, ptr_type->data.pointer.is_volatile, PtrLenSingle, 0, 0, 0, false); bool same_comptime_repr = types_have_same_zig_comptime_repr(type_entry, child_type); if (instr_is_comptime(base_ptr)) { ConstExprValue *ptr_val = ir_resolve_const(ira, base_ptr, UndefBad); if (!ptr_val) return ira->codegen->invalid_instruction; if (ptr_val->data.x_ptr.mut != ConstPtrMutRuntimeVar) { ConstExprValue *optional_val = const_ptr_pointee(ira, ira->codegen, ptr_val, source_instr->source_node); if (optional_val == nullptr) return ira->codegen->invalid_instruction; if (initializing) { switch (type_has_one_possible_value(ira->codegen, child_type)) { case OnePossibleValueInvalid: return ira->codegen->invalid_instruction; case OnePossibleValueNo: if (!same_comptime_repr) { ConstExprValue *payload_val = create_const_vals(1); payload_val->type = child_type; payload_val->special = ConstValSpecialUndef; payload_val->parent.id = ConstParentIdOptionalPayload; payload_val->parent.data.p_optional_payload.optional_val = optional_val; optional_val->data.x_optional = payload_val; optional_val->special = ConstValSpecialStatic; } break; case OnePossibleValueYes: { ConstExprValue *pointee = create_const_vals(1); pointee->special = ConstValSpecialStatic; pointee->type = child_type; pointee->parent.id = ConstParentIdOptionalPayload; pointee->parent.data.p_optional_payload.optional_val = optional_val; optional_val->special = ConstValSpecialStatic; optional_val->data.x_optional = pointee; break; } } } else if (optional_value_is_null(optional_val)) { ir_add_error(ira, source_instr, buf_sprintf("unable to unwrap null")); return ira->codegen->invalid_instruction; } IrInstruction *result; if (ptr_val->data.x_ptr.mut == ConstPtrMutInfer) { result = ir_build_optional_unwrap_ptr(&ira->new_irb, source_instr->scope, source_instr->source_node, base_ptr, false, initializing); result->value.type = result_type; result->value.special = ConstValSpecialStatic; } else { result = ir_const(ira, source_instr, result_type); } ConstExprValue *result_val = &result->value; result_val->data.x_ptr.special = ConstPtrSpecialRef; result_val->data.x_ptr.mut = ptr_val->data.x_ptr.mut; switch (type_has_one_possible_value(ira->codegen, child_type)) { case OnePossibleValueInvalid: return ira->codegen->invalid_instruction; case OnePossibleValueNo: if (same_comptime_repr) { result_val->data.x_ptr.data.ref.pointee = optional_val; } else { assert(optional_val->data.x_optional != nullptr); result_val->data.x_ptr.data.ref.pointee = optional_val->data.x_optional; } break; case OnePossibleValueYes: assert(optional_val->data.x_optional != nullptr); result_val->data.x_ptr.data.ref.pointee = optional_val->data.x_optional; break; } return result; } } IrInstruction *result = ir_build_optional_unwrap_ptr(&ira->new_irb, source_instr->scope, source_instr->source_node, base_ptr, safety_check_on, initializing); result->value.type = result_type; return result; } static IrInstruction *ir_analyze_instruction_optional_unwrap_ptr(IrAnalyze *ira, IrInstructionOptionalUnwrapPtr *instruction) { IrInstruction *base_ptr = instruction->base_ptr->child; if (type_is_invalid(base_ptr->value.type)) return ira->codegen->invalid_instruction; return ir_analyze_unwrap_optional_payload(ira, &instruction->base, base_ptr, instruction->safety_check_on, false); } static IrInstruction *ir_analyze_instruction_ctz(IrAnalyze *ira, IrInstructionCtz *instruction) { ZigType *int_type = ir_resolve_int_type(ira, instruction->type->child); if (type_is_invalid(int_type)) return ira->codegen->invalid_instruction; IrInstruction *op = ir_implicit_cast(ira, instruction->op->child, int_type); if (type_is_invalid(op->value.type)) return ira->codegen->invalid_instruction; if (int_type->data.integral.bit_count == 0) return ir_const_unsigned(ira, &instruction->base, 0); if (instr_is_comptime(op)) { ConstExprValue *val = ir_resolve_const(ira, op, UndefOk); if (val == nullptr) return ira->codegen->invalid_instruction; if (val->special == ConstValSpecialUndef) return ir_const_undef(ira, &instruction->base, ira->codegen->builtin_types.entry_num_lit_int); size_t result_usize = bigint_ctz(&op->value.data.x_bigint, int_type->data.integral.bit_count); return ir_const_unsigned(ira, &instruction->base, result_usize); } ZigType *return_type = get_smallest_unsigned_int_type(ira->codegen, int_type->data.integral.bit_count); IrInstruction *result = ir_build_ctz(&ira->new_irb, instruction->base.scope, instruction->base.source_node, nullptr, op); result->value.type = return_type; return result; } static IrInstruction *ir_analyze_instruction_clz(IrAnalyze *ira, IrInstructionClz *instruction) { ZigType *int_type = ir_resolve_int_type(ira, instruction->type->child); if (type_is_invalid(int_type)) return ira->codegen->invalid_instruction; IrInstruction *op = ir_implicit_cast(ira, instruction->op->child, int_type); if (type_is_invalid(op->value.type)) return ira->codegen->invalid_instruction; if (int_type->data.integral.bit_count == 0) return ir_const_unsigned(ira, &instruction->base, 0); if (instr_is_comptime(op)) { ConstExprValue *val = ir_resolve_const(ira, op, UndefOk); if (val == nullptr) return ira->codegen->invalid_instruction; if (val->special == ConstValSpecialUndef) return ir_const_undef(ira, &instruction->base, ira->codegen->builtin_types.entry_num_lit_int); size_t result_usize = bigint_clz(&op->value.data.x_bigint, int_type->data.integral.bit_count); return ir_const_unsigned(ira, &instruction->base, result_usize); } ZigType *return_type = get_smallest_unsigned_int_type(ira->codegen, int_type->data.integral.bit_count); IrInstruction *result = ir_build_clz(&ira->new_irb, instruction->base.scope, instruction->base.source_node, nullptr, op); result->value.type = return_type; return result; } static IrInstruction *ir_analyze_instruction_pop_count(IrAnalyze *ira, IrInstructionPopCount *instruction) { ZigType *int_type = ir_resolve_int_type(ira, instruction->type->child); if (type_is_invalid(int_type)) return ira->codegen->invalid_instruction; IrInstruction *op = ir_implicit_cast(ira, instruction->op->child, int_type); if (type_is_invalid(op->value.type)) return ira->codegen->invalid_instruction; if (int_type->data.integral.bit_count == 0) return ir_const_unsigned(ira, &instruction->base, 0); if (instr_is_comptime(op)) { ConstExprValue *val = ir_resolve_const(ira, op, UndefOk); if (val == nullptr) return ira->codegen->invalid_instruction; if (val->special == ConstValSpecialUndef) return ir_const_undef(ira, &instruction->base, ira->codegen->builtin_types.entry_num_lit_int); if (bigint_cmp_zero(&val->data.x_bigint) != CmpLT) { size_t result = bigint_popcount_unsigned(&val->data.x_bigint); return ir_const_unsigned(ira, &instruction->base, result); } size_t result = bigint_popcount_signed(&val->data.x_bigint, int_type->data.integral.bit_count); return ir_const_unsigned(ira, &instruction->base, result); } ZigType *return_type = get_smallest_unsigned_int_type(ira->codegen, int_type->data.integral.bit_count); IrInstruction *result = ir_build_pop_count(&ira->new_irb, instruction->base.scope, instruction->base.source_node, nullptr, op); result->value.type = return_type; return result; } static IrInstruction *ir_analyze_union_tag(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value) { if (type_is_invalid(value->value.type)) return ira->codegen->invalid_instruction; if (value->value.type->id == ZigTypeIdEnum) { return value; } if (value->value.type->id != ZigTypeIdUnion) { ir_add_error(ira, value, buf_sprintf("expected enum or union type, found '%s'", buf_ptr(&value->value.type->name))); return ira->codegen->invalid_instruction; } if (!value->value.type->data.unionation.have_explicit_tag_type && !source_instr->is_gen) { ErrorMsg *msg = ir_add_error(ira, source_instr, buf_sprintf("union has no associated enum")); if (value->value.type->data.unionation.decl_node != nullptr) { add_error_note(ira->codegen, msg, value->value.type->data.unionation.decl_node, buf_sprintf("declared here")); } return ira->codegen->invalid_instruction; } ZigType *tag_type = value->value.type->data.unionation.tag_type; assert(tag_type->id == ZigTypeIdEnum); if (instr_is_comptime(value)) { ConstExprValue *val = ir_resolve_const(ira, value, UndefBad); if (!val) return ira->codegen->invalid_instruction; IrInstructionConst *const_instruction = ir_create_instruction(&ira->new_irb, source_instr->scope, source_instr->source_node); const_instruction->base.value.type = tag_type; const_instruction->base.value.special = ConstValSpecialStatic; bigint_init_bigint(&const_instruction->base.value.data.x_enum_tag, &val->data.x_union.tag); return &const_instruction->base; } IrInstruction *result = ir_build_union_tag(&ira->new_irb, source_instr->scope, source_instr->source_node, value); result->value.type = tag_type; return result; } static IrInstruction *ir_analyze_instruction_switch_br(IrAnalyze *ira, IrInstructionSwitchBr *switch_br_instruction) { IrInstruction *target_value = switch_br_instruction->target_value->child; if (type_is_invalid(target_value->value.type)) return ir_unreach_error(ira); if (switch_br_instruction->switch_prongs_void != nullptr) { if (type_is_invalid(switch_br_instruction->switch_prongs_void->child->value.type)) { return ir_unreach_error(ira); } } size_t case_count = switch_br_instruction->case_count; bool is_comptime; if (!ir_resolve_comptime(ira, switch_br_instruction->is_comptime->child, &is_comptime)) return ira->codegen->invalid_instruction; if (is_comptime || instr_is_comptime(target_value)) { ConstExprValue *target_val = ir_resolve_const(ira, target_value, UndefBad); if (!target_val) return ir_unreach_error(ira); IrBasicBlock *old_dest_block = switch_br_instruction->else_block; for (size_t i = 0; i < case_count; i += 1) { IrInstructionSwitchBrCase *old_case = &switch_br_instruction->cases[i]; IrInstruction *case_value = old_case->value->child; if (type_is_invalid(case_value->value.type)) return ir_unreach_error(ira); if (case_value->value.type->id == ZigTypeIdEnum) { case_value = ir_analyze_union_tag(ira, &switch_br_instruction->base, case_value); if (type_is_invalid(case_value->value.type)) return ir_unreach_error(ira); } IrInstruction *casted_case_value = ir_implicit_cast(ira, case_value, target_value->value.type); if (type_is_invalid(casted_case_value->value.type)) return ir_unreach_error(ira); ConstExprValue *case_val = ir_resolve_const(ira, casted_case_value, UndefBad); if (!case_val) return ir_unreach_error(ira); if (const_values_equal(ira->codegen, target_val, case_val)) { old_dest_block = old_case->block; break; } } if (is_comptime || old_dest_block->ref_count == 1) { return ir_inline_bb(ira, &switch_br_instruction->base, old_dest_block); } else { IrBasicBlock *new_dest_block = ir_get_new_bb(ira, old_dest_block, &switch_br_instruction->base); IrInstruction *result = ir_build_br(&ira->new_irb, switch_br_instruction->base.scope, switch_br_instruction->base.source_node, new_dest_block, nullptr); result->value.type = ira->codegen->builtin_types.entry_unreachable; return ir_finish_anal(ira, result); } } IrInstructionSwitchBrCase *cases = allocate(case_count); for (size_t i = 0; i < case_count; i += 1) { IrInstructionSwitchBrCase *old_case = &switch_br_instruction->cases[i]; IrInstructionSwitchBrCase *new_case = &cases[i]; new_case->block = ir_get_new_bb(ira, old_case->block, &switch_br_instruction->base); new_case->value = ira->codegen->invalid_instruction; // Calling ir_get_new_bb set the ref_instruction on the new basic block. // However a switch br may branch to the same basic block which would trigger an // incorrect re-generation of the block. So we set it to null here and assign // it back after the loop. new_case->block->ref_instruction = nullptr; IrInstruction *old_value = old_case->value; IrInstruction *new_value = old_value->child; if (type_is_invalid(new_value->value.type)) continue; if (new_value->value.type->id == ZigTypeIdEnum) { new_value = ir_analyze_union_tag(ira, &switch_br_instruction->base, new_value); if (type_is_invalid(new_value->value.type)) continue; } IrInstruction *casted_new_value = ir_implicit_cast(ira, new_value, target_value->value.type); if (type_is_invalid(casted_new_value->value.type)) continue; if (!ir_resolve_const(ira, casted_new_value, UndefBad)) continue; new_case->value = casted_new_value; } for (size_t i = 0; i < case_count; i += 1) { IrInstructionSwitchBrCase *new_case = &cases[i]; if (new_case->value == ira->codegen->invalid_instruction) return ir_unreach_error(ira); new_case->block->ref_instruction = &switch_br_instruction->base; } IrBasicBlock *new_else_block = ir_get_new_bb(ira, switch_br_instruction->else_block, &switch_br_instruction->base); IrInstructionSwitchBr *switch_br = ir_build_switch_br(&ira->new_irb, switch_br_instruction->base.scope, switch_br_instruction->base.source_node, target_value, new_else_block, case_count, cases, nullptr, nullptr); switch_br->base.value.type = ira->codegen->builtin_types.entry_unreachable; return ir_finish_anal(ira, &switch_br->base); } static IrInstruction *ir_analyze_instruction_switch_target(IrAnalyze *ira, IrInstructionSwitchTarget *switch_target_instruction) { Error err; IrInstruction *target_value_ptr = switch_target_instruction->target_value_ptr->child; if (type_is_invalid(target_value_ptr->value.type)) return ira->codegen->invalid_instruction; if (target_value_ptr->value.type->id == ZigTypeIdMetaType) { assert(instr_is_comptime(target_value_ptr)); ZigType *ptr_type = target_value_ptr->value.data.x_type; assert(ptr_type->id == ZigTypeIdPointer); return ir_const_type(ira, &switch_target_instruction->base, ptr_type->data.pointer.child_type); } ZigType *target_type = target_value_ptr->value.type->data.pointer.child_type; ConstExprValue *pointee_val = nullptr; if (instr_is_comptime(target_value_ptr)) { pointee_val = const_ptr_pointee(ira, ira->codegen, &target_value_ptr->value, target_value_ptr->source_node); if (pointee_val == nullptr) return ira->codegen->invalid_instruction; if (pointee_val->special == ConstValSpecialRuntime) pointee_val = nullptr; } if ((err = type_resolve(ira->codegen, target_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; switch (target_type->id) { case ZigTypeIdInvalid: zig_unreachable(); case ZigTypeIdMetaType: case ZigTypeIdVoid: case ZigTypeIdBool: case ZigTypeIdInt: case ZigTypeIdFloat: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdPointer: case ZigTypeIdFn: case ZigTypeIdErrorSet: { if (pointee_val) { IrInstruction *result = ir_const(ira, &switch_target_instruction->base, nullptr); copy_const_val(&result->value, pointee_val, true); result->value.type = target_type; return result; } IrInstruction *result = ir_get_deref(ira, &switch_target_instruction->base, target_value_ptr, nullptr); result->value.type = target_type; return result; } case ZigTypeIdUnion: { AstNode *decl_node = target_type->data.unionation.decl_node; if (!decl_node->data.container_decl.auto_enum && decl_node->data.container_decl.init_arg_expr == nullptr) { ErrorMsg *msg = ir_add_error(ira, target_value_ptr, buf_sprintf("switch on union which has no attached enum")); add_error_note(ira->codegen, msg, decl_node, buf_sprintf("consider 'union(enum)' here")); return ira->codegen->invalid_instruction; } ZigType *tag_type = target_type->data.unionation.tag_type; assert(tag_type != nullptr); assert(tag_type->id == ZigTypeIdEnum); if (pointee_val) { IrInstruction *result = ir_const(ira, &switch_target_instruction->base, tag_type); bigint_init_bigint(&result->value.data.x_enum_tag, &pointee_val->data.x_union.tag); return result; } if (tag_type->data.enumeration.src_field_count == 1) { IrInstruction *result = ir_const(ira, &switch_target_instruction->base, tag_type); TypeEnumField *only_field = &tag_type->data.enumeration.fields[0]; bigint_init_bigint(&result->value.data.x_enum_tag, &only_field->value); return result; } IrInstruction *union_value = ir_get_deref(ira, &switch_target_instruction->base, target_value_ptr, nullptr); union_value->value.type = target_type; IrInstruction *union_tag_inst = ir_build_union_tag(&ira->new_irb, switch_target_instruction->base.scope, switch_target_instruction->base.source_node, union_value); union_tag_inst->value.type = tag_type; return union_tag_inst; } case ZigTypeIdEnum: { if ((err = type_resolve(ira->codegen, target_type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; if (target_type->data.enumeration.src_field_count < 2) { TypeEnumField *only_field = &target_type->data.enumeration.fields[0]; IrInstruction *result = ir_const(ira, &switch_target_instruction->base, target_type); bigint_init_bigint(&result->value.data.x_enum_tag, &only_field->value); return result; } if (pointee_val) { IrInstruction *result = ir_const(ira, &switch_target_instruction->base, target_type); bigint_init_bigint(&result->value.data.x_enum_tag, &pointee_val->data.x_enum_tag); return result; } IrInstruction *enum_value = ir_get_deref(ira, &switch_target_instruction->base, target_value_ptr, nullptr); enum_value->value.type = target_type; return enum_value; } case ZigTypeIdErrorUnion: case ZigTypeIdUnreachable: case ZigTypeIdArray: case ZigTypeIdStruct: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdOptional: case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdOpaque: case ZigTypeIdVector: case ZigTypeIdFnFrame: case ZigTypeIdAnyFrame: ir_add_error(ira, &switch_target_instruction->base, buf_sprintf("invalid switch target type '%s'", buf_ptr(&target_type->name))); return ira->codegen->invalid_instruction; } zig_unreachable(); } static IrInstruction *ir_analyze_instruction_switch_var(IrAnalyze *ira, IrInstructionSwitchVar *instruction) { IrInstruction *target_value_ptr = instruction->target_value_ptr->child; if (type_is_invalid(target_value_ptr->value.type)) return ira->codegen->invalid_instruction; ZigType *ref_type = target_value_ptr->value.type; assert(ref_type->id == ZigTypeIdPointer); ZigType *target_type = target_value_ptr->value.type->data.pointer.child_type; if (target_type->id == ZigTypeIdUnion) { ZigType *enum_type = target_type->data.unionation.tag_type; assert(enum_type != nullptr); assert(enum_type->id == ZigTypeIdEnum); assert(instruction->prongs_len > 0); IrInstruction *first_prong_value = instruction->prongs_ptr[0]->child; if (type_is_invalid(first_prong_value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *first_casted_prong_value = ir_implicit_cast(ira, first_prong_value, enum_type); if (type_is_invalid(first_casted_prong_value->value.type)) return ira->codegen->invalid_instruction; ConstExprValue *first_prong_val = ir_resolve_const(ira, first_casted_prong_value, UndefBad); if (first_prong_val == nullptr) return ira->codegen->invalid_instruction; TypeUnionField *first_field = find_union_field_by_tag(target_type, &first_prong_val->data.x_enum_tag); ErrorMsg *invalid_payload_msg = nullptr; for (size_t prong_i = 1; prong_i < instruction->prongs_len; prong_i += 1) { IrInstruction *this_prong_inst = instruction->prongs_ptr[prong_i]->child; if (type_is_invalid(this_prong_inst->value.type)) return ira->codegen->invalid_instruction; IrInstruction *this_casted_prong_value = ir_implicit_cast(ira, this_prong_inst, enum_type); if (type_is_invalid(this_casted_prong_value->value.type)) return ira->codegen->invalid_instruction; ConstExprValue *this_prong = ir_resolve_const(ira, this_casted_prong_value, UndefBad); if (this_prong == nullptr) return ira->codegen->invalid_instruction; TypeUnionField *payload_field = find_union_field_by_tag(target_type, &this_prong->data.x_enum_tag); ZigType *payload_type = payload_field->type_entry; if (first_field->type_entry != payload_type) { if (invalid_payload_msg == nullptr) { invalid_payload_msg = ir_add_error(ira, &instruction->base, buf_sprintf("capture group with incompatible types")); add_error_note(ira->codegen, invalid_payload_msg, first_prong_value->source_node, buf_sprintf("type '%s' here", buf_ptr(&first_field->type_entry->name))); } add_error_note(ira->codegen, invalid_payload_msg, this_prong_inst->source_node, buf_sprintf("type '%s' here", buf_ptr(&payload_field->type_entry->name))); } } if (invalid_payload_msg != nullptr) { return ira->codegen->invalid_instruction; } if (instr_is_comptime(target_value_ptr)) { ConstExprValue *target_val_ptr = ir_resolve_const(ira, target_value_ptr, UndefBad); if (!target_value_ptr) return ira->codegen->invalid_instruction; ConstExprValue *pointee_val = const_ptr_pointee(ira, ira->codegen, target_val_ptr, instruction->base.source_node); if (pointee_val == nullptr) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, &instruction->base, get_pointer_to_type(ira->codegen, first_field->type_entry, target_val_ptr->type->data.pointer.is_const)); ConstExprValue *out_val = &result->value; out_val->data.x_ptr.special = ConstPtrSpecialRef; out_val->data.x_ptr.mut = target_val_ptr->data.x_ptr.mut; out_val->data.x_ptr.data.ref.pointee = pointee_val->data.x_union.payload; return result; } IrInstruction *result = ir_build_union_field_ptr(&ira->new_irb, instruction->base.scope, instruction->base.source_node, target_value_ptr, first_field, false, false); result->value.type = get_pointer_to_type(ira->codegen, first_field->type_entry, target_value_ptr->value.type->data.pointer.is_const); return result; } else if (target_type->id == ZigTypeIdErrorSet) { // construct an error set from the prong values ZigType *err_set_type = new_type_table_entry(ZigTypeIdErrorSet); err_set_type->size_in_bits = ira->codegen->builtin_types.entry_global_error_set->size_in_bits; err_set_type->abi_align = ira->codegen->builtin_types.entry_global_error_set->abi_align; err_set_type->abi_size = ira->codegen->builtin_types.entry_global_error_set->abi_size; ZigList error_list = {}; buf_resize(&err_set_type->name, 0); buf_appendf(&err_set_type->name, "error{"); for (size_t i = 0; i < instruction->prongs_len; i += 1) { ErrorTableEntry *err = ir_resolve_error(ira, instruction->prongs_ptr[i]->child); if (err == nullptr) return ira->codegen->invalid_instruction; error_list.append(err); buf_appendf(&err_set_type->name, "%s,", buf_ptr(&err->name)); } err_set_type->data.error_set.errors = error_list.items; err_set_type->data.error_set.err_count = error_list.length; buf_appendf(&err_set_type->name, "}"); ZigType *new_target_value_ptr_type = get_pointer_to_type_extra(ira->codegen, err_set_type, ref_type->data.pointer.is_const, ref_type->data.pointer.is_volatile, ref_type->data.pointer.ptr_len, ref_type->data.pointer.explicit_alignment, ref_type->data.pointer.bit_offset_in_host, ref_type->data.pointer.host_int_bytes, ref_type->data.pointer.allow_zero); return ir_analyze_ptr_cast(ira, &instruction->base, target_value_ptr, new_target_value_ptr_type, &instruction->base, false); } else { ir_add_error(ira, &instruction->base, buf_sprintf("switch on type '%s' provides no expression parameter", buf_ptr(&target_type->name))); return ira->codegen->invalid_instruction; } } static IrInstruction *ir_analyze_instruction_switch_else_var(IrAnalyze *ira, IrInstructionSwitchElseVar *instruction) { IrInstruction *target_value_ptr = instruction->target_value_ptr->child; if (type_is_invalid(target_value_ptr->value.type)) return ira->codegen->invalid_instruction; ZigType *ref_type = target_value_ptr->value.type; assert(ref_type->id == ZigTypeIdPointer); ZigType *target_type = target_value_ptr->value.type->data.pointer.child_type; if (target_type->id == ZigTypeIdErrorSet) { // make a new set that has the other cases removed if (!resolve_inferred_error_set(ira->codegen, target_type, instruction->base.source_node)) { return ira->codegen->invalid_instruction; } if (type_is_global_error_set(target_type)) { // the type of the else capture variable still has to be the global error set. // once the runtime hint system is more sophisticated, we could add some hint information here. return target_value_ptr; } // Make note of the errors handled by other cases ErrorTableEntry **errors = allocate(ira->codegen->errors_by_index.length); for (size_t case_i = 0; case_i < instruction->switch_br->case_count; case_i += 1) { IrInstructionSwitchBrCase *br_case = &instruction->switch_br->cases[case_i]; IrInstruction *case_expr = br_case->value->child; if (case_expr->value.type->id == ZigTypeIdErrorSet) { ErrorTableEntry *err = ir_resolve_error(ira, case_expr); if (err == nullptr) return ira->codegen->invalid_instruction; errors[err->value] = err; } else if (case_expr->value.type->id == ZigTypeIdMetaType) { ZigType *err_set_type = ir_resolve_type(ira, case_expr); if (type_is_invalid(err_set_type)) return ira->codegen->invalid_instruction; populate_error_set_table(errors, err_set_type); } else { zig_unreachable(); } } ZigList result_list = {}; ZigType *err_set_type = new_type_table_entry(ZigTypeIdErrorSet); buf_resize(&err_set_type->name, 0); buf_appendf(&err_set_type->name, "error{"); // Look at all the errors in the type switched on and add them to the result_list // if they are not handled by cases. for (uint32_t i = 0; i < target_type->data.error_set.err_count; i += 1) { ErrorTableEntry *error_entry = target_type->data.error_set.errors[i]; ErrorTableEntry *existing_entry = errors[error_entry->value]; if (existing_entry == nullptr) { result_list.append(error_entry); buf_appendf(&err_set_type->name, "%s,", buf_ptr(&error_entry->name)); } } free(errors); err_set_type->data.error_set.err_count = result_list.length; err_set_type->data.error_set.errors = result_list.items; err_set_type->size_in_bits = ira->codegen->builtin_types.entry_global_error_set->size_in_bits; err_set_type->abi_align = ira->codegen->builtin_types.entry_global_error_set->abi_align; err_set_type->abi_size = ira->codegen->builtin_types.entry_global_error_set->abi_size; buf_appendf(&err_set_type->name, "}"); ZigType *new_target_value_ptr_type = get_pointer_to_type_extra(ira->codegen, err_set_type, ref_type->data.pointer.is_const, ref_type->data.pointer.is_volatile, ref_type->data.pointer.ptr_len, ref_type->data.pointer.explicit_alignment, ref_type->data.pointer.bit_offset_in_host, ref_type->data.pointer.host_int_bytes, ref_type->data.pointer.allow_zero); return ir_analyze_ptr_cast(ira, &instruction->base, target_value_ptr, new_target_value_ptr_type, &instruction->base, false); } return target_value_ptr; } static IrInstruction *ir_analyze_instruction_union_tag(IrAnalyze *ira, IrInstructionUnionTag *instruction) { IrInstruction *value = instruction->value->child; return ir_analyze_union_tag(ira, &instruction->base, value); } static IrInstruction *ir_analyze_instruction_import(IrAnalyze *ira, IrInstructionImport *import_instruction) { Error err; IrInstruction *name_value = import_instruction->name->child; Buf *import_target_str = ir_resolve_str(ira, name_value); if (!import_target_str) return ira->codegen->invalid_instruction; AstNode *source_node = import_instruction->base.source_node; ZigType *import = source_node->owner; Buf *import_target_path; Buf *search_dir; assert(import->data.structure.root_struct->package); ZigPackage *target_package; auto package_entry = import->data.structure.root_struct->package->package_table.maybe_get(import_target_str); SourceKind source_kind; if (package_entry) { target_package = package_entry->value; import_target_path = &target_package->root_src_path; search_dir = &target_package->root_src_dir; source_kind = SourceKindPkgMain; } else { // try it as a filename target_package = import->data.structure.root_struct->package; import_target_path = import_target_str; // search relative to importing file search_dir = buf_alloc(); os_path_dirname(import->data.structure.root_struct->path, search_dir); source_kind = SourceKindNonRoot; } Buf full_path = BUF_INIT; os_path_join(search_dir, import_target_path, &full_path); Buf *import_code = buf_alloc(); Buf *resolved_path = buf_alloc(); Buf *resolve_paths[] = { &full_path, }; *resolved_path = os_path_resolve(resolve_paths, 1); auto import_entry = ira->codegen->import_table.maybe_get(resolved_path); if (import_entry) { return ir_const_type(ira, &import_instruction->base, import_entry->value); } if (source_kind == SourceKindNonRoot) { ZigPackage *cur_scope_pkg = scope_package(import_instruction->base.scope); Buf *pkg_root_src_dir = &cur_scope_pkg->root_src_dir; Buf resolved_root_src_dir = os_path_resolve(&pkg_root_src_dir, 1); if (!buf_starts_with_buf(resolved_path, &resolved_root_src_dir)) { ir_add_error_node(ira, source_node, buf_sprintf("import of file outside package path: '%s'", buf_ptr(import_target_path))); return ira->codegen->invalid_instruction; } } if ((err = file_fetch(ira->codegen, resolved_path, import_code))) { if (err == ErrorFileNotFound) { ir_add_error_node(ira, source_node, buf_sprintf("unable to find '%s'", buf_ptr(import_target_path))); return ira->codegen->invalid_instruction; } else { ir_add_error_node(ira, source_node, buf_sprintf("unable to open '%s': %s", buf_ptr(&full_path), err_str(err))); return ira->codegen->invalid_instruction; } } ZigType *target_import = add_source_file(ira->codegen, target_package, resolved_path, import_code, source_kind); return ir_const_type(ira, &import_instruction->base, target_import); } static IrInstruction *ir_analyze_instruction_ref(IrAnalyze *ira, IrInstructionRef *ref_instruction) { IrInstruction *value = ref_instruction->value->child; if (type_is_invalid(value->value.type)) return ira->codegen->invalid_instruction; return ir_get_ref(ira, &ref_instruction->base, value, ref_instruction->is_const, ref_instruction->is_volatile); } static IrInstruction *ir_analyze_union_init(IrAnalyze *ira, IrInstruction *source_instruction, AstNode *field_source_node, ZigType *union_type, Buf *field_name, IrInstruction *field_result_loc, IrInstruction *result_loc) { Error err; assert(union_type->id == ZigTypeIdUnion); if ((err = type_resolve(ira->codegen, union_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; TypeUnionField *type_field = find_union_type_field(union_type, field_name); if (type_field == nullptr) { ir_add_error_node(ira, field_source_node, buf_sprintf("no member named '%s' in union '%s'", buf_ptr(field_name), buf_ptr(&union_type->name))); return ira->codegen->invalid_instruction; } if (type_is_invalid(type_field->type_entry)) return ira->codegen->invalid_instruction; if (result_loc->value.data.x_ptr.mut == ConstPtrMutInfer) { if (instr_is_comptime(field_result_loc) && field_result_loc->value.data.x_ptr.mut != ConstPtrMutRuntimeVar) { // nothing } else { result_loc->value.special = ConstValSpecialRuntime; } } bool is_comptime = ir_should_inline(ira->new_irb.exec, source_instruction->scope) || type_requires_comptime(ira->codegen, union_type) == ReqCompTimeYes; IrInstruction *result = ir_get_deref(ira, source_instruction, result_loc, nullptr); if (is_comptime && !instr_is_comptime(result)) { ir_add_error(ira, field_result_loc, buf_sprintf("unable to evaluate constant expression")); return ira->codegen->invalid_instruction; } return result; } static IrInstruction *ir_analyze_container_init_fields(IrAnalyze *ira, IrInstruction *instruction, ZigType *container_type, size_t instr_field_count, IrInstructionContainerInitFieldsField *fields, IrInstruction *result_loc) { Error err; if (container_type->id == ZigTypeIdUnion) { if (instr_field_count != 1) { ir_add_error(ira, instruction, buf_sprintf("union initialization expects exactly one field")); return ira->codegen->invalid_instruction; } IrInstructionContainerInitFieldsField *field = &fields[0]; IrInstruction *field_result_loc = field->result_loc->child; if (type_is_invalid(field_result_loc->value.type)) return ira->codegen->invalid_instruction; return ir_analyze_union_init(ira, instruction, field->source_node, container_type, field->name, field_result_loc, result_loc); } if (container_type->id != ZigTypeIdStruct || is_slice(container_type)) { ir_add_error(ira, instruction, buf_sprintf("type '%s' does not support struct initialization syntax", buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } if ((err = type_resolve(ira->codegen, container_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; size_t actual_field_count = container_type->data.structure.src_field_count; IrInstruction *first_non_const_instruction = nullptr; AstNode **field_assign_nodes = allocate(actual_field_count); ZigList const_ptrs = {}; bool is_comptime = ir_should_inline(ira->new_irb.exec, instruction->scope) || type_requires_comptime(ira->codegen, container_type) == ReqCompTimeYes; // Here we iterate over the fields that have been initialized, and emit // compile errors for missing fields and duplicate fields. // It is only now that we find out whether the struct initialization can be a comptime // value, but we have already emitted runtime instructions for the fields that // were initialized with runtime values, and have omitted instructions that would have // initialized fields with comptime values. // So now we must clean up this situation. If it turns out the struct initialization can // be a comptime value, overwrite ConstPtrMutInfer with ConstPtrMutComptimeConst. // Otherwise, we must emit instructions to runtime-initialize the fields that have // comptime-known values. for (size_t i = 0; i < instr_field_count; i += 1) { IrInstructionContainerInitFieldsField *field = &fields[i]; IrInstruction *field_result_loc = field->result_loc->child; if (type_is_invalid(field_result_loc->value.type)) return ira->codegen->invalid_instruction; TypeStructField *type_field = find_struct_type_field(container_type, field->name); if (!type_field) { ir_add_error_node(ira, field->source_node, buf_sprintf("no member named '%s' in struct '%s'", buf_ptr(field->name), buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } if (type_is_invalid(type_field->type_entry)) return ira->codegen->invalid_instruction; size_t field_index = type_field->src_index; AstNode *existing_assign_node = field_assign_nodes[field_index]; if (existing_assign_node) { ErrorMsg *msg = ir_add_error_node(ira, field->source_node, buf_sprintf("duplicate field")); add_error_note(ira->codegen, msg, existing_assign_node, buf_sprintf("other field here")); return ira->codegen->invalid_instruction; } field_assign_nodes[field_index] = field->source_node; if (instr_is_comptime(field_result_loc) && field_result_loc->value.data.x_ptr.mut != ConstPtrMutRuntimeVar) { const_ptrs.append(field_result_loc); } else { first_non_const_instruction = field_result_loc; } } bool any_missing = false; for (size_t i = 0; i < actual_field_count; i += 1) { if (field_assign_nodes[i] != nullptr) continue; // look for a default field value TypeStructField *field = &container_type->data.structure.fields[i]; if (field->init_val == nullptr) { // it's not memoized. time to go analyze it assert(field->decl_node->type == NodeTypeStructField); AstNode *init_node = field->decl_node->data.struct_field.value; if (init_node == nullptr) { ir_add_error_node(ira, instruction->source_node, buf_sprintf("missing field: '%s'", buf_ptr(container_type->data.structure.fields[i].name))); any_missing = true; continue; } // scope is not the scope of the struct init, it's the scope of the struct type decl Scope *analyze_scope = &get_container_scope(container_type)->base; // memoize it field->init_val = analyze_const_value(ira->codegen, analyze_scope, init_node, field->type_entry, nullptr, UndefOk); } if (type_is_invalid(field->init_val->type)) return ira->codegen->invalid_instruction; IrInstruction *runtime_inst = ir_const(ira, instruction, field->init_val->type); copy_const_val(&runtime_inst->value, field->init_val, true); IrInstruction *field_ptr = ir_analyze_struct_field_ptr(ira, instruction, field, result_loc, container_type, true); ir_analyze_store_ptr(ira, instruction, field_ptr, runtime_inst, false); if (instr_is_comptime(field_ptr) && field_ptr->value.data.x_ptr.mut != ConstPtrMutRuntimeVar) { const_ptrs.append(field_ptr); } else { first_non_const_instruction = result_loc; } } if (any_missing) return ira->codegen->invalid_instruction; if (result_loc->value.data.x_ptr.mut == ConstPtrMutInfer) { if (const_ptrs.length != actual_field_count) { result_loc->value.special = ConstValSpecialRuntime; for (size_t i = 0; i < const_ptrs.length; i += 1) { IrInstruction *field_result_loc = const_ptrs.at(i); IrInstruction *deref = ir_get_deref(ira, field_result_loc, field_result_loc, nullptr); field_result_loc->value.special = ConstValSpecialRuntime; ir_analyze_store_ptr(ira, field_result_loc, field_result_loc, deref, false); } } } IrInstruction *result = ir_get_deref(ira, instruction, result_loc, nullptr); if (is_comptime && !instr_is_comptime(result)) { ir_add_error_node(ira, first_non_const_instruction->source_node, buf_sprintf("unable to evaluate constant expression")); return ira->codegen->invalid_instruction; } return result; } static IrInstruction *ir_analyze_instruction_container_init_list(IrAnalyze *ira, IrInstructionContainerInitList *instruction) { ZigType *container_type = ir_resolve_type(ira, instruction->container_type->child); if (type_is_invalid(container_type)) return ira->codegen->invalid_instruction; size_t elem_count = instruction->item_count; if (is_slice(container_type)) { ir_add_error(ira, instruction->container_type, buf_sprintf("expected array type or [_], found slice")); return ira->codegen->invalid_instruction; } if (container_type->id == ZigTypeIdVoid) { if (elem_count != 0) { ir_add_error_node(ira, instruction->base.source_node, buf_sprintf("void expression expects no arguments")); return ira->codegen->invalid_instruction; } return ir_const_void(ira, &instruction->base); } if (container_type->id == ZigTypeIdStruct && elem_count == 0) { ir_assert(instruction->result_loc != nullptr, &instruction->base); IrInstruction *result_loc = instruction->result_loc->child; if (type_is_invalid(result_loc->value.type)) return result_loc; return ir_analyze_container_init_fields(ira, &instruction->base, container_type, 0, nullptr, result_loc); } if (container_type->id != ZigTypeIdArray) { ir_add_error_node(ira, instruction->base.source_node, buf_sprintf("type '%s' does not support array initialization", buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } ir_assert(instruction->result_loc != nullptr, &instruction->base); IrInstruction *result_loc = instruction->result_loc->child; if (type_is_invalid(result_loc->value.type)) return result_loc; ir_assert(result_loc->value.type->id == ZigTypeIdPointer, &instruction->base); ZigType *child_type = container_type->data.array.child_type; if (container_type->data.array.len != elem_count) { ZigType *literal_type = get_array_type(ira->codegen, child_type, elem_count); ir_add_error(ira, &instruction->base, buf_sprintf("expected %s literal, found %s literal", buf_ptr(&container_type->name), buf_ptr(&literal_type->name))); return ira->codegen->invalid_instruction; } switch (type_has_one_possible_value(ira->codegen, container_type)) { case OnePossibleValueInvalid: return ira->codegen->invalid_instruction; case OnePossibleValueYes: return ir_const(ira, &instruction->base, container_type); case OnePossibleValueNo: break; } bool is_comptime; switch (type_requires_comptime(ira->codegen, container_type)) { case ReqCompTimeInvalid: return ira->codegen->invalid_instruction; case ReqCompTimeNo: is_comptime = ir_should_inline(ira->new_irb.exec, instruction->base.scope); break; case ReqCompTimeYes: is_comptime = true; break; } IrInstruction *first_non_const_instruction = nullptr; // The Result Location Mechanism has already emitted runtime instructions to // initialize runtime elements and has omitted instructions for the comptime // elements. However it is only now that we find out whether the array initialization // can be a comptime value. So we must clean up the situation. If it turns out // array initialization can be a comptime value, overwrite ConstPtrMutInfer with // ConstPtrMutComptimeConst. Otherwise, emit instructions to runtime-initialize the // elements that have comptime-known values. ZigList const_ptrs = {}; for (size_t i = 0; i < elem_count; i += 1) { IrInstruction *elem_result_loc = instruction->elem_result_loc_list[i]->child; if (type_is_invalid(elem_result_loc->value.type)) return ira->codegen->invalid_instruction; assert(elem_result_loc->value.type->id == ZigTypeIdPointer); if (instr_is_comptime(elem_result_loc) && elem_result_loc->value.data.x_ptr.mut != ConstPtrMutRuntimeVar) { const_ptrs.append(elem_result_loc); } else { first_non_const_instruction = elem_result_loc; } } if (result_loc->value.data.x_ptr.mut == ConstPtrMutInfer) { if (const_ptrs.length != elem_count) { result_loc->value.special = ConstValSpecialRuntime; for (size_t i = 0; i < const_ptrs.length; i += 1) { IrInstruction *elem_result_loc = const_ptrs.at(i); assert(elem_result_loc->value.special == ConstValSpecialStatic); IrInstruction *deref = ir_get_deref(ira, elem_result_loc, elem_result_loc, nullptr); elem_result_loc->value.special = ConstValSpecialRuntime; ir_analyze_store_ptr(ira, elem_result_loc, elem_result_loc, deref, false); } } } IrInstruction *result = ir_get_deref(ira, &instruction->base, result_loc, nullptr); if (instr_is_comptime(result)) return result; if (is_comptime) { ir_add_error_node(ira, first_non_const_instruction->source_node, buf_sprintf("unable to evaluate constant expression")); return ira->codegen->invalid_instruction; } ZigType *result_elem_type = result_loc->value.type->data.pointer.child_type; if (is_slice(result_elem_type)) { ErrorMsg *msg = ir_add_error(ira, &instruction->base, buf_sprintf("runtime-initialized array cannot be casted to slice type '%s'", buf_ptr(&result_elem_type->name))); add_error_note(ira->codegen, msg, first_non_const_instruction->source_node, buf_sprintf("this value is not comptime-known")); return ira->codegen->invalid_instruction; } return result; } static IrInstruction *ir_analyze_instruction_container_init_fields(IrAnalyze *ira, IrInstructionContainerInitFields *instruction) { IrInstruction *container_type_value = instruction->container_type->child; ZigType *container_type = ir_resolve_type(ira, container_type_value); if (type_is_invalid(container_type)) return ira->codegen->invalid_instruction; ir_assert(instruction->result_loc != nullptr, &instruction->base); IrInstruction *result_loc = instruction->result_loc->child; if (type_is_invalid(result_loc->value.type)) return result_loc; return ir_analyze_container_init_fields(ira, &instruction->base, container_type, instruction->field_count, instruction->fields, result_loc); } static IrInstruction *ir_analyze_instruction_compile_err(IrAnalyze *ira, IrInstructionCompileErr *instruction) { IrInstruction *msg_value = instruction->msg->child; Buf *msg_buf = ir_resolve_str(ira, msg_value); if (!msg_buf) return ira->codegen->invalid_instruction; ir_add_error(ira, &instruction->base, msg_buf); return ira->codegen->invalid_instruction; } static IrInstruction *ir_analyze_instruction_compile_log(IrAnalyze *ira, IrInstructionCompileLog *instruction) { Buf buf = BUF_INIT; fprintf(stderr, "| "); for (size_t i = 0; i < instruction->msg_count; i += 1) { IrInstruction *msg = instruction->msg_list[i]->child; if (type_is_invalid(msg->value.type)) return ira->codegen->invalid_instruction; buf_resize(&buf, 0); render_const_value(ira->codegen, &buf, &msg->value); const char *comma_str = (i != 0) ? ", " : ""; fprintf(stderr, "%s%s", comma_str, buf_ptr(&buf)); } fprintf(stderr, "\n"); auto *expr = &instruction->base.source_node->data.fn_call_expr; if (!expr->seen) { // Here we bypass higher level functions such as ir_add_error because we do not want // invalidate_exec to be called. add_node_error(ira->codegen, instruction->base.source_node, buf_sprintf("found compile log statement")); } expr->seen = true; return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_err_name(IrAnalyze *ira, IrInstructionErrName *instruction) { IrInstruction *value = instruction->value->child; if (type_is_invalid(value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_value = ir_implicit_cast(ira, value, ira->codegen->builtin_types.entry_global_error_set); if (type_is_invalid(casted_value->value.type)) return ira->codegen->invalid_instruction; ZigType *u8_ptr_type = get_pointer_to_type_extra(ira->codegen, ira->codegen->builtin_types.entry_u8, true, false, PtrLenUnknown, 0, 0, 0, false); ZigType *str_type = get_slice_type(ira->codegen, u8_ptr_type); if (instr_is_comptime(casted_value)) { ConstExprValue *val = ir_resolve_const(ira, casted_value, UndefBad); if (val == nullptr) return ira->codegen->invalid_instruction; ErrorTableEntry *err = casted_value->value.data.x_err_set; if (!err->cached_error_name_val) { ConstExprValue *array_val = create_const_str_lit(ira->codegen, &err->name); err->cached_error_name_val = create_const_slice(ira->codegen, array_val, 0, buf_len(&err->name), true); } IrInstruction *result = ir_const(ira, &instruction->base, nullptr); copy_const_val(&result->value, err->cached_error_name_val, true); result->value.type = str_type; return result; } ira->codegen->generate_error_name_table = true; IrInstruction *result = ir_build_err_name(&ira->new_irb, instruction->base.scope, instruction->base.source_node, value); result->value.type = str_type; return result; } static IrInstruction *ir_analyze_instruction_enum_tag_name(IrAnalyze *ira, IrInstructionTagName *instruction) { Error err; IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; assert(target->value.type->id == ZigTypeIdEnum); if (instr_is_comptime(target)) { if ((err = type_resolve(ira->codegen, target->value.type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; TypeEnumField *field = find_enum_field_by_tag(target->value.type, &target->value.data.x_bigint); ConstExprValue *array_val = create_const_str_lit(ira->codegen, field->name); IrInstruction *result = ir_const(ira, &instruction->base, nullptr); init_const_slice(ira->codegen, &result->value, array_val, 0, buf_len(field->name), true); return result; } IrInstruction *result = ir_build_tag_name(&ira->new_irb, instruction->base.scope, instruction->base.source_node, target); ZigType *u8_ptr_type = get_pointer_to_type_extra( ira->codegen, ira->codegen->builtin_types.entry_u8, true, false, PtrLenUnknown, 0, 0, 0, false); result->value.type = get_slice_type(ira->codegen, u8_ptr_type); return result; } static IrInstruction *ir_analyze_instruction_field_parent_ptr(IrAnalyze *ira, IrInstructionFieldParentPtr *instruction) { Error err; IrInstruction *type_value = instruction->type_value->child; ZigType *container_type = ir_resolve_type(ira, type_value); if (type_is_invalid(container_type)) return ira->codegen->invalid_instruction; IrInstruction *field_name_value = instruction->field_name->child; Buf *field_name = ir_resolve_str(ira, field_name_value); if (!field_name) return ira->codegen->invalid_instruction; IrInstruction *field_ptr = instruction->field_ptr->child; if (type_is_invalid(field_ptr->value.type)) return ira->codegen->invalid_instruction; if (container_type->id != ZigTypeIdStruct) { ir_add_error(ira, type_value, buf_sprintf("expected struct type, found '%s'", buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } if ((err = type_resolve(ira->codegen, container_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; TypeStructField *field = find_struct_type_field(container_type, field_name); if (field == nullptr) { ir_add_error(ira, field_name_value, buf_sprintf("struct '%s' has no field '%s'", buf_ptr(&container_type->name), buf_ptr(field_name))); return ira->codegen->invalid_instruction; } if (field_ptr->value.type->id != ZigTypeIdPointer) { ir_add_error(ira, field_ptr, buf_sprintf("expected pointer, found '%s'", buf_ptr(&field_ptr->value.type->name))); return ira->codegen->invalid_instruction; } bool is_packed = (container_type->data.structure.layout == ContainerLayoutPacked); uint32_t field_ptr_align = is_packed ? 1 : get_abi_alignment(ira->codegen, field->type_entry); uint32_t parent_ptr_align = is_packed ? 1 : get_abi_alignment(ira->codegen, container_type); ZigType *field_ptr_type = get_pointer_to_type_extra(ira->codegen, field->type_entry, field_ptr->value.type->data.pointer.is_const, field_ptr->value.type->data.pointer.is_volatile, PtrLenSingle, field_ptr_align, 0, 0, false); IrInstruction *casted_field_ptr = ir_implicit_cast(ira, field_ptr, field_ptr_type); if (type_is_invalid(casted_field_ptr->value.type)) return ira->codegen->invalid_instruction; ZigType *result_type = get_pointer_to_type_extra(ira->codegen, container_type, casted_field_ptr->value.type->data.pointer.is_const, casted_field_ptr->value.type->data.pointer.is_volatile, PtrLenSingle, parent_ptr_align, 0, 0, false); if (instr_is_comptime(casted_field_ptr)) { ConstExprValue *field_ptr_val = ir_resolve_const(ira, casted_field_ptr, UndefBad); if (!field_ptr_val) return ira->codegen->invalid_instruction; if (field_ptr_val->data.x_ptr.special != ConstPtrSpecialBaseStruct) { ir_add_error(ira, field_ptr, buf_sprintf("pointer value not based on parent struct")); return ira->codegen->invalid_instruction; } size_t ptr_field_index = field_ptr_val->data.x_ptr.data.base_struct.field_index; if (ptr_field_index != field->src_index) { ir_add_error(ira, &instruction->base, buf_sprintf("field '%s' has index %" ZIG_PRI_usize " but pointer value is index %" ZIG_PRI_usize " of struct '%s'", buf_ptr(field->name), field->src_index, ptr_field_index, buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *result = ir_const(ira, &instruction->base, result_type); ConstExprValue *out_val = &result->value; out_val->data.x_ptr.special = ConstPtrSpecialRef; out_val->data.x_ptr.data.ref.pointee = field_ptr_val->data.x_ptr.data.base_struct.struct_val; out_val->data.x_ptr.mut = field_ptr_val->data.x_ptr.mut; return result; } IrInstruction *result = ir_build_field_parent_ptr(&ira->new_irb, instruction->base.scope, instruction->base.source_node, type_value, field_name_value, casted_field_ptr, field); result->value.type = result_type; return result; } static TypeStructField *validate_byte_offset(IrAnalyze *ira, IrInstruction *type_value, IrInstruction *field_name_value, size_t *byte_offset) { ZigType *container_type = ir_resolve_type(ira, type_value); if (type_is_invalid(container_type)) return nullptr; Error err; if ((err = type_resolve(ira->codegen, container_type, ResolveStatusSizeKnown))) return nullptr; Buf *field_name = ir_resolve_str(ira, field_name_value); if (!field_name) return nullptr; if (container_type->id != ZigTypeIdStruct) { ir_add_error(ira, type_value, buf_sprintf("expected struct type, found '%s'", buf_ptr(&container_type->name))); return nullptr; } TypeStructField *field = find_struct_type_field(container_type, field_name); if (field == nullptr) { ir_add_error(ira, field_name_value, buf_sprintf("struct '%s' has no field '%s'", buf_ptr(&container_type->name), buf_ptr(field_name))); return nullptr; } if (!type_has_bits(field->type_entry)) { ir_add_error(ira, field_name_value, buf_sprintf("zero-bit field '%s' in struct '%s' has no offset", buf_ptr(field_name), buf_ptr(&container_type->name))); return nullptr; } *byte_offset = field->offset; return field; } static IrInstruction *ir_analyze_instruction_byte_offset_of(IrAnalyze *ira, IrInstructionByteOffsetOf *instruction) { IrInstruction *type_value = instruction->type_value->child; if (type_is_invalid(type_value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *field_name_value = instruction->field_name->child; size_t byte_offset = 0; if (!validate_byte_offset(ira, type_value, field_name_value, &byte_offset)) return ira->codegen->invalid_instruction; return ir_const_unsigned(ira, &instruction->base, byte_offset); } static IrInstruction *ir_analyze_instruction_bit_offset_of(IrAnalyze *ira, IrInstructionBitOffsetOf *instruction) { IrInstruction *type_value = instruction->type_value->child; if (type_is_invalid(type_value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *field_name_value = instruction->field_name->child; size_t byte_offset = 0; TypeStructField *field = nullptr; if (!(field = validate_byte_offset(ira, type_value, field_name_value, &byte_offset))) return ira->codegen->invalid_instruction; size_t bit_offset = byte_offset * 8 + field->bit_offset_in_host; return ir_const_unsigned(ira, &instruction->base, bit_offset); } static void ensure_field_index(ZigType *type, const char *field_name, size_t index) { Buf *field_name_buf; assert(type != nullptr && !type_is_invalid(type)); // Check for our field by creating a buffer in place then using the comma operator to free it so that we don't // leak memory in debug mode. assert(find_struct_type_field(type, field_name_buf = buf_create_from_str(field_name))->src_index == index && (buf_deinit(field_name_buf), true)); } static ZigType *ir_type_info_get_type(IrAnalyze *ira, const char *type_name, ZigType *root) { Error err; ConstExprValue *type_info_var = get_builtin_value(ira->codegen, "TypeInfo"); assert(type_info_var->type->id == ZigTypeIdMetaType); ZigType *type_info_type = type_info_var->data.x_type; assert(type_info_type->id == ZigTypeIdUnion); if ((err = type_resolve(ira->codegen, type_info_type, ResolveStatusSizeKnown))) { zig_unreachable(); } if (type_name == nullptr && root == nullptr) return type_info_type; else if (type_name == nullptr) return root; ZigType *root_type = (root == nullptr) ? type_info_type : root; ScopeDecls *type_info_scope = get_container_scope(root_type); assert(type_info_scope != nullptr); Buf field_name = BUF_INIT; buf_init_from_str(&field_name, type_name); auto entry = type_info_scope->decl_table.get(&field_name); buf_deinit(&field_name); TldVar *tld = (TldVar *)entry; assert(tld->base.id == TldIdVar); ZigVar *var = tld->var; assert(var->const_value->type->id == ZigTypeIdMetaType); return ir_resolve_const_type(ira->codegen, ira->new_irb.exec, nullptr, var->const_value); } static Error ir_make_type_info_decls(IrAnalyze *ira, IrInstruction *source_instr, ConstExprValue *out_val, ScopeDecls *decls_scope) { Error err; ZigType *type_info_declaration_type = ir_type_info_get_type(ira, "Declaration", nullptr); if ((err = type_resolve(ira->codegen, type_info_declaration_type, ResolveStatusSizeKnown))) return err; ensure_field_index(type_info_declaration_type, "name", 0); ensure_field_index(type_info_declaration_type, "is_pub", 1); ensure_field_index(type_info_declaration_type, "data", 2); ZigType *type_info_declaration_data_type = ir_type_info_get_type(ira, "Data", type_info_declaration_type); if ((err = type_resolve(ira->codegen, type_info_declaration_data_type, ResolveStatusSizeKnown))) return err; ZigType *type_info_fn_decl_type = ir_type_info_get_type(ira, "FnDecl", type_info_declaration_data_type); if ((err = type_resolve(ira->codegen, type_info_fn_decl_type, ResolveStatusSizeKnown))) return err; ZigType *type_info_fn_decl_inline_type = ir_type_info_get_type(ira, "Inline", type_info_fn_decl_type); if ((err = type_resolve(ira->codegen, type_info_fn_decl_inline_type, ResolveStatusSizeKnown))) return err; // Loop through our declarations once to figure out how many declarations we will generate info for. auto decl_it = decls_scope->decl_table.entry_iterator(); decltype(decls_scope->decl_table)::Entry *curr_entry = nullptr; int declaration_count = 0; while ((curr_entry = decl_it.next()) != nullptr) { // If the declaration is unresolved, force it to be resolved again. if (curr_entry->value->resolution == TldResolutionUnresolved) { resolve_top_level_decl(ira->codegen, curr_entry->value, curr_entry->value->source_node, false); if (curr_entry->value->resolution != TldResolutionOk) { return ErrorSemanticAnalyzeFail; } } // Skip comptime blocks and test functions. if (curr_entry->value->id != TldIdCompTime) { if (curr_entry->value->id == TldIdFn) { ZigFn *fn_entry = ((TldFn *)curr_entry->value)->fn_entry; if (fn_entry->is_test) continue; } declaration_count += 1; } } ConstExprValue *declaration_array = create_const_vals(1); declaration_array->special = ConstValSpecialStatic; declaration_array->type = get_array_type(ira->codegen, type_info_declaration_type, declaration_count); declaration_array->data.x_array.special = ConstArraySpecialNone; declaration_array->data.x_array.data.s_none.elements = create_const_vals(declaration_count); init_const_slice(ira->codegen, out_val, declaration_array, 0, declaration_count, false); // Loop through the declarations and generate info. decl_it = decls_scope->decl_table.entry_iterator(); curr_entry = nullptr; int declaration_index = 0; while ((curr_entry = decl_it.next()) != nullptr) { // Skip comptime blocks and test functions. if (curr_entry->value->id == TldIdCompTime) { continue; } else if (curr_entry->value->id == TldIdFn) { ZigFn *fn_entry = ((TldFn *)curr_entry->value)->fn_entry; if (fn_entry->is_test) continue; } ConstExprValue *declaration_val = &declaration_array->data.x_array.data.s_none.elements[declaration_index]; declaration_val->special = ConstValSpecialStatic; declaration_val->type = type_info_declaration_type; ConstExprValue *inner_fields = create_const_vals(3); ConstExprValue *name = create_const_str_lit(ira->codegen, curr_entry->key); init_const_slice(ira->codegen, &inner_fields[0], name, 0, buf_len(curr_entry->key), true); inner_fields[1].special = ConstValSpecialStatic; inner_fields[1].type = ira->codegen->builtin_types.entry_bool; inner_fields[1].data.x_bool = curr_entry->value->visib_mod == VisibModPub; inner_fields[2].special = ConstValSpecialStatic; inner_fields[2].type = type_info_declaration_data_type; inner_fields[2].parent.id = ConstParentIdStruct; inner_fields[2].parent.data.p_struct.struct_val = declaration_val; inner_fields[2].parent.data.p_struct.field_index = 1; switch (curr_entry->value->id) { case TldIdVar: { ZigVar *var = ((TldVar *)curr_entry->value)->var; if ((err = type_resolve(ira->codegen, var->const_value->type, ResolveStatusSizeKnown))) return ErrorSemanticAnalyzeFail; if (var->const_value->type->id == ZigTypeIdMetaType) { // We have a variable of type 'type', so it's actually a type declaration. // 0: Data.Type: type bigint_init_unsigned(&inner_fields[2].data.x_union.tag, 0); inner_fields[2].data.x_union.payload = var->const_value; } else { // We have a variable of another type, so we store the type of the variable. // 1: Data.Var: type bigint_init_unsigned(&inner_fields[2].data.x_union.tag, 1); ConstExprValue *payload = create_const_vals(1); payload->type = ira->codegen->builtin_types.entry_type; payload->data.x_type = var->const_value->type; inner_fields[2].data.x_union.payload = payload; } break; } case TldIdFn: { // 2: Data.Fn: Data.FnDecl bigint_init_unsigned(&inner_fields[2].data.x_union.tag, 2); ZigFn *fn_entry = ((TldFn *)curr_entry->value)->fn_entry; assert(!fn_entry->is_test); if (fn_entry->type_entry == nullptr) { ir_error_dependency_loop(ira, source_instr); return ErrorSemanticAnalyzeFail; } AstNodeFnProto *fn_node = &fn_entry->proto_node->data.fn_proto; ConstExprValue *fn_decl_val = create_const_vals(1); fn_decl_val->special = ConstValSpecialStatic; fn_decl_val->type = type_info_fn_decl_type; fn_decl_val->parent.id = ConstParentIdUnion; fn_decl_val->parent.data.p_union.union_val = &inner_fields[2]; ConstExprValue *fn_decl_fields = create_const_vals(9); fn_decl_val->data.x_struct.fields = fn_decl_fields; // fn_type: type ensure_field_index(fn_decl_val->type, "fn_type", 0); fn_decl_fields[0].special = ConstValSpecialStatic; fn_decl_fields[0].type = ira->codegen->builtin_types.entry_type; fn_decl_fields[0].data.x_type = fn_entry->type_entry; // inline_type: Data.FnDecl.Inline ensure_field_index(fn_decl_val->type, "inline_type", 1); fn_decl_fields[1].special = ConstValSpecialStatic; fn_decl_fields[1].type = type_info_fn_decl_inline_type; bigint_init_unsigned(&fn_decl_fields[1].data.x_enum_tag, fn_entry->fn_inline); // calling_convention: TypeInfo.CallingConvention ensure_field_index(fn_decl_val->type, "calling_convention", 2); fn_decl_fields[2].special = ConstValSpecialStatic; fn_decl_fields[2].type = ir_type_info_get_type(ira, "CallingConvention", nullptr); bigint_init_unsigned(&fn_decl_fields[2].data.x_enum_tag, fn_node->cc); // is_var_args: bool ensure_field_index(fn_decl_val->type, "is_var_args", 3); bool is_varargs = fn_node->is_var_args; fn_decl_fields[3].special = ConstValSpecialStatic; fn_decl_fields[3].type = ira->codegen->builtin_types.entry_bool; fn_decl_fields[3].data.x_bool = is_varargs; // is_extern: bool ensure_field_index(fn_decl_val->type, "is_extern", 4); fn_decl_fields[4].special = ConstValSpecialStatic; fn_decl_fields[4].type = ira->codegen->builtin_types.entry_bool; fn_decl_fields[4].data.x_bool = fn_node->is_extern; // is_export: bool ensure_field_index(fn_decl_val->type, "is_export", 5); fn_decl_fields[5].special = ConstValSpecialStatic; fn_decl_fields[5].type = ira->codegen->builtin_types.entry_bool; fn_decl_fields[5].data.x_bool = fn_node->is_export; // lib_name: ?[]const u8 ensure_field_index(fn_decl_val->type, "lib_name", 6); fn_decl_fields[6].special = ConstValSpecialStatic; ZigType *u8_ptr = get_pointer_to_type_extra( ira->codegen, ira->codegen->builtin_types.entry_u8, true, false, PtrLenUnknown, 0, 0, 0, false); fn_decl_fields[6].type = get_optional_type(ira->codegen, get_slice_type(ira->codegen, u8_ptr)); if (fn_node->is_extern && fn_node->lib_name != nullptr && buf_len(fn_node->lib_name) > 0) { fn_decl_fields[6].data.x_optional = create_const_vals(1); ConstExprValue *lib_name = create_const_str_lit(ira->codegen, fn_node->lib_name); init_const_slice(ira->codegen, fn_decl_fields[6].data.x_optional, lib_name, 0, buf_len(fn_node->lib_name), true); } else { fn_decl_fields[6].data.x_optional = nullptr; } // return_type: type ensure_field_index(fn_decl_val->type, "return_type", 7); fn_decl_fields[7].special = ConstValSpecialStatic; fn_decl_fields[7].type = ira->codegen->builtin_types.entry_type; fn_decl_fields[7].data.x_type = fn_entry->type_entry->data.fn.fn_type_id.return_type; // arg_names: [][] const u8 ensure_field_index(fn_decl_val->type, "arg_names", 8); size_t fn_arg_count = fn_entry->variable_list.length; ConstExprValue *fn_arg_name_array = create_const_vals(1); fn_arg_name_array->special = ConstValSpecialStatic; fn_arg_name_array->type = get_array_type(ira->codegen, get_slice_type(ira->codegen, u8_ptr), fn_arg_count); fn_arg_name_array->data.x_array.special = ConstArraySpecialNone; fn_arg_name_array->data.x_array.data.s_none.elements = create_const_vals(fn_arg_count); init_const_slice(ira->codegen, &fn_decl_fields[8], fn_arg_name_array, 0, fn_arg_count, false); for (size_t fn_arg_index = 0; fn_arg_index < fn_arg_count; fn_arg_index++) { ZigVar *arg_var = fn_entry->variable_list.at(fn_arg_index); ConstExprValue *fn_arg_name_val = &fn_arg_name_array->data.x_array.data.s_none.elements[fn_arg_index]; ConstExprValue *arg_name = create_const_str_lit(ira->codegen, &arg_var->name); init_const_slice(ira->codegen, fn_arg_name_val, arg_name, 0, buf_len(&arg_var->name), true); fn_arg_name_val->parent.id = ConstParentIdArray; fn_arg_name_val->parent.data.p_array.array_val = fn_arg_name_array; fn_arg_name_val->parent.data.p_array.elem_index = fn_arg_index; } inner_fields[2].data.x_union.payload = fn_decl_val; break; } case TldIdContainer: { ZigType *type_entry = ((TldContainer *)curr_entry->value)->type_entry; if ((err = type_resolve(ira->codegen, type_entry, ResolveStatusSizeKnown))) return ErrorSemanticAnalyzeFail; // This is a type. bigint_init_unsigned(&inner_fields[2].data.x_union.tag, 0); ConstExprValue *payload = create_const_vals(1); payload->type = ira->codegen->builtin_types.entry_type; payload->data.x_type = type_entry; inner_fields[2].data.x_union.payload = payload; break; } default: zig_unreachable(); } declaration_val->data.x_struct.fields = inner_fields; declaration_index++; } assert(declaration_index == declaration_count); return ErrorNone; } static uint32_t ptr_len_to_size_enum_index(PtrLen ptr_len) { switch (ptr_len) { case PtrLenSingle: return 0; case PtrLenUnknown: return 1; case PtrLenC: return 3; } zig_unreachable(); } static ConstExprValue *create_ptr_like_type_info(IrAnalyze *ira, ZigType *ptr_type_entry) { Error err; ZigType *attrs_type; uint32_t size_enum_index; if (is_slice(ptr_type_entry)) { attrs_type = ptr_type_entry->data.structure.fields[slice_ptr_index].type_entry; size_enum_index = 2; } else if (ptr_type_entry->id == ZigTypeIdPointer) { attrs_type = ptr_type_entry; size_enum_index = ptr_len_to_size_enum_index(ptr_type_entry->data.pointer.ptr_len); } else { zig_unreachable(); } if ((err = type_resolve(ira->codegen, attrs_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) return nullptr; ZigType *type_info_pointer_type = ir_type_info_get_type(ira, "Pointer", nullptr); assertNoError(type_resolve(ira->codegen, type_info_pointer_type, ResolveStatusSizeKnown)); ConstExprValue *result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = type_info_pointer_type; ConstExprValue *fields = create_const_vals(6); result->data.x_struct.fields = fields; // size: Size ensure_field_index(result->type, "size", 0); ZigType *type_info_pointer_size_type = ir_type_info_get_type(ira, "Size", type_info_pointer_type); assertNoError(type_resolve(ira->codegen, type_info_pointer_size_type, ResolveStatusSizeKnown)); fields[0].special = ConstValSpecialStatic; fields[0].type = type_info_pointer_size_type; bigint_init_unsigned(&fields[0].data.x_enum_tag, size_enum_index); // is_const: bool ensure_field_index(result->type, "is_const", 1); fields[1].special = ConstValSpecialStatic; fields[1].type = ira->codegen->builtin_types.entry_bool; fields[1].data.x_bool = attrs_type->data.pointer.is_const; // is_volatile: bool ensure_field_index(result->type, "is_volatile", 2); fields[2].special = ConstValSpecialStatic; fields[2].type = ira->codegen->builtin_types.entry_bool; fields[2].data.x_bool = attrs_type->data.pointer.is_volatile; // alignment: u32 ensure_field_index(result->type, "alignment", 3); fields[3].special = ConstValSpecialStatic; fields[3].type = ira->codegen->builtin_types.entry_num_lit_int; bigint_init_unsigned(&fields[3].data.x_bigint, get_ptr_align(ira->codegen, attrs_type)); // child: type ensure_field_index(result->type, "child", 4); fields[4].special = ConstValSpecialStatic; fields[4].type = ira->codegen->builtin_types.entry_type; fields[4].data.x_type = attrs_type->data.pointer.child_type; // is_allowzero: bool ensure_field_index(result->type, "is_allowzero", 5); fields[5].special = ConstValSpecialStatic; fields[5].type = ira->codegen->builtin_types.entry_bool; fields[5].data.x_bool = attrs_type->data.pointer.allow_zero; return result; }; static void make_enum_field_val(IrAnalyze *ira, ConstExprValue *enum_field_val, TypeEnumField *enum_field, ZigType *type_info_enum_field_type) { enum_field_val->special = ConstValSpecialStatic; enum_field_val->type = type_info_enum_field_type; ConstExprValue *inner_fields = create_const_vals(2); inner_fields[1].special = ConstValSpecialStatic; inner_fields[1].type = ira->codegen->builtin_types.entry_num_lit_int; ConstExprValue *name = create_const_str_lit(ira->codegen, enum_field->name); init_const_slice(ira->codegen, &inner_fields[0], name, 0, buf_len(enum_field->name), true); bigint_init_bigint(&inner_fields[1].data.x_bigint, &enum_field->value); enum_field_val->data.x_struct.fields = inner_fields; } static Error ir_make_type_info_value(IrAnalyze *ira, IrInstruction *source_instr, ZigType *type_entry, ConstExprValue **out) { Error err; assert(type_entry != nullptr); assert(!type_is_invalid(type_entry)); if ((err = type_resolve(ira->codegen, type_entry, ResolveStatusSizeKnown))) return err; auto entry = ira->codegen->type_info_cache.maybe_get(type_entry); if (entry != nullptr) { *out = entry->value; return ErrorNone; } ConstExprValue *result = nullptr; switch (type_entry->id) { case ZigTypeIdInvalid: zig_unreachable(); case ZigTypeIdMetaType: case ZigTypeIdVoid: case ZigTypeIdBool: case ZigTypeIdUnreachable: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdArgTuple: case ZigTypeIdOpaque: result = &ira->codegen->const_void_val; break; case ZigTypeIdInt: { result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = ir_type_info_get_type(ira, "Int", nullptr); ConstExprValue *fields = create_const_vals(2); result->data.x_struct.fields = fields; // is_signed: bool ensure_field_index(result->type, "is_signed", 0); fields[0].special = ConstValSpecialStatic; fields[0].type = ira->codegen->builtin_types.entry_bool; fields[0].data.x_bool = type_entry->data.integral.is_signed; // bits: u8 ensure_field_index(result->type, "bits", 1); fields[1].special = ConstValSpecialStatic; fields[1].type = ira->codegen->builtin_types.entry_num_lit_int; bigint_init_unsigned(&fields[1].data.x_bigint, type_entry->data.integral.bit_count); break; } case ZigTypeIdFloat: { result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = ir_type_info_get_type(ira, "Float", nullptr); ConstExprValue *fields = create_const_vals(1); result->data.x_struct.fields = fields; // bits: u8 ensure_field_index(result->type, "bits", 0); fields[0].special = ConstValSpecialStatic; fields[0].type = ira->codegen->builtin_types.entry_num_lit_int; bigint_init_unsigned(&fields->data.x_bigint, type_entry->data.floating.bit_count); break; } case ZigTypeIdPointer: { result = create_ptr_like_type_info(ira, type_entry); if (result == nullptr) return ErrorSemanticAnalyzeFail; break; } case ZigTypeIdArray: { result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = ir_type_info_get_type(ira, "Array", nullptr); ConstExprValue *fields = create_const_vals(2); result->data.x_struct.fields = fields; // len: usize ensure_field_index(result->type, "len", 0); fields[0].special = ConstValSpecialStatic; fields[0].type = ira->codegen->builtin_types.entry_num_lit_int; bigint_init_unsigned(&fields[0].data.x_bigint, type_entry->data.array.len); // child: type ensure_field_index(result->type, "child", 1); fields[1].special = ConstValSpecialStatic; fields[1].type = ira->codegen->builtin_types.entry_type; fields[1].data.x_type = type_entry->data.array.child_type; break; } case ZigTypeIdVector: { result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = ir_type_info_get_type(ira, "Vector", nullptr); ConstExprValue *fields = create_const_vals(2); result->data.x_struct.fields = fields; // len: usize ensure_field_index(result->type, "len", 0); fields[0].special = ConstValSpecialStatic; fields[0].type = ira->codegen->builtin_types.entry_num_lit_int; bigint_init_unsigned(&fields[0].data.x_bigint, type_entry->data.vector.len); // child: type ensure_field_index(result->type, "child", 1); fields[1].special = ConstValSpecialStatic; fields[1].type = ira->codegen->builtin_types.entry_type; fields[1].data.x_type = type_entry->data.vector.elem_type; break; } case ZigTypeIdOptional: { result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = ir_type_info_get_type(ira, "Optional", nullptr); ConstExprValue *fields = create_const_vals(1); result->data.x_struct.fields = fields; // child: type ensure_field_index(result->type, "child", 0); fields[0].special = ConstValSpecialStatic; fields[0].type = ira->codegen->builtin_types.entry_type; fields[0].data.x_type = type_entry->data.maybe.child_type; break; } case ZigTypeIdAnyFrame: { result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = ir_type_info_get_type(ira, "AnyFrame", nullptr); ConstExprValue *fields = create_const_vals(1); result->data.x_struct.fields = fields; // child: ?type ensure_field_index(result->type, "child", 0); fields[0].special = ConstValSpecialStatic; fields[0].type = get_optional_type(ira->codegen, ira->codegen->builtin_types.entry_type); fields[0].data.x_optional = (type_entry->data.any_frame.result_type == nullptr) ? nullptr : create_const_type(ira->codegen, type_entry->data.any_frame.result_type); break; } case ZigTypeIdEnum: { result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = ir_type_info_get_type(ira, "Enum", nullptr); ConstExprValue *fields = create_const_vals(4); result->data.x_struct.fields = fields; // layout: ContainerLayout ensure_field_index(result->type, "layout", 0); fields[0].special = ConstValSpecialStatic; fields[0].type = ir_type_info_get_type(ira, "ContainerLayout", nullptr); bigint_init_unsigned(&fields[0].data.x_enum_tag, type_entry->data.enumeration.layout); // tag_type: type ensure_field_index(result->type, "tag_type", 1); fields[1].special = ConstValSpecialStatic; fields[1].type = ira->codegen->builtin_types.entry_type; fields[1].data.x_type = type_entry->data.enumeration.tag_int_type; // fields: []TypeInfo.EnumField ensure_field_index(result->type, "fields", 2); ZigType *type_info_enum_field_type = ir_type_info_get_type(ira, "EnumField", nullptr); if ((err = type_resolve(ira->codegen, type_info_enum_field_type, ResolveStatusSizeKnown))) { zig_unreachable(); } uint32_t enum_field_count = type_entry->data.enumeration.src_field_count; ConstExprValue *enum_field_array = create_const_vals(1); enum_field_array->special = ConstValSpecialStatic; enum_field_array->type = get_array_type(ira->codegen, type_info_enum_field_type, enum_field_count); enum_field_array->data.x_array.special = ConstArraySpecialNone; enum_field_array->data.x_array.data.s_none.elements = create_const_vals(enum_field_count); init_const_slice(ira->codegen, &fields[2], enum_field_array, 0, enum_field_count, false); for (uint32_t enum_field_index = 0; enum_field_index < enum_field_count; enum_field_index++) { TypeEnumField *enum_field = &type_entry->data.enumeration.fields[enum_field_index]; ConstExprValue *enum_field_val = &enum_field_array->data.x_array.data.s_none.elements[enum_field_index]; make_enum_field_val(ira, enum_field_val, enum_field, type_info_enum_field_type); enum_field_val->parent.id = ConstParentIdArray; enum_field_val->parent.data.p_array.array_val = enum_field_array; enum_field_val->parent.data.p_array.elem_index = enum_field_index; } // decls: []TypeInfo.Declaration ensure_field_index(result->type, "decls", 3); if ((err = ir_make_type_info_decls(ira, source_instr, &fields[3], type_entry->data.enumeration.decls_scope))) { return err; } break; } case ZigTypeIdErrorSet: { result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = ir_type_info_get_type(ira, "ErrorSet", nullptr); ZigType *type_info_error_type = ir_type_info_get_type(ira, "Error", nullptr); if (!resolve_inferred_error_set(ira->codegen, type_entry, source_instr->source_node)) { return ErrorSemanticAnalyzeFail; } if (type_is_global_error_set(type_entry)) { result->data.x_optional = nullptr; break; } if ((err = type_resolve(ira->codegen, type_info_error_type, ResolveStatusSizeKnown))) { zig_unreachable(); } ConstExprValue *slice_val = create_const_vals(1); result->data.x_optional = slice_val; uint32_t error_count = type_entry->data.error_set.err_count; ConstExprValue *error_array = create_const_vals(1); error_array->special = ConstValSpecialStatic; error_array->type = get_array_type(ira->codegen, type_info_error_type, error_count); error_array->data.x_array.special = ConstArraySpecialNone; error_array->data.x_array.data.s_none.elements = create_const_vals(error_count); init_const_slice(ira->codegen, slice_val, error_array, 0, error_count, false); for (uint32_t error_index = 0; error_index < error_count; error_index++) { ErrorTableEntry *error = type_entry->data.error_set.errors[error_index]; ConstExprValue *error_val = &error_array->data.x_array.data.s_none.elements[error_index]; error_val->special = ConstValSpecialStatic; error_val->type = type_info_error_type; ConstExprValue *inner_fields = create_const_vals(2); inner_fields[1].special = ConstValSpecialStatic; inner_fields[1].type = ira->codegen->builtin_types.entry_num_lit_int; ConstExprValue *name = nullptr; if (error->cached_error_name_val != nullptr) name = error->cached_error_name_val; if (name == nullptr) name = create_const_str_lit(ira->codegen, &error->name); init_const_slice(ira->codegen, &inner_fields[0], name, 0, buf_len(&error->name), true); bigint_init_unsigned(&inner_fields[1].data.x_bigint, error->value); error_val->data.x_struct.fields = inner_fields; error_val->parent.id = ConstParentIdArray; error_val->parent.data.p_array.array_val = error_array; error_val->parent.data.p_array.elem_index = error_index; } break; } case ZigTypeIdErrorUnion: { result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = ir_type_info_get_type(ira, "ErrorUnion", nullptr); ConstExprValue *fields = create_const_vals(2); result->data.x_struct.fields = fields; // error_set: type ensure_field_index(result->type, "error_set", 0); fields[0].special = ConstValSpecialStatic; fields[0].type = ira->codegen->builtin_types.entry_type; fields[0].data.x_type = type_entry->data.error_union.err_set_type; // payload: type ensure_field_index(result->type, "payload", 1); fields[1].special = ConstValSpecialStatic; fields[1].type = ira->codegen->builtin_types.entry_type; fields[1].data.x_type = type_entry->data.error_union.payload_type; break; } case ZigTypeIdUnion: { result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = ir_type_info_get_type(ira, "Union", nullptr); ConstExprValue *fields = create_const_vals(4); result->data.x_struct.fields = fields; // layout: ContainerLayout ensure_field_index(result->type, "layout", 0); fields[0].special = ConstValSpecialStatic; fields[0].type = ir_type_info_get_type(ira, "ContainerLayout", nullptr); bigint_init_unsigned(&fields[0].data.x_enum_tag, type_entry->data.unionation.layout); // tag_type: ?type ensure_field_index(result->type, "tag_type", 1); fields[1].special = ConstValSpecialStatic; fields[1].type = get_optional_type(ira->codegen, ira->codegen->builtin_types.entry_type); AstNode *union_decl_node = type_entry->data.unionation.decl_node; if (union_decl_node->data.container_decl.auto_enum || union_decl_node->data.container_decl.init_arg_expr != nullptr) { ConstExprValue *tag_type = create_const_vals(1); tag_type->special = ConstValSpecialStatic; tag_type->type = ira->codegen->builtin_types.entry_type; tag_type->data.x_type = type_entry->data.unionation.tag_type; fields[1].data.x_optional = tag_type; } else { fields[1].data.x_optional = nullptr; } // fields: []TypeInfo.UnionField ensure_field_index(result->type, "fields", 2); ZigType *type_info_union_field_type = ir_type_info_get_type(ira, "UnionField", nullptr); if ((err = type_resolve(ira->codegen, type_info_union_field_type, ResolveStatusSizeKnown))) zig_unreachable(); uint32_t union_field_count = type_entry->data.unionation.src_field_count; ConstExprValue *union_field_array = create_const_vals(1); union_field_array->special = ConstValSpecialStatic; union_field_array->type = get_array_type(ira->codegen, type_info_union_field_type, union_field_count); union_field_array->data.x_array.special = ConstArraySpecialNone; union_field_array->data.x_array.data.s_none.elements = create_const_vals(union_field_count); init_const_slice(ira->codegen, &fields[2], union_field_array, 0, union_field_count, false); ZigType *type_info_enum_field_type = ir_type_info_get_type(ira, "EnumField", nullptr); for (uint32_t union_field_index = 0; union_field_index < union_field_count; union_field_index++) { TypeUnionField *union_field = &type_entry->data.unionation.fields[union_field_index]; ConstExprValue *union_field_val = &union_field_array->data.x_array.data.s_none.elements[union_field_index]; union_field_val->special = ConstValSpecialStatic; union_field_val->type = type_info_union_field_type; ConstExprValue *inner_fields = create_const_vals(3); inner_fields[1].special = ConstValSpecialStatic; inner_fields[1].type = get_optional_type(ira->codegen, type_info_enum_field_type); if (fields[1].data.x_optional == nullptr) { inner_fields[1].data.x_optional = nullptr; } else { inner_fields[1].data.x_optional = create_const_vals(1); make_enum_field_val(ira, inner_fields[1].data.x_optional, union_field->enum_field, type_info_enum_field_type); } inner_fields[2].special = ConstValSpecialStatic; inner_fields[2].type = ira->codegen->builtin_types.entry_type; inner_fields[2].data.x_type = union_field->type_entry; ConstExprValue *name = create_const_str_lit(ira->codegen, union_field->name); init_const_slice(ira->codegen, &inner_fields[0], name, 0, buf_len(union_field->name), true); union_field_val->data.x_struct.fields = inner_fields; union_field_val->parent.id = ConstParentIdArray; union_field_val->parent.data.p_array.array_val = union_field_array; union_field_val->parent.data.p_array.elem_index = union_field_index; } // decls: []TypeInfo.Declaration ensure_field_index(result->type, "decls", 3); if ((err = ir_make_type_info_decls(ira, source_instr, &fields[3], type_entry->data.unionation.decls_scope))) { return err; } break; } case ZigTypeIdStruct: { if (type_entry->data.structure.is_slice) { result = create_ptr_like_type_info(ira, type_entry); if (result == nullptr) return ErrorSemanticAnalyzeFail; break; } result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = ir_type_info_get_type(ira, "Struct", nullptr); ConstExprValue *fields = create_const_vals(3); result->data.x_struct.fields = fields; // layout: ContainerLayout ensure_field_index(result->type, "layout", 0); fields[0].special = ConstValSpecialStatic; fields[0].type = ir_type_info_get_type(ira, "ContainerLayout", nullptr); bigint_init_unsigned(&fields[0].data.x_enum_tag, type_entry->data.structure.layout); // fields: []TypeInfo.StructField ensure_field_index(result->type, "fields", 1); ZigType *type_info_struct_field_type = ir_type_info_get_type(ira, "StructField", nullptr); if ((err = type_resolve(ira->codegen, type_info_struct_field_type, ResolveStatusSizeKnown))) { zig_unreachable(); } uint32_t struct_field_count = type_entry->data.structure.src_field_count; ConstExprValue *struct_field_array = create_const_vals(1); struct_field_array->special = ConstValSpecialStatic; struct_field_array->type = get_array_type(ira->codegen, type_info_struct_field_type, struct_field_count); struct_field_array->data.x_array.special = ConstArraySpecialNone; struct_field_array->data.x_array.data.s_none.elements = create_const_vals(struct_field_count); init_const_slice(ira->codegen, &fields[1], struct_field_array, 0, struct_field_count, false); for (uint32_t struct_field_index = 0; struct_field_index < struct_field_count; struct_field_index++) { TypeStructField *struct_field = &type_entry->data.structure.fields[struct_field_index]; ConstExprValue *struct_field_val = &struct_field_array->data.x_array.data.s_none.elements[struct_field_index]; struct_field_val->special = ConstValSpecialStatic; struct_field_val->type = type_info_struct_field_type; ConstExprValue *inner_fields = create_const_vals(3); inner_fields[1].special = ConstValSpecialStatic; inner_fields[1].type = get_optional_type(ira->codegen, ira->codegen->builtin_types.entry_num_lit_int); if (!type_has_bits(struct_field->type_entry)) { inner_fields[1].data.x_optional = nullptr; } else { size_t byte_offset = struct_field->offset; inner_fields[1].data.x_optional = create_const_vals(1); inner_fields[1].data.x_optional->special = ConstValSpecialStatic; inner_fields[1].data.x_optional->type = ira->codegen->builtin_types.entry_num_lit_int; bigint_init_unsigned(&inner_fields[1].data.x_optional->data.x_bigint, byte_offset); } inner_fields[2].special = ConstValSpecialStatic; inner_fields[2].type = ira->codegen->builtin_types.entry_type; inner_fields[2].data.x_type = struct_field->type_entry; ConstExprValue *name = create_const_str_lit(ira->codegen, struct_field->name); init_const_slice(ira->codegen, &inner_fields[0], name, 0, buf_len(struct_field->name), true); struct_field_val->data.x_struct.fields = inner_fields; struct_field_val->parent.id = ConstParentIdArray; struct_field_val->parent.data.p_array.array_val = struct_field_array; struct_field_val->parent.data.p_array.elem_index = struct_field_index; } // decls: []TypeInfo.Declaration ensure_field_index(result->type, "decls", 2); if ((err = ir_make_type_info_decls(ira, source_instr, &fields[2], type_entry->data.structure.decls_scope))) { return err; } break; } case ZigTypeIdFn: { result = create_const_vals(1); result->special = ConstValSpecialStatic; result->type = ir_type_info_get_type(ira, "Fn", nullptr); ConstExprValue *fields = create_const_vals(5); result->data.x_struct.fields = fields; // calling_convention: TypeInfo.CallingConvention ensure_field_index(result->type, "calling_convention", 0); fields[0].special = ConstValSpecialStatic; fields[0].type = ir_type_info_get_type(ira, "CallingConvention", nullptr); bigint_init_unsigned(&fields[0].data.x_enum_tag, type_entry->data.fn.fn_type_id.cc); // is_generic: bool ensure_field_index(result->type, "is_generic", 1); bool is_generic = type_entry->data.fn.is_generic; fields[1].special = ConstValSpecialStatic; fields[1].type = ira->codegen->builtin_types.entry_bool; fields[1].data.x_bool = is_generic; // is_varargs: bool ensure_field_index(result->type, "is_var_args", 2); bool is_varargs = type_entry->data.fn.fn_type_id.is_var_args; fields[2].special = ConstValSpecialStatic; fields[2].type = ira->codegen->builtin_types.entry_bool; fields[2].data.x_bool = type_entry->data.fn.fn_type_id.is_var_args; // return_type: ?type ensure_field_index(result->type, "return_type", 3); fields[3].special = ConstValSpecialStatic; fields[3].type = get_optional_type(ira->codegen, ira->codegen->builtin_types.entry_type); if (type_entry->data.fn.fn_type_id.return_type == nullptr) fields[3].data.x_optional = nullptr; else { ConstExprValue *return_type = create_const_vals(1); return_type->special = ConstValSpecialStatic; return_type->type = ira->codegen->builtin_types.entry_type; return_type->data.x_type = type_entry->data.fn.fn_type_id.return_type; fields[3].data.x_optional = return_type; } // args: []TypeInfo.FnArg ZigType *type_info_fn_arg_type = ir_type_info_get_type(ira, "FnArg", nullptr); if ((err = type_resolve(ira->codegen, type_info_fn_arg_type, ResolveStatusSizeKnown))) { zig_unreachable(); } size_t fn_arg_count = type_entry->data.fn.fn_type_id.param_count - (is_varargs && type_entry->data.fn.fn_type_id.cc != CallingConventionC); ConstExprValue *fn_arg_array = create_const_vals(1); fn_arg_array->special = ConstValSpecialStatic; fn_arg_array->type = get_array_type(ira->codegen, type_info_fn_arg_type, fn_arg_count); fn_arg_array->data.x_array.special = ConstArraySpecialNone; fn_arg_array->data.x_array.data.s_none.elements = create_const_vals(fn_arg_count); init_const_slice(ira->codegen, &fields[4], fn_arg_array, 0, fn_arg_count, false); for (size_t fn_arg_index = 0; fn_arg_index < fn_arg_count; fn_arg_index++) { FnTypeParamInfo *fn_param_info = &type_entry->data.fn.fn_type_id.param_info[fn_arg_index]; ConstExprValue *fn_arg_val = &fn_arg_array->data.x_array.data.s_none.elements[fn_arg_index]; fn_arg_val->special = ConstValSpecialStatic; fn_arg_val->type = type_info_fn_arg_type; bool arg_is_generic = fn_param_info->type == nullptr; if (arg_is_generic) assert(is_generic); ConstExprValue *inner_fields = create_const_vals(3); inner_fields[0].special = ConstValSpecialStatic; inner_fields[0].type = ira->codegen->builtin_types.entry_bool; inner_fields[0].data.x_bool = arg_is_generic; inner_fields[1].special = ConstValSpecialStatic; inner_fields[1].type = ira->codegen->builtin_types.entry_bool; inner_fields[1].data.x_bool = fn_param_info->is_noalias; inner_fields[2].special = ConstValSpecialStatic; inner_fields[2].type = get_optional_type(ira->codegen, ira->codegen->builtin_types.entry_type); if (arg_is_generic) inner_fields[2].data.x_optional = nullptr; else { ConstExprValue *arg_type = create_const_vals(1); arg_type->special = ConstValSpecialStatic; arg_type->type = ira->codegen->builtin_types.entry_type; arg_type->data.x_type = fn_param_info->type; inner_fields[2].data.x_optional = arg_type; } fn_arg_val->data.x_struct.fields = inner_fields; fn_arg_val->parent.id = ConstParentIdArray; fn_arg_val->parent.data.p_array.array_val = fn_arg_array; fn_arg_val->parent.data.p_array.elem_index = fn_arg_index; } break; } case ZigTypeIdBoundFn: { ZigType *fn_type = type_entry->data.bound_fn.fn_type; assert(fn_type->id == ZigTypeIdFn); if ((err = ir_make_type_info_value(ira, source_instr, fn_type, &result))) return err; break; } case ZigTypeIdFnFrame: zig_panic("TODO @typeInfo for async function frames"); } assert(result != nullptr); ira->codegen->type_info_cache.put(type_entry, result); *out = result; return ErrorNone; } static IrInstruction *ir_analyze_instruction_type_info(IrAnalyze *ira, IrInstructionTypeInfo *instruction) { Error err; IrInstruction *type_value = instruction->type_value->child; ZigType *type_entry = ir_resolve_type(ira, type_value); if (type_is_invalid(type_entry)) return ira->codegen->invalid_instruction; ZigType *result_type = ir_type_info_get_type(ira, nullptr, nullptr); ConstExprValue *payload; if ((err = ir_make_type_info_value(ira, &instruction->base, type_entry, &payload))) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, &instruction->base, result_type); ConstExprValue *out_val = &result->value; bigint_init_unsigned(&out_val->data.x_union.tag, type_id_index(type_entry)); out_val->data.x_union.payload = payload; if (payload != nullptr) { payload->parent.id = ConstParentIdUnion; payload->parent.data.p_union.union_val = out_val; } return result; } static IrInstruction *ir_analyze_instruction_type_id(IrAnalyze *ira, IrInstructionTypeId *instruction) { IrInstruction *type_value = instruction->type_value->child; ZigType *type_entry = ir_resolve_type(ira, type_value); if (type_is_invalid(type_entry)) return ira->codegen->invalid_instruction; ConstExprValue *var_value = get_builtin_value(ira->codegen, "TypeId"); assert(var_value->type->id == ZigTypeIdMetaType); ZigType *result_type = var_value->data.x_type; IrInstruction *result = ir_const(ira, &instruction->base, result_type); bigint_init_unsigned(&result->value.data.x_enum_tag, type_id_index(type_entry)); return result; } static IrInstruction *ir_analyze_instruction_set_eval_branch_quota(IrAnalyze *ira, IrInstructionSetEvalBranchQuota *instruction) { uint64_t new_quota; if (!ir_resolve_usize(ira, instruction->new_quota->child, &new_quota)) return ira->codegen->invalid_instruction; if (new_quota > *ira->new_irb.exec->backward_branch_quota) { *ira->new_irb.exec->backward_branch_quota = new_quota; } return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_type_name(IrAnalyze *ira, IrInstructionTypeName *instruction) { IrInstruction *type_value = instruction->type_value->child; ZigType *type_entry = ir_resolve_type(ira, type_value); if (type_is_invalid(type_entry)) return ira->codegen->invalid_instruction; if (!type_entry->cached_const_name_val) { type_entry->cached_const_name_val = create_const_str_lit(ira->codegen, type_bare_name(type_entry)); } IrInstruction *result = ir_const(ira, &instruction->base, nullptr); copy_const_val(&result->value, type_entry->cached_const_name_val, true); return result; } static void ir_cimport_cache_paths(Buf *cache_dir, Buf *tmp_c_file_digest, Buf *out_zig_dir, Buf *out_zig_path) { buf_resize(out_zig_dir, 0); buf_resize(out_zig_path, 0); buf_appendf(out_zig_dir, "%s" OS_SEP "o" OS_SEP "%s", buf_ptr(cache_dir), buf_ptr(tmp_c_file_digest)); buf_appendf(out_zig_path, "%s" OS_SEP "cimport.zig", buf_ptr(out_zig_dir)); } static IrInstruction *ir_analyze_instruction_c_import(IrAnalyze *ira, IrInstructionCImport *instruction) { Error err; AstNode *node = instruction->base.source_node; assert(node->type == NodeTypeFnCallExpr); AstNode *block_node = node->data.fn_call_expr.params.at(0); ScopeCImport *cimport_scope = create_cimport_scope(ira->codegen, node, instruction->base.scope); // Execute the C import block like an inline function ZigType *void_type = ira->codegen->builtin_types.entry_void; ConstExprValue *cimport_result = ir_eval_const_value(ira->codegen, &cimport_scope->base, block_node, void_type, ira->new_irb.exec->backward_branch_count, ira->new_irb.exec->backward_branch_quota, nullptr, &cimport_scope->buf, block_node, nullptr, nullptr, nullptr, UndefBad); if (type_is_invalid(cimport_result->type)) return ira->codegen->invalid_instruction; ZigPackage *cur_scope_pkg = scope_package(instruction->base.scope); Buf *namespace_name = buf_sprintf("%s.cimport:%" ZIG_PRI_usize ":%" ZIG_PRI_usize, buf_ptr(&cur_scope_pkg->pkg_path), node->line + 1, node->column + 1); ZigPackage *cimport_pkg = new_anonymous_package(); cimport_pkg->package_table.put(buf_create_from_str("builtin"), ira->codegen->compile_var_package); cimport_pkg->package_table.put(buf_create_from_str("std"), ira->codegen->std_package); buf_init_from_buf(&cimport_pkg->pkg_path, namespace_name); CacheHash *cache_hash; if ((err = create_c_object_cache(ira->codegen, &cache_hash, false))) { ir_add_error_node(ira, node, buf_sprintf("C import failed: unable to create cache: %s", err_str(err))); return ira->codegen->invalid_instruction; } cache_buf(cache_hash, &cimport_scope->buf); // Set this because we're not adding any files before checking for a hit. cache_hash->force_check_manifest = true; Buf tmp_c_file_digest = BUF_INIT; buf_resize(&tmp_c_file_digest, 0); if ((err = cache_hit(cache_hash, &tmp_c_file_digest))) { if (err != ErrorInvalidFormat) { ir_add_error_node(ira, node, buf_sprintf("C import failed: unable to check cache: %s", err_str(err))); return ira->codegen->invalid_instruction; } } ira->codegen->caches_to_release.append(cache_hash); Buf *out_zig_dir = buf_alloc(); Buf *out_zig_path = buf_alloc(); if (buf_len(&tmp_c_file_digest) == 0 || cache_hash->files.length == 0) { // Cache Miss Buf *tmp_c_file_dir = buf_sprintf("%s" OS_SEP "o" OS_SEP "%s", buf_ptr(ira->codegen->cache_dir), buf_ptr(&cache_hash->b64_digest)); Buf *resolve_paths[] = { tmp_c_file_dir, buf_create_from_str("cimport.h"), }; Buf tmp_c_file_path = os_path_resolve(resolve_paths, 2); if ((err = os_make_path(tmp_c_file_dir))) { ir_add_error_node(ira, node, buf_sprintf("C import failed: unable to make dir: %s", err_str(err))); return ira->codegen->invalid_instruction; } if ((err = os_write_file(&tmp_c_file_path, &cimport_scope->buf))) { ir_add_error_node(ira, node, buf_sprintf("C import failed: unable to write .h file: %s", err_str(err))); return ira->codegen->invalid_instruction; } if (ira->codegen->verbose_cimport) { fprintf(stderr, "@cImport source: %s\n", buf_ptr(&tmp_c_file_path)); } Buf *tmp_dep_file = buf_sprintf("%s.d", buf_ptr(&tmp_c_file_path)); ZigList clang_argv = {0}; add_cc_args(ira->codegen, clang_argv, buf_ptr(tmp_dep_file), true); clang_argv.append(buf_ptr(&tmp_c_file_path)); if (ira->codegen->verbose_cc) { fprintf(stderr, "clang"); for (size_t i = 0; i < clang_argv.length; i += 1) { fprintf(stderr, " %s", clang_argv.at(i)); } fprintf(stderr, "\n"); } clang_argv.append(nullptr); // to make the [start...end] argument work AstNode *root_node; Stage2ErrorMsg *errors_ptr; size_t errors_len; const char *resources_path = buf_ptr(ira->codegen->zig_c_headers_dir); if ((err = parse_h_file(ira->codegen, &root_node, &errors_ptr, &errors_len, &clang_argv.at(0), &clang_argv.last(), Stage2TranslateModeImport, resources_path))) { if (err != ErrorCCompileErrors) { ir_add_error_node(ira, node, buf_sprintf("C import failed: %s", err_str(err))); return ira->codegen->invalid_instruction; } ErrorMsg *parent_err_msg = ir_add_error_node(ira, node, buf_sprintf("C import failed")); if (ira->codegen->libc_link_lib == nullptr) { add_error_note(ira->codegen, parent_err_msg, node, buf_sprintf("libc headers not available; compilation does not link against libc")); } for (size_t i = 0; i < errors_len; i += 1) { Stage2ErrorMsg *clang_err = &errors_ptr[i]; // Clang can emit "too many errors, stopping now", in which case `source` and `filename_ptr` are null if (clang_err->source && clang_err->filename_ptr) { ErrorMsg *err_msg = err_msg_create_with_offset( clang_err->filename_ptr ? buf_create_from_mem(clang_err->filename_ptr, clang_err->filename_len) : buf_alloc(), clang_err->line, clang_err->column, clang_err->offset, clang_err->source, buf_create_from_mem(clang_err->msg_ptr, clang_err->msg_len)); err_msg_add_note(parent_err_msg, err_msg); } } return ira->codegen->invalid_instruction; } if (ira->codegen->verbose_cimport) { fprintf(stderr, "@cImport .d file: %s\n", buf_ptr(tmp_dep_file)); } if ((err = cache_add_dep_file(cache_hash, tmp_dep_file, false))) { ir_add_error_node(ira, node, buf_sprintf("C import failed: unable to parse .d file: %s", err_str(err))); return ira->codegen->invalid_instruction; } if ((err = cache_final(cache_hash, &tmp_c_file_digest))) { ir_add_error_node(ira, node, buf_sprintf("C import failed: unable to finalize cache: %s", err_str(err))); return ira->codegen->invalid_instruction; } ir_cimport_cache_paths(ira->codegen->cache_dir, &tmp_c_file_digest, out_zig_dir, out_zig_path); if ((err = os_make_path(out_zig_dir))) { ir_add_error_node(ira, node, buf_sprintf("C import failed: unable to make output dir: %s", err_str(err))); return ira->codegen->invalid_instruction; } FILE *out_file = fopen(buf_ptr(out_zig_path), "wb"); if (out_file == nullptr) { ir_add_error_node(ira, node, buf_sprintf("C import failed: unable to open output file: %s", strerror(errno))); return ira->codegen->invalid_instruction; } ast_render(out_file, root_node, 4); if (fclose(out_file) != 0) { ir_add_error_node(ira, node, buf_sprintf("C import failed: unable to write to output file: %s", strerror(errno))); return ira->codegen->invalid_instruction; } if (ira->codegen->verbose_cimport) { fprintf(stderr, "@cImport output: %s\n", buf_ptr(out_zig_path)); } } else { // Cache Hit ir_cimport_cache_paths(ira->codegen->cache_dir, &tmp_c_file_digest, out_zig_dir, out_zig_path); if (ira->codegen->verbose_cimport) { fprintf(stderr, "@cImport cache hit: %s\n", buf_ptr(out_zig_path)); } } Buf *import_code = buf_alloc(); if ((err = file_fetch(ira->codegen, out_zig_path, import_code))) { ir_add_error_node(ira, node, buf_sprintf("unable to open '%s': %s", buf_ptr(out_zig_path), err_str(err))); return ira->codegen->invalid_instruction; } ZigType *child_import = add_source_file(ira->codegen, cimport_pkg, out_zig_path, import_code, SourceKindCImport); return ir_const_type(ira, &instruction->base, child_import); } static IrInstruction *ir_analyze_instruction_c_include(IrAnalyze *ira, IrInstructionCInclude *instruction) { IrInstruction *name_value = instruction->name->child; if (type_is_invalid(name_value->value.type)) return ira->codegen->invalid_instruction; Buf *include_name = ir_resolve_str(ira, name_value); if (!include_name) return ira->codegen->invalid_instruction; Buf *c_import_buf = exec_c_import_buf(ira->new_irb.exec); // We check for this error in pass1 assert(c_import_buf); buf_appendf(c_import_buf, "#include <%s>\n", buf_ptr(include_name)); return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_c_define(IrAnalyze *ira, IrInstructionCDefine *instruction) { IrInstruction *name = instruction->name->child; if (type_is_invalid(name->value.type)) return ira->codegen->invalid_instruction; Buf *define_name = ir_resolve_str(ira, name); if (!define_name) return ira->codegen->invalid_instruction; IrInstruction *value = instruction->value->child; if (type_is_invalid(value->value.type)) return ira->codegen->invalid_instruction; Buf *define_value = ir_resolve_str(ira, value); if (!define_value) return ira->codegen->invalid_instruction; Buf *c_import_buf = exec_c_import_buf(ira->new_irb.exec); // We check for this error in pass1 assert(c_import_buf); buf_appendf(c_import_buf, "#define %s %s\n", buf_ptr(define_name), buf_ptr(define_value)); return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_c_undef(IrAnalyze *ira, IrInstructionCUndef *instruction) { IrInstruction *name = instruction->name->child; if (type_is_invalid(name->value.type)) return ira->codegen->invalid_instruction; Buf *undef_name = ir_resolve_str(ira, name); if (!undef_name) return ira->codegen->invalid_instruction; Buf *c_import_buf = exec_c_import_buf(ira->new_irb.exec); // We check for this error in pass1 assert(c_import_buf); buf_appendf(c_import_buf, "#undef %s\n", buf_ptr(undef_name)); return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_embed_file(IrAnalyze *ira, IrInstructionEmbedFile *instruction) { IrInstruction *name = instruction->name->child; if (type_is_invalid(name->value.type)) return ira->codegen->invalid_instruction; Buf *rel_file_path = ir_resolve_str(ira, name); if (!rel_file_path) return ira->codegen->invalid_instruction; ZigType *import = get_scope_import(instruction->base.scope); // figure out absolute path to resource Buf source_dir_path = BUF_INIT; os_path_dirname(import->data.structure.root_struct->path, &source_dir_path); Buf *resolve_paths[] = { &source_dir_path, rel_file_path, }; Buf *file_path = buf_alloc(); *file_path = os_path_resolve(resolve_paths, 2); // load from file system into const expr Buf *file_contents = buf_alloc(); Error err; if ((err = file_fetch(ira->codegen, file_path, file_contents))) { if (err == ErrorFileNotFound) { ir_add_error(ira, instruction->name, buf_sprintf("unable to find '%s'", buf_ptr(file_path))); return ira->codegen->invalid_instruction; } else { ir_add_error(ira, instruction->name, buf_sprintf("unable to open '%s': %s", buf_ptr(file_path), err_str(err))); return ira->codegen->invalid_instruction; } } ZigType *result_type = get_array_type(ira->codegen, ira->codegen->builtin_types.entry_u8, buf_len(file_contents)); IrInstruction *result = ir_const(ira, &instruction->base, result_type); init_const_str_lit(ira->codegen, &result->value, file_contents); return result; } static IrInstruction *ir_analyze_instruction_cmpxchg(IrAnalyze *ira, IrInstructionCmpxchgSrc *instruction) { ZigType *operand_type = ir_resolve_atomic_operand_type(ira, instruction->type_value->child); if (type_is_invalid(operand_type)) return ira->codegen->invalid_instruction; IrInstruction *ptr = instruction->ptr->child; if (type_is_invalid(ptr->value.type)) return ira->codegen->invalid_instruction; // TODO let this be volatile ZigType *ptr_type = get_pointer_to_type(ira->codegen, operand_type, false); IrInstruction *casted_ptr = ir_implicit_cast(ira, ptr, ptr_type); if (type_is_invalid(casted_ptr->value.type)) return ira->codegen->invalid_instruction; IrInstruction *cmp_value = instruction->cmp_value->child; if (type_is_invalid(cmp_value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *new_value = instruction->new_value->child; if (type_is_invalid(new_value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *success_order_value = instruction->success_order_value->child; if (type_is_invalid(success_order_value->value.type)) return ira->codegen->invalid_instruction; AtomicOrder success_order; if (!ir_resolve_atomic_order(ira, success_order_value, &success_order)) return ira->codegen->invalid_instruction; IrInstruction *failure_order_value = instruction->failure_order_value->child; if (type_is_invalid(failure_order_value->value.type)) return ira->codegen->invalid_instruction; AtomicOrder failure_order; if (!ir_resolve_atomic_order(ira, failure_order_value, &failure_order)) return ira->codegen->invalid_instruction; IrInstruction *casted_cmp_value = ir_implicit_cast(ira, cmp_value, operand_type); if (type_is_invalid(casted_cmp_value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_new_value = ir_implicit_cast(ira, new_value, operand_type); if (type_is_invalid(casted_new_value->value.type)) return ira->codegen->invalid_instruction; if (success_order < AtomicOrderMonotonic) { ir_add_error(ira, success_order_value, buf_sprintf("success atomic ordering must be Monotonic or stricter")); return ira->codegen->invalid_instruction; } if (failure_order < AtomicOrderMonotonic) { ir_add_error(ira, failure_order_value, buf_sprintf("failure atomic ordering must be Monotonic or stricter")); return ira->codegen->invalid_instruction; } if (failure_order > success_order) { ir_add_error(ira, failure_order_value, buf_sprintf("failure atomic ordering must be no stricter than success")); return ira->codegen->invalid_instruction; } if (failure_order == AtomicOrderRelease || failure_order == AtomicOrderAcqRel) { ir_add_error(ira, failure_order_value, buf_sprintf("failure atomic ordering must not be Release or AcqRel")); return ira->codegen->invalid_instruction; } if (instr_is_comptime(casted_ptr) && instr_is_comptime(casted_cmp_value) && instr_is_comptime(casted_new_value)) { zig_panic("TODO compile-time execution of cmpxchg"); } ZigType *result_type = get_optional_type(ira->codegen, operand_type); IrInstruction *result_loc; if (handle_is_ptr(result_type)) { result_loc = ir_resolve_result(ira, &instruction->base, instruction->result_loc, result_type, nullptr, true, false, true); if (type_is_invalid(result_loc->value.type) || instr_is_unreachable(result_loc)) { return result_loc; } } else { result_loc = nullptr; } return ir_build_cmpxchg_gen(ira, &instruction->base, result_type, casted_ptr, casted_cmp_value, casted_new_value, success_order, failure_order, instruction->is_weak, result_loc); } static IrInstruction *ir_analyze_instruction_fence(IrAnalyze *ira, IrInstructionFence *instruction) { IrInstruction *order_value = instruction->order_value->child; if (type_is_invalid(order_value->value.type)) return ira->codegen->invalid_instruction; AtomicOrder order; if (!ir_resolve_atomic_order(ira, order_value, &order)) return ira->codegen->invalid_instruction; if (order < AtomicOrderAcquire) { ir_add_error(ira, order_value, buf_sprintf("atomic ordering must be Acquire or stricter")); return ira->codegen->invalid_instruction; } IrInstruction *result = ir_build_fence(&ira->new_irb, instruction->base.scope, instruction->base.source_node, order_value, order); result->value.type = ira->codegen->builtin_types.entry_void; return result; } static IrInstruction *ir_analyze_instruction_truncate(IrAnalyze *ira, IrInstructionTruncate *instruction) { IrInstruction *dest_type_value = instruction->dest_type->child; ZigType *dest_type = ir_resolve_type(ira, dest_type_value); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; if (dest_type->id != ZigTypeIdInt && dest_type->id != ZigTypeIdComptimeInt) { ir_add_error(ira, dest_type_value, buf_sprintf("expected integer type, found '%s'", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *target = instruction->target->child; ZigType *src_type = target->value.type; if (type_is_invalid(src_type)) return ira->codegen->invalid_instruction; if (src_type->id != ZigTypeIdInt && src_type->id != ZigTypeIdComptimeInt) { ir_add_error(ira, target, buf_sprintf("expected integer type, found '%s'", buf_ptr(&src_type->name))); return ira->codegen->invalid_instruction; } if (dest_type->id == ZigTypeIdComptimeInt) { return ir_implicit_cast(ira, target, dest_type); } if (instr_is_comptime(target)) { ConstExprValue *val = ir_resolve_const(ira, target, UndefBad); if (val == nullptr) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, &instruction->base, dest_type); bigint_truncate(&result->value.data.x_bigint, &val->data.x_bigint, dest_type->data.integral.bit_count, dest_type->data.integral.is_signed); return result; } if (src_type->data.integral.bit_count == 0 || dest_type->data.integral.bit_count == 0) { IrInstruction *result = ir_const(ira, &instruction->base, dest_type); bigint_init_unsigned(&result->value.data.x_bigint, 0); return result; } if (src_type->data.integral.is_signed != dest_type->data.integral.is_signed) { const char *sign_str = dest_type->data.integral.is_signed ? "signed" : "unsigned"; ir_add_error(ira, target, buf_sprintf("expected %s integer type, found '%s'", sign_str, buf_ptr(&src_type->name))); return ira->codegen->invalid_instruction; } else if (src_type->data.integral.bit_count < dest_type->data.integral.bit_count) { ir_add_error(ira, target, buf_sprintf("type '%s' has fewer bits than destination type '%s'", buf_ptr(&src_type->name), buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *new_instruction = ir_build_truncate(&ira->new_irb, instruction->base.scope, instruction->base.source_node, dest_type_value, target); new_instruction->value.type = dest_type; return new_instruction; } static IrInstruction *ir_analyze_instruction_int_cast(IrAnalyze *ira, IrInstructionIntCast *instruction) { ZigType *dest_type = ir_resolve_type(ira, instruction->dest_type->child); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; if (dest_type->id != ZigTypeIdInt && dest_type->id != ZigTypeIdComptimeInt) { ir_add_error(ira, instruction->dest_type, buf_sprintf("expected integer type, found '%s'", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; if (target->value.type->id != ZigTypeIdInt && target->value.type->id != ZigTypeIdComptimeInt) { ir_add_error(ira, instruction->target, buf_sprintf("expected integer type, found '%s'", buf_ptr(&target->value.type->name))); return ira->codegen->invalid_instruction; } if (instr_is_comptime(target)) { return ir_implicit_cast(ira, target, dest_type); } if (dest_type->id == ZigTypeIdComptimeInt) { ir_add_error(ira, instruction->target, buf_sprintf("attempt to cast runtime value to '%s'", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } return ir_analyze_widen_or_shorten(ira, &instruction->base, target, dest_type); } static IrInstruction *ir_analyze_instruction_float_cast(IrAnalyze *ira, IrInstructionFloatCast *instruction) { ZigType *dest_type = ir_resolve_type(ira, instruction->dest_type->child); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; if (dest_type->id != ZigTypeIdFloat) { ir_add_error(ira, instruction->dest_type, buf_sprintf("expected float type, found '%s'", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; if (target->value.type->id == ZigTypeIdComptimeInt || target->value.type->id == ZigTypeIdComptimeFloat) { if (ir_num_lit_fits_in_other_type(ira, target, dest_type, true)) { CastOp op; if (target->value.type->id == ZigTypeIdComptimeInt) { op = CastOpIntToFloat; } else { op = CastOpNumLitToConcrete; } return ir_resolve_cast(ira, &instruction->base, target, dest_type, op); } else { return ira->codegen->invalid_instruction; } } if (target->value.type->id != ZigTypeIdFloat) { ir_add_error(ira, instruction->target, buf_sprintf("expected float type, found '%s'", buf_ptr(&target->value.type->name))); return ira->codegen->invalid_instruction; } return ir_analyze_widen_or_shorten(ira, &instruction->base, target, dest_type); } static IrInstruction *ir_analyze_instruction_err_set_cast(IrAnalyze *ira, IrInstructionErrSetCast *instruction) { ZigType *dest_type = ir_resolve_type(ira, instruction->dest_type->child); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; if (dest_type->id != ZigTypeIdErrorSet) { ir_add_error(ira, instruction->dest_type, buf_sprintf("expected error set type, found '%s'", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; if (target->value.type->id != ZigTypeIdErrorSet) { ir_add_error(ira, instruction->target, buf_sprintf("expected error set type, found '%s'", buf_ptr(&target->value.type->name))); return ira->codegen->invalid_instruction; } return ir_analyze_err_set_cast(ira, &instruction->base, target, dest_type); } static IrInstruction *ir_analyze_instruction_from_bytes(IrAnalyze *ira, IrInstructionFromBytes *instruction) { Error err; ZigType *dest_child_type = ir_resolve_type(ira, instruction->dest_child_type->child); if (type_is_invalid(dest_child_type)) return ira->codegen->invalid_instruction; IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; bool src_ptr_const; bool src_ptr_volatile; uint32_t src_ptr_align; if (target->value.type->id == ZigTypeIdPointer) { src_ptr_const = target->value.type->data.pointer.is_const; src_ptr_volatile = target->value.type->data.pointer.is_volatile; if ((err = resolve_ptr_align(ira, target->value.type, &src_ptr_align))) return ira->codegen->invalid_instruction; } else if (is_slice(target->value.type)) { ZigType *src_ptr_type = target->value.type->data.structure.fields[slice_ptr_index].type_entry; src_ptr_const = src_ptr_type->data.pointer.is_const; src_ptr_volatile = src_ptr_type->data.pointer.is_volatile; if ((err = resolve_ptr_align(ira, src_ptr_type, &src_ptr_align))) return ira->codegen->invalid_instruction; } else { src_ptr_const = true; src_ptr_volatile = false; if ((err = type_resolve(ira->codegen, target->value.type, ResolveStatusAlignmentKnown))) return ira->codegen->invalid_instruction; src_ptr_align = get_abi_alignment(ira->codegen, target->value.type); } if ((err = type_resolve(ira->codegen, dest_child_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; ZigType *dest_ptr_type = get_pointer_to_type_extra(ira->codegen, dest_child_type, src_ptr_const, src_ptr_volatile, PtrLenUnknown, src_ptr_align, 0, 0, false); ZigType *dest_slice_type = get_slice_type(ira->codegen, dest_ptr_type); ZigType *u8_ptr = get_pointer_to_type_extra(ira->codegen, ira->codegen->builtin_types.entry_u8, src_ptr_const, src_ptr_volatile, PtrLenUnknown, src_ptr_align, 0, 0, false); ZigType *u8_slice = get_slice_type(ira->codegen, u8_ptr); IrInstruction *casted_value = ir_implicit_cast(ira, target, u8_slice); if (type_is_invalid(casted_value->value.type)) return ira->codegen->invalid_instruction; bool have_known_len = false; uint64_t known_len; if (instr_is_comptime(casted_value)) { ConstExprValue *val = ir_resolve_const(ira, casted_value, UndefBad); if (!val) return ira->codegen->invalid_instruction; ConstExprValue *len_val = &val->data.x_struct.fields[slice_len_index]; if (value_is_comptime(len_val)) { known_len = bigint_as_u64(&len_val->data.x_bigint); have_known_len = true; } } IrInstruction *result_loc = ir_resolve_result(ira, &instruction->base, instruction->result_loc, dest_slice_type, nullptr, true, false, true); if (result_loc != nullptr && (type_is_invalid(result_loc->value.type) || instr_is_unreachable(result_loc))) { return result_loc; } if (casted_value->value.data.rh_slice.id == RuntimeHintSliceIdLen) { known_len = casted_value->value.data.rh_slice.len; have_known_len = true; } if (have_known_len) { uint64_t child_type_size = type_size(ira->codegen, dest_child_type); uint64_t remainder = known_len % child_type_size; if (remainder != 0) { ErrorMsg *msg = ir_add_error(ira, &instruction->base, buf_sprintf("unable to convert [%" ZIG_PRI_u64 "]u8 to %s: size mismatch", known_len, buf_ptr(&dest_slice_type->name))); add_error_note(ira->codegen, msg, instruction->dest_child_type->source_node, buf_sprintf("%s has size %" ZIG_PRI_u64 "; remaining bytes: %" ZIG_PRI_u64, buf_ptr(&dest_child_type->name), child_type_size, remainder)); return ira->codegen->invalid_instruction; } } return ir_build_resize_slice(ira, &instruction->base, casted_value, dest_slice_type, result_loc); } static IrInstruction *ir_analyze_instruction_to_bytes(IrAnalyze *ira, IrInstructionToBytes *instruction) { Error err; IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; if (!is_slice(target->value.type)) { ir_add_error(ira, instruction->target, buf_sprintf("expected slice, found '%s'", buf_ptr(&target->value.type->name))); return ira->codegen->invalid_instruction; } ZigType *src_ptr_type = target->value.type->data.structure.fields[slice_ptr_index].type_entry; uint32_t alignment; if ((err = resolve_ptr_align(ira, src_ptr_type, &alignment))) return ira->codegen->invalid_instruction; ZigType *dest_ptr_type = get_pointer_to_type_extra(ira->codegen, ira->codegen->builtin_types.entry_u8, src_ptr_type->data.pointer.is_const, src_ptr_type->data.pointer.is_volatile, PtrLenUnknown, alignment, 0, 0, false); ZigType *dest_slice_type = get_slice_type(ira->codegen, dest_ptr_type); if (instr_is_comptime(target)) { ConstExprValue *target_val = ir_resolve_const(ira, target, UndefBad); if (target_val == nullptr) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, &instruction->base, dest_slice_type); result->value.data.x_struct.fields = create_const_vals(2); ConstExprValue *ptr_val = &result->value.data.x_struct.fields[slice_ptr_index]; ConstExprValue *target_ptr_val = &target_val->data.x_struct.fields[slice_ptr_index]; copy_const_val(ptr_val, target_ptr_val, false); ptr_val->type = dest_ptr_type; ConstExprValue *len_val = &result->value.data.x_struct.fields[slice_len_index]; len_val->special = ConstValSpecialStatic; len_val->type = ira->codegen->builtin_types.entry_usize; ConstExprValue *target_len_val = &target_val->data.x_struct.fields[slice_len_index]; ZigType *elem_type = src_ptr_type->data.pointer.child_type; BigInt elem_size_bigint; bigint_init_unsigned(&elem_size_bigint, type_size(ira->codegen, elem_type)); bigint_mul(&len_val->data.x_bigint, &target_len_val->data.x_bigint, &elem_size_bigint); return result; } IrInstruction *result_loc = ir_resolve_result(ira, &instruction->base, instruction->result_loc, dest_slice_type, nullptr, true, false, true); if (type_is_invalid(result_loc->value.type) || instr_is_unreachable(result_loc)) { return result_loc; } return ir_build_resize_slice(ira, &instruction->base, target, dest_slice_type, result_loc); } static Error resolve_ptr_align(IrAnalyze *ira, ZigType *ty, uint32_t *result_align) { Error err; ZigType *ptr_type = get_src_ptr_type(ty); assert(ptr_type != nullptr); if (ptr_type->id == ZigTypeIdPointer) { if ((err = type_resolve(ira->codegen, ptr_type->data.pointer.child_type, ResolveStatusAlignmentKnown))) return err; } *result_align = get_ptr_align(ira->codegen, ty); return ErrorNone; } static IrInstruction *ir_analyze_instruction_int_to_float(IrAnalyze *ira, IrInstructionIntToFloat *instruction) { ZigType *dest_type = ir_resolve_type(ira, instruction->dest_type->child); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; if (target->value.type->id != ZigTypeIdInt && target->value.type->id != ZigTypeIdComptimeInt) { ir_add_error(ira, instruction->target, buf_sprintf("expected int type, found '%s'", buf_ptr(&target->value.type->name))); return ira->codegen->invalid_instruction; } return ir_resolve_cast(ira, &instruction->base, target, dest_type, CastOpIntToFloat); } static IrInstruction *ir_analyze_instruction_float_to_int(IrAnalyze *ira, IrInstructionFloatToInt *instruction) { ZigType *dest_type = ir_resolve_type(ira, instruction->dest_type->child); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; if (target->value.type->id == ZigTypeIdComptimeInt) { return ir_implicit_cast(ira, target, dest_type); } if (target->value.type->id != ZigTypeIdFloat && target->value.type->id != ZigTypeIdComptimeFloat) { ir_add_error(ira, instruction->target, buf_sprintf("expected float type, found '%s'", buf_ptr(&target->value.type->name))); return ira->codegen->invalid_instruction; } return ir_resolve_cast(ira, &instruction->base, target, dest_type, CastOpFloatToInt); } static IrInstruction *ir_analyze_instruction_err_to_int(IrAnalyze *ira, IrInstructionErrToInt *instruction) { IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_target; if (target->value.type->id == ZigTypeIdErrorSet) { casted_target = target; } else { casted_target = ir_implicit_cast(ira, target, ira->codegen->builtin_types.entry_global_error_set); if (type_is_invalid(casted_target->value.type)) return ira->codegen->invalid_instruction; } return ir_analyze_err_to_int(ira, &instruction->base, casted_target, ira->codegen->err_tag_type); } static IrInstruction *ir_analyze_instruction_int_to_err(IrAnalyze *ira, IrInstructionIntToErr *instruction) { IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_target = ir_implicit_cast(ira, target, ira->codegen->err_tag_type); if (type_is_invalid(casted_target->value.type)) return ira->codegen->invalid_instruction; return ir_analyze_int_to_err(ira, &instruction->base, casted_target, ira->codegen->builtin_types.entry_global_error_set); } static IrInstruction *ir_analyze_instruction_bool_to_int(IrAnalyze *ira, IrInstructionBoolToInt *instruction) { IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; if (target->value.type->id != ZigTypeIdBool) { ir_add_error(ira, instruction->target, buf_sprintf("expected bool, found '%s'", buf_ptr(&target->value.type->name))); return ira->codegen->invalid_instruction; } if (instr_is_comptime(target)) { bool is_true; if (!ir_resolve_bool(ira, target, &is_true)) return ira->codegen->invalid_instruction; return ir_const_unsigned(ira, &instruction->base, is_true ? 1 : 0); } ZigType *u1_type = get_int_type(ira->codegen, false, 1); return ir_resolve_cast(ira, &instruction->base, target, u1_type, CastOpBoolToInt); } static IrInstruction *ir_analyze_instruction_int_type(IrAnalyze *ira, IrInstructionIntType *instruction) { IrInstruction *is_signed_value = instruction->is_signed->child; bool is_signed; if (!ir_resolve_bool(ira, is_signed_value, &is_signed)) return ira->codegen->invalid_instruction; IrInstruction *bit_count_value = instruction->bit_count->child; uint64_t bit_count; if (!ir_resolve_unsigned(ira, bit_count_value, ira->codegen->builtin_types.entry_u16, &bit_count)) return ira->codegen->invalid_instruction; return ir_const_type(ira, &instruction->base, get_int_type(ira->codegen, is_signed, (uint32_t)bit_count)); } static IrInstruction *ir_analyze_instruction_vector_type(IrAnalyze *ira, IrInstructionVectorType *instruction) { uint64_t len; if (!ir_resolve_unsigned(ira, instruction->len->child, ira->codegen->builtin_types.entry_u32, &len)) return ira->codegen->invalid_instruction; ZigType *elem_type = ir_resolve_type(ira, instruction->elem_type->child); if (type_is_invalid(elem_type)) return ira->codegen->invalid_instruction; if (!is_valid_vector_elem_type(elem_type)) { ir_add_error(ira, instruction->elem_type, buf_sprintf("vector element type must be integer, float, or pointer; '%s' is invalid", buf_ptr(&elem_type->name))); return ira->codegen->invalid_instruction; } ZigType *vector_type = get_vector_type(ira->codegen, len, elem_type); return ir_const_type(ira, &instruction->base, vector_type); } static IrInstruction *ir_analyze_instruction_bool_not(IrAnalyze *ira, IrInstructionBoolNot *instruction) { IrInstruction *value = instruction->value->child; if (type_is_invalid(value->value.type)) return ira->codegen->invalid_instruction; ZigType *bool_type = ira->codegen->builtin_types.entry_bool; IrInstruction *casted_value = ir_implicit_cast(ira, value, bool_type); if (type_is_invalid(casted_value->value.type)) return ira->codegen->invalid_instruction; if (instr_is_comptime(casted_value)) { ConstExprValue *value = ir_resolve_const(ira, casted_value, UndefBad); if (value == nullptr) return ira->codegen->invalid_instruction; return ir_const_bool(ira, &instruction->base, !value->data.x_bool); } IrInstruction *result = ir_build_bool_not(&ira->new_irb, instruction->base.scope, instruction->base.source_node, casted_value); result->value.type = bool_type; return result; } static IrInstruction *ir_analyze_instruction_memset(IrAnalyze *ira, IrInstructionMemset *instruction) { Error err; IrInstruction *dest_ptr = instruction->dest_ptr->child; if (type_is_invalid(dest_ptr->value.type)) return ira->codegen->invalid_instruction; IrInstruction *byte_value = instruction->byte->child; if (type_is_invalid(byte_value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *count_value = instruction->count->child; if (type_is_invalid(count_value->value.type)) return ira->codegen->invalid_instruction; ZigType *dest_uncasted_type = dest_ptr->value.type; bool dest_is_volatile = (dest_uncasted_type->id == ZigTypeIdPointer) && dest_uncasted_type->data.pointer.is_volatile; ZigType *usize = ira->codegen->builtin_types.entry_usize; ZigType *u8 = ira->codegen->builtin_types.entry_u8; uint32_t dest_align; if (dest_uncasted_type->id == ZigTypeIdPointer) { if ((err = resolve_ptr_align(ira, dest_uncasted_type, &dest_align))) return ira->codegen->invalid_instruction; } else { dest_align = get_abi_alignment(ira->codegen, u8); } ZigType *u8_ptr = get_pointer_to_type_extra(ira->codegen, u8, false, dest_is_volatile, PtrLenUnknown, dest_align, 0, 0, false); IrInstruction *casted_dest_ptr = ir_implicit_cast(ira, dest_ptr, u8_ptr); if (type_is_invalid(casted_dest_ptr->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_byte = ir_implicit_cast(ira, byte_value, u8); if (type_is_invalid(casted_byte->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_count = ir_implicit_cast(ira, count_value, usize); if (type_is_invalid(casted_count->value.type)) return ira->codegen->invalid_instruction; // TODO test this at comptime with u8 and non-u8 types if (instr_is_comptime(casted_dest_ptr) && instr_is_comptime(casted_byte) && instr_is_comptime(casted_count)) { ConstExprValue *dest_ptr_val = ir_resolve_const(ira, casted_dest_ptr, UndefBad); if (dest_ptr_val == nullptr) return ira->codegen->invalid_instruction; ConstExprValue *byte_val = ir_resolve_const(ira, casted_byte, UndefOk); if (byte_val == nullptr) return ira->codegen->invalid_instruction; ConstExprValue *count_val = ir_resolve_const(ira, casted_count, UndefBad); if (count_val == nullptr) return ira->codegen->invalid_instruction; if (casted_dest_ptr->value.data.x_ptr.special != ConstPtrSpecialHardCodedAddr && casted_dest_ptr->value.data.x_ptr.mut != ConstPtrMutRuntimeVar) { ConstExprValue *dest_elements; size_t start; size_t bound_end; switch (dest_ptr_val->data.x_ptr.special) { case ConstPtrSpecialInvalid: case ConstPtrSpecialDiscard: zig_unreachable(); case ConstPtrSpecialRef: dest_elements = dest_ptr_val->data.x_ptr.data.ref.pointee; start = 0; bound_end = 1; break; case ConstPtrSpecialBaseArray: { ConstExprValue *array_val = dest_ptr_val->data.x_ptr.data.base_array.array_val; expand_undef_array(ira->codegen, array_val); dest_elements = array_val->data.x_array.data.s_none.elements; start = dest_ptr_val->data.x_ptr.data.base_array.elem_index; bound_end = array_val->type->data.array.len; break; } case ConstPtrSpecialBaseStruct: zig_panic("TODO memset on const inner struct"); case ConstPtrSpecialBaseErrorUnionCode: zig_panic("TODO memset on const inner error union code"); case ConstPtrSpecialBaseErrorUnionPayload: zig_panic("TODO memset on const inner error union payload"); case ConstPtrSpecialBaseOptionalPayload: zig_panic("TODO memset on const inner optional payload"); case ConstPtrSpecialHardCodedAddr: zig_unreachable(); case ConstPtrSpecialFunction: zig_panic("TODO memset on ptr cast from function"); case ConstPtrSpecialNull: zig_panic("TODO memset on null ptr"); } size_t count = bigint_as_usize(&count_val->data.x_bigint); size_t end = start + count; if (end > bound_end) { ir_add_error(ira, count_value, buf_sprintf("out of bounds pointer access")); return ira->codegen->invalid_instruction; } for (size_t i = start; i < end; i += 1) { copy_const_val(&dest_elements[i], byte_val, true); } return ir_const_void(ira, &instruction->base); } } IrInstruction *result = ir_build_memset(&ira->new_irb, instruction->base.scope, instruction->base.source_node, casted_dest_ptr, casted_byte, casted_count); result->value.type = ira->codegen->builtin_types.entry_void; return result; } static IrInstruction *ir_analyze_instruction_memcpy(IrAnalyze *ira, IrInstructionMemcpy *instruction) { Error err; IrInstruction *dest_ptr = instruction->dest_ptr->child; if (type_is_invalid(dest_ptr->value.type)) return ira->codegen->invalid_instruction; IrInstruction *src_ptr = instruction->src_ptr->child; if (type_is_invalid(src_ptr->value.type)) return ira->codegen->invalid_instruction; IrInstruction *count_value = instruction->count->child; if (type_is_invalid(count_value->value.type)) return ira->codegen->invalid_instruction; ZigType *u8 = ira->codegen->builtin_types.entry_u8; ZigType *dest_uncasted_type = dest_ptr->value.type; ZigType *src_uncasted_type = src_ptr->value.type; bool dest_is_volatile = (dest_uncasted_type->id == ZigTypeIdPointer) && dest_uncasted_type->data.pointer.is_volatile; bool src_is_volatile = (src_uncasted_type->id == ZigTypeIdPointer) && src_uncasted_type->data.pointer.is_volatile; uint32_t dest_align; if (dest_uncasted_type->id == ZigTypeIdPointer) { if ((err = resolve_ptr_align(ira, dest_uncasted_type, &dest_align))) return ira->codegen->invalid_instruction; } else { dest_align = get_abi_alignment(ira->codegen, u8); } uint32_t src_align; if (src_uncasted_type->id == ZigTypeIdPointer) { if ((err = resolve_ptr_align(ira, src_uncasted_type, &src_align))) return ira->codegen->invalid_instruction; } else { src_align = get_abi_alignment(ira->codegen, u8); } ZigType *usize = ira->codegen->builtin_types.entry_usize; ZigType *u8_ptr_mut = get_pointer_to_type_extra(ira->codegen, u8, false, dest_is_volatile, PtrLenUnknown, dest_align, 0, 0, false); ZigType *u8_ptr_const = get_pointer_to_type_extra(ira->codegen, u8, true, src_is_volatile, PtrLenUnknown, src_align, 0, 0, false); IrInstruction *casted_dest_ptr = ir_implicit_cast(ira, dest_ptr, u8_ptr_mut); if (type_is_invalid(casted_dest_ptr->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_src_ptr = ir_implicit_cast(ira, src_ptr, u8_ptr_const); if (type_is_invalid(casted_src_ptr->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_count = ir_implicit_cast(ira, count_value, usize); if (type_is_invalid(casted_count->value.type)) return ira->codegen->invalid_instruction; // TODO test this at comptime with u8 and non-u8 types // TODO test with dest ptr being a global runtime variable if (instr_is_comptime(casted_dest_ptr) && instr_is_comptime(casted_src_ptr) && instr_is_comptime(casted_count)) { ConstExprValue *dest_ptr_val = ir_resolve_const(ira, casted_dest_ptr, UndefBad); if (dest_ptr_val == nullptr) return ira->codegen->invalid_instruction; ConstExprValue *src_ptr_val = ir_resolve_const(ira, casted_src_ptr, UndefBad); if (src_ptr_val == nullptr) return ira->codegen->invalid_instruction; ConstExprValue *count_val = ir_resolve_const(ira, casted_count, UndefBad); if (count_val == nullptr) return ira->codegen->invalid_instruction; if (dest_ptr_val->data.x_ptr.special != ConstPtrSpecialHardCodedAddr) { size_t count = bigint_as_usize(&count_val->data.x_bigint); ConstExprValue *dest_elements; size_t dest_start; size_t dest_end; switch (dest_ptr_val->data.x_ptr.special) { case ConstPtrSpecialInvalid: case ConstPtrSpecialDiscard: zig_unreachable(); case ConstPtrSpecialRef: dest_elements = dest_ptr_val->data.x_ptr.data.ref.pointee; dest_start = 0; dest_end = 1; break; case ConstPtrSpecialBaseArray: { ConstExprValue *array_val = dest_ptr_val->data.x_ptr.data.base_array.array_val; expand_undef_array(ira->codegen, array_val); dest_elements = array_val->data.x_array.data.s_none.elements; dest_start = dest_ptr_val->data.x_ptr.data.base_array.elem_index; dest_end = array_val->type->data.array.len; break; } case ConstPtrSpecialBaseStruct: zig_panic("TODO memcpy on const inner struct"); case ConstPtrSpecialBaseErrorUnionCode: zig_panic("TODO memcpy on const inner error union code"); case ConstPtrSpecialBaseErrorUnionPayload: zig_panic("TODO memcpy on const inner error union payload"); case ConstPtrSpecialBaseOptionalPayload: zig_panic("TODO memcpy on const inner optional payload"); case ConstPtrSpecialHardCodedAddr: zig_unreachable(); case ConstPtrSpecialFunction: zig_panic("TODO memcpy on ptr cast from function"); case ConstPtrSpecialNull: zig_panic("TODO memcpy on null ptr"); } if (dest_start + count > dest_end) { ir_add_error(ira, &instruction->base, buf_sprintf("out of bounds pointer access")); return ira->codegen->invalid_instruction; } ConstExprValue *src_elements; size_t src_start; size_t src_end; switch (src_ptr_val->data.x_ptr.special) { case ConstPtrSpecialInvalid: case ConstPtrSpecialDiscard: zig_unreachable(); case ConstPtrSpecialRef: src_elements = src_ptr_val->data.x_ptr.data.ref.pointee; src_start = 0; src_end = 1; break; case ConstPtrSpecialBaseArray: { ConstExprValue *array_val = src_ptr_val->data.x_ptr.data.base_array.array_val; expand_undef_array(ira->codegen, array_val); src_elements = array_val->data.x_array.data.s_none.elements; src_start = src_ptr_val->data.x_ptr.data.base_array.elem_index; src_end = array_val->type->data.array.len; break; } case ConstPtrSpecialBaseStruct: zig_panic("TODO memcpy on const inner struct"); case ConstPtrSpecialBaseErrorUnionCode: zig_panic("TODO memcpy on const inner error union code"); case ConstPtrSpecialBaseErrorUnionPayload: zig_panic("TODO memcpy on const inner error union payload"); case ConstPtrSpecialBaseOptionalPayload: zig_panic("TODO memcpy on const inner optional payload"); case ConstPtrSpecialHardCodedAddr: zig_unreachable(); case ConstPtrSpecialFunction: zig_panic("TODO memcpy on ptr cast from function"); case ConstPtrSpecialNull: zig_panic("TODO memcpy on null ptr"); } if (src_start + count > src_end) { ir_add_error(ira, &instruction->base, buf_sprintf("out of bounds pointer access")); return ira->codegen->invalid_instruction; } // TODO check for noalias violations - this should be generalized to work for any function for (size_t i = 0; i < count; i += 1) { copy_const_val(&dest_elements[dest_start + i], &src_elements[src_start + i], true); } return ir_const_void(ira, &instruction->base); } } IrInstruction *result = ir_build_memcpy(&ira->new_irb, instruction->base.scope, instruction->base.source_node, casted_dest_ptr, casted_src_ptr, casted_count); result->value.type = ira->codegen->builtin_types.entry_void; return result; } static IrInstruction *ir_analyze_instruction_slice(IrAnalyze *ira, IrInstructionSliceSrc *instruction) { IrInstruction *ptr_ptr = instruction->ptr->child; if (type_is_invalid(ptr_ptr->value.type)) return ira->codegen->invalid_instruction; ZigType *ptr_ptr_type = ptr_ptr->value.type; assert(ptr_ptr_type->id == ZigTypeIdPointer); ZigType *array_type = ptr_ptr_type->data.pointer.child_type; IrInstruction *start = instruction->start->child; if (type_is_invalid(start->value.type)) return ira->codegen->invalid_instruction; ZigType *usize = ira->codegen->builtin_types.entry_usize; IrInstruction *casted_start = ir_implicit_cast(ira, start, usize); if (type_is_invalid(casted_start->value.type)) return ira->codegen->invalid_instruction; IrInstruction *end; if (instruction->end) { end = instruction->end->child; if (type_is_invalid(end->value.type)) return ira->codegen->invalid_instruction; end = ir_implicit_cast(ira, end, usize); if (type_is_invalid(end->value.type)) return ira->codegen->invalid_instruction; } else { end = nullptr; } ZigType *return_type; if (array_type->id == ZigTypeIdArray) { bool is_comptime_const = ptr_ptr->value.special == ConstValSpecialStatic && ptr_ptr->value.data.x_ptr.mut == ConstPtrMutComptimeConst; ZigType *slice_ptr_type = get_pointer_to_type_extra(ira->codegen, array_type->data.array.child_type, ptr_ptr_type->data.pointer.is_const || is_comptime_const, ptr_ptr_type->data.pointer.is_volatile, PtrLenUnknown, ptr_ptr_type->data.pointer.explicit_alignment, 0, 0, false); return_type = get_slice_type(ira->codegen, slice_ptr_type); } else if (array_type->id == ZigTypeIdPointer) { if (array_type->data.pointer.ptr_len == PtrLenSingle) { ZigType *main_type = array_type->data.pointer.child_type; if (main_type->id == ZigTypeIdArray) { ZigType *slice_ptr_type = get_pointer_to_type_extra(ira->codegen, main_type->data.pointer.child_type, array_type->data.pointer.is_const, array_type->data.pointer.is_volatile, PtrLenUnknown, array_type->data.pointer.explicit_alignment, 0, 0, false); return_type = get_slice_type(ira->codegen, slice_ptr_type); } else { ir_add_error(ira, &instruction->base, buf_sprintf("slice of single-item pointer")); return ira->codegen->invalid_instruction; } } else { if (array_type->data.pointer.ptr_len == PtrLenC) { array_type = adjust_ptr_len(ira->codegen, array_type, PtrLenUnknown); } return_type = get_slice_type(ira->codegen, array_type); if (!end) { ir_add_error(ira, &instruction->base, buf_sprintf("slice of pointer must include end value")); return ira->codegen->invalid_instruction; } } } else if (is_slice(array_type)) { ZigType *ptr_type = array_type->data.structure.fields[slice_ptr_index].type_entry; return_type = get_slice_type(ira->codegen, ptr_type); } else { ir_add_error(ira, &instruction->base, buf_sprintf("slice of non-array type '%s'", buf_ptr(&array_type->name))); return ira->codegen->invalid_instruction; } if (instr_is_comptime(ptr_ptr) && value_is_comptime(&casted_start->value) && (!end || value_is_comptime(&end->value))) { ConstExprValue *array_val; ConstExprValue *parent_ptr; size_t abs_offset; size_t rel_end; bool ptr_is_undef = false; if (array_type->id == ZigTypeIdArray || (array_type->id == ZigTypeIdPointer && array_type->data.pointer.ptr_len == PtrLenSingle)) { if (array_type->id == ZigTypeIdPointer) { ZigType *child_array_type = array_type->data.pointer.child_type; assert(child_array_type->id == ZigTypeIdArray); parent_ptr = const_ptr_pointee(ira, ira->codegen, &ptr_ptr->value, instruction->base.source_node); if (parent_ptr == nullptr) return ira->codegen->invalid_instruction; array_val = const_ptr_pointee(ira, ira->codegen, parent_ptr, instruction->base.source_node); if (array_val == nullptr) return ira->codegen->invalid_instruction; rel_end = child_array_type->data.array.len; abs_offset = 0; } else { array_val = const_ptr_pointee(ira, ira->codegen, &ptr_ptr->value, instruction->base.source_node); if (array_val == nullptr) return ira->codegen->invalid_instruction; rel_end = array_type->data.array.len; parent_ptr = nullptr; abs_offset = 0; } } else if (array_type->id == ZigTypeIdPointer) { assert(array_type->data.pointer.ptr_len == PtrLenUnknown); parent_ptr = const_ptr_pointee(ira, ira->codegen, &ptr_ptr->value, instruction->base.source_node); if (parent_ptr == nullptr) return ira->codegen->invalid_instruction; if (parent_ptr->special == ConstValSpecialUndef) { array_val = nullptr; abs_offset = 0; rel_end = SIZE_MAX; ptr_is_undef = true; } else switch (parent_ptr->data.x_ptr.special) { case ConstPtrSpecialInvalid: case ConstPtrSpecialDiscard: zig_unreachable(); case ConstPtrSpecialRef: if (parent_ptr->data.x_ptr.data.ref.pointee->type->id == ZigTypeIdArray) { array_val = parent_ptr->data.x_ptr.data.ref.pointee; abs_offset = 0; rel_end = array_val->type->data.array.len; } else { array_val = nullptr; abs_offset = SIZE_MAX; rel_end = 1; } break; case ConstPtrSpecialBaseArray: array_val = parent_ptr->data.x_ptr.data.base_array.array_val; abs_offset = parent_ptr->data.x_ptr.data.base_array.elem_index; rel_end = array_val->type->data.array.len - abs_offset; break; case ConstPtrSpecialBaseStruct: zig_panic("TODO slice const inner struct"); case ConstPtrSpecialBaseErrorUnionCode: zig_panic("TODO slice const inner error union code"); case ConstPtrSpecialBaseErrorUnionPayload: zig_panic("TODO slice const inner error union payload"); case ConstPtrSpecialBaseOptionalPayload: zig_panic("TODO slice const inner optional payload"); case ConstPtrSpecialHardCodedAddr: array_val = nullptr; abs_offset = 0; rel_end = SIZE_MAX; break; case ConstPtrSpecialFunction: zig_panic("TODO slice of ptr cast from function"); case ConstPtrSpecialNull: zig_panic("TODO slice of null ptr"); } } else if (is_slice(array_type)) { ConstExprValue *slice_ptr = const_ptr_pointee(ira, ira->codegen, &ptr_ptr->value, instruction->base.source_node); if (slice_ptr == nullptr) return ira->codegen->invalid_instruction; parent_ptr = &slice_ptr->data.x_struct.fields[slice_ptr_index]; if (parent_ptr->special == ConstValSpecialUndef) { ir_add_error(ira, &instruction->base, buf_sprintf("slice of undefined")); return ira->codegen->invalid_instruction; } ConstExprValue *len_val = &slice_ptr->data.x_struct.fields[slice_len_index]; switch (parent_ptr->data.x_ptr.special) { case ConstPtrSpecialInvalid: case ConstPtrSpecialDiscard: zig_unreachable(); case ConstPtrSpecialRef: array_val = nullptr; abs_offset = SIZE_MAX; rel_end = 1; break; case ConstPtrSpecialBaseArray: array_val = parent_ptr->data.x_ptr.data.base_array.array_val; abs_offset = parent_ptr->data.x_ptr.data.base_array.elem_index; rel_end = bigint_as_usize(&len_val->data.x_bigint); break; case ConstPtrSpecialBaseStruct: zig_panic("TODO slice const inner struct"); case ConstPtrSpecialBaseErrorUnionCode: zig_panic("TODO slice const inner error union code"); case ConstPtrSpecialBaseErrorUnionPayload: zig_panic("TODO slice const inner error union payload"); case ConstPtrSpecialBaseOptionalPayload: zig_panic("TODO slice const inner optional payload"); case ConstPtrSpecialHardCodedAddr: array_val = nullptr; abs_offset = 0; rel_end = bigint_as_usize(&len_val->data.x_bigint); break; case ConstPtrSpecialFunction: zig_panic("TODO slice of slice cast from function"); case ConstPtrSpecialNull: zig_panic("TODO slice of null"); } } else { zig_unreachable(); } uint64_t start_scalar = bigint_as_u64(&casted_start->value.data.x_bigint); if (!ptr_is_undef && start_scalar > rel_end) { ir_add_error(ira, &instruction->base, buf_sprintf("out of bounds slice")); return ira->codegen->invalid_instruction; } uint64_t end_scalar; if (end) { end_scalar = bigint_as_u64(&end->value.data.x_bigint); } else { end_scalar = rel_end; } if (!ptr_is_undef) { if (end_scalar > rel_end) { ir_add_error(ira, &instruction->base, buf_sprintf("out of bounds slice")); return ira->codegen->invalid_instruction; } if (start_scalar > end_scalar) { ir_add_error(ira, &instruction->base, buf_sprintf("slice start is greater than end")); return ira->codegen->invalid_instruction; } } if (ptr_is_undef && start_scalar != end_scalar) { ir_add_error(ira, &instruction->base, buf_sprintf("non-zero length slice of undefined pointer")); return ira->codegen->invalid_instruction; } IrInstruction *result = ir_const(ira, &instruction->base, return_type); ConstExprValue *out_val = &result->value; out_val->data.x_struct.fields = create_const_vals(2); ConstExprValue *ptr_val = &out_val->data.x_struct.fields[slice_ptr_index]; if (array_val) { size_t index = abs_offset + start_scalar; bool is_const = slice_is_const(return_type); init_const_ptr_array(ira->codegen, ptr_val, array_val, index, is_const, PtrLenUnknown); if (array_type->id == ZigTypeIdArray) { ptr_val->data.x_ptr.mut = ptr_ptr->value.data.x_ptr.mut; } else if (is_slice(array_type)) { ptr_val->data.x_ptr.mut = parent_ptr->data.x_ptr.mut; } else if (array_type->id == ZigTypeIdPointer) { ptr_val->data.x_ptr.mut = parent_ptr->data.x_ptr.mut; } } else if (ptr_is_undef) { ptr_val->type = get_pointer_to_type(ira->codegen, parent_ptr->type->data.pointer.child_type, slice_is_const(return_type)); ptr_val->special = ConstValSpecialUndef; } else switch (parent_ptr->data.x_ptr.special) { case ConstPtrSpecialInvalid: case ConstPtrSpecialDiscard: zig_unreachable(); case ConstPtrSpecialRef: init_const_ptr_ref(ira->codegen, ptr_val, parent_ptr->data.x_ptr.data.ref.pointee, slice_is_const(return_type)); break; case ConstPtrSpecialBaseArray: zig_unreachable(); case ConstPtrSpecialBaseStruct: zig_panic("TODO"); case ConstPtrSpecialBaseErrorUnionCode: zig_panic("TODO"); case ConstPtrSpecialBaseErrorUnionPayload: zig_panic("TODO"); case ConstPtrSpecialBaseOptionalPayload: zig_panic("TODO"); case ConstPtrSpecialHardCodedAddr: init_const_ptr_hard_coded_addr(ira->codegen, ptr_val, parent_ptr->type->data.pointer.child_type, parent_ptr->data.x_ptr.data.hard_coded_addr.addr + start_scalar, slice_is_const(return_type)); break; case ConstPtrSpecialFunction: zig_panic("TODO"); case ConstPtrSpecialNull: zig_panic("TODO"); } ConstExprValue *len_val = &out_val->data.x_struct.fields[slice_len_index]; init_const_usize(ira->codegen, len_val, end_scalar - start_scalar); return result; } IrInstruction *result_loc = ir_resolve_result(ira, &instruction->base, instruction->result_loc, return_type, nullptr, true, false, true); if (type_is_invalid(result_loc->value.type) || instr_is_unreachable(result_loc)) { return result_loc; } return ir_build_slice_gen(ira, &instruction->base, return_type, ptr_ptr, casted_start, end, instruction->safety_check_on, result_loc); } static IrInstruction *ir_analyze_instruction_member_count(IrAnalyze *ira, IrInstructionMemberCount *instruction) { Error err; IrInstruction *container = instruction->container->child; if (type_is_invalid(container->value.type)) return ira->codegen->invalid_instruction; ZigType *container_type = ir_resolve_type(ira, container); if ((err = type_resolve(ira->codegen, container_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; uint64_t result; if (type_is_invalid(container_type)) { return ira->codegen->invalid_instruction; } else if (container_type->id == ZigTypeIdEnum) { result = container_type->data.enumeration.src_field_count; } else if (container_type->id == ZigTypeIdStruct) { result = container_type->data.structure.src_field_count; } else if (container_type->id == ZigTypeIdUnion) { result = container_type->data.unionation.src_field_count; } else if (container_type->id == ZigTypeIdErrorSet) { if (!resolve_inferred_error_set(ira->codegen, container_type, instruction->base.source_node)) { return ira->codegen->invalid_instruction; } if (type_is_global_error_set(container_type)) { ir_add_error(ira, &instruction->base, buf_sprintf("global error set member count not available at comptime")); return ira->codegen->invalid_instruction; } result = container_type->data.error_set.err_count; } else { ir_add_error(ira, &instruction->base, buf_sprintf("no value count available for type '%s'", buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } return ir_const_unsigned(ira, &instruction->base, result); } static IrInstruction *ir_analyze_instruction_member_type(IrAnalyze *ira, IrInstructionMemberType *instruction) { Error err; IrInstruction *container_type_value = instruction->container_type->child; ZigType *container_type = ir_resolve_type(ira, container_type_value); if (type_is_invalid(container_type)) return ira->codegen->invalid_instruction; if ((err = type_resolve(ira->codegen, container_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; uint64_t member_index; IrInstruction *index_value = instruction->member_index->child; if (!ir_resolve_usize(ira, index_value, &member_index)) return ira->codegen->invalid_instruction; if (container_type->id == ZigTypeIdStruct) { if (member_index >= container_type->data.structure.src_field_count) { ir_add_error(ira, index_value, buf_sprintf("member index %" ZIG_PRI_u64 " out of bounds; '%s' has %" PRIu32 " members", member_index, buf_ptr(&container_type->name), container_type->data.structure.src_field_count)); return ira->codegen->invalid_instruction; } TypeStructField *field = &container_type->data.structure.fields[member_index]; return ir_const_type(ira, &instruction->base, field->type_entry); } else if (container_type->id == ZigTypeIdUnion) { if (member_index >= container_type->data.unionation.src_field_count) { ir_add_error(ira, index_value, buf_sprintf("member index %" ZIG_PRI_u64 " out of bounds; '%s' has %" PRIu32 " members", member_index, buf_ptr(&container_type->name), container_type->data.unionation.src_field_count)); return ira->codegen->invalid_instruction; } TypeUnionField *field = &container_type->data.unionation.fields[member_index]; return ir_const_type(ira, &instruction->base, field->type_entry); } else { ir_add_error(ira, container_type_value, buf_sprintf("type '%s' does not support @memberType", buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } } static IrInstruction *ir_analyze_instruction_member_name(IrAnalyze *ira, IrInstructionMemberName *instruction) { Error err; IrInstruction *container_type_value = instruction->container_type->child; ZigType *container_type = ir_resolve_type(ira, container_type_value); if (type_is_invalid(container_type)) return ira->codegen->invalid_instruction; if ((err = type_resolve(ira->codegen, container_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; uint64_t member_index; IrInstruction *index_value = instruction->member_index->child; if (!ir_resolve_usize(ira, index_value, &member_index)) return ira->codegen->invalid_instruction; if (container_type->id == ZigTypeIdStruct) { if (member_index >= container_type->data.structure.src_field_count) { ir_add_error(ira, index_value, buf_sprintf("member index %" ZIG_PRI_u64 " out of bounds; '%s' has %" PRIu32 " members", member_index, buf_ptr(&container_type->name), container_type->data.structure.src_field_count)); return ira->codegen->invalid_instruction; } TypeStructField *field = &container_type->data.structure.fields[member_index]; IrInstruction *result = ir_const(ira, &instruction->base, nullptr); init_const_str_lit(ira->codegen, &result->value, field->name); return result; } else if (container_type->id == ZigTypeIdEnum) { if (member_index >= container_type->data.enumeration.src_field_count) { ir_add_error(ira, index_value, buf_sprintf("member index %" ZIG_PRI_u64 " out of bounds; '%s' has %" PRIu32 " members", member_index, buf_ptr(&container_type->name), container_type->data.enumeration.src_field_count)); return ira->codegen->invalid_instruction; } TypeEnumField *field = &container_type->data.enumeration.fields[member_index]; IrInstruction *result = ir_const(ira, &instruction->base, nullptr); init_const_str_lit(ira->codegen, &result->value, field->name); return result; } else if (container_type->id == ZigTypeIdUnion) { if (member_index >= container_type->data.unionation.src_field_count) { ir_add_error(ira, index_value, buf_sprintf("member index %" ZIG_PRI_u64 " out of bounds; '%s' has %" PRIu32 " members", member_index, buf_ptr(&container_type->name), container_type->data.unionation.src_field_count)); return ira->codegen->invalid_instruction; } TypeUnionField *field = &container_type->data.unionation.fields[member_index]; IrInstruction *result = ir_const(ira, &instruction->base, nullptr); init_const_str_lit(ira->codegen, &result->value, field->name); return result; } else { ir_add_error(ira, container_type_value, buf_sprintf("type '%s' does not support @memberName", buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } } static IrInstruction *ir_analyze_instruction_has_field(IrAnalyze *ira, IrInstructionHasField *instruction) { Error err; ZigType *container_type = ir_resolve_type(ira, instruction->container_type->child); if (type_is_invalid(container_type)) return ira->codegen->invalid_instruction; if ((err = type_resolve(ira->codegen, container_type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; Buf *field_name = ir_resolve_str(ira, instruction->field_name->child); if (field_name == nullptr) return ira->codegen->invalid_instruction; bool result; if (container_type->id == ZigTypeIdStruct) { result = find_struct_type_field(container_type, field_name) != nullptr; } else if (container_type->id == ZigTypeIdEnum) { result = find_enum_type_field(container_type, field_name) != nullptr; } else if (container_type->id == ZigTypeIdUnion) { result = find_union_type_field(container_type, field_name) != nullptr; } else { ir_add_error(ira, instruction->container_type, buf_sprintf("type '%s' does not support @hasField", buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } return ir_const_bool(ira, &instruction->base, result); } static IrInstruction *ir_analyze_instruction_breakpoint(IrAnalyze *ira, IrInstructionBreakpoint *instruction) { IrInstruction *result = ir_build_breakpoint(&ira->new_irb, instruction->base.scope, instruction->base.source_node); result->value.type = ira->codegen->builtin_types.entry_void; return result; } static IrInstruction *ir_analyze_instruction_return_address(IrAnalyze *ira, IrInstructionReturnAddress *instruction) { IrInstruction *result = ir_build_return_address(&ira->new_irb, instruction->base.scope, instruction->base.source_node); result->value.type = ira->codegen->builtin_types.entry_usize; return result; } static IrInstruction *ir_analyze_instruction_frame_address(IrAnalyze *ira, IrInstructionFrameAddress *instruction) { IrInstruction *result = ir_build_frame_address(&ira->new_irb, instruction->base.scope, instruction->base.source_node); result->value.type = ira->codegen->builtin_types.entry_usize; return result; } static IrInstruction *ir_analyze_instruction_frame_handle(IrAnalyze *ira, IrInstructionFrameHandle *instruction) { ZigFn *fn = exec_fn_entry(ira->new_irb.exec); ir_assert(fn != nullptr, &instruction->base); if (fn->inferred_async_node == nullptr) { fn->inferred_async_node = instruction->base.source_node; } ZigType *frame_type = get_fn_frame_type(ira->codegen, fn); ZigType *ptr_frame_type = get_pointer_to_type(ira->codegen, frame_type, false); IrInstruction *result = ir_build_handle(&ira->new_irb, instruction->base.scope, instruction->base.source_node); result->value.type = ptr_frame_type; return result; } static IrInstruction *ir_analyze_instruction_frame_type(IrAnalyze *ira, IrInstructionFrameType *instruction) { ZigFn *fn = ir_resolve_fn(ira, instruction->fn->child); if (fn == nullptr) return ira->codegen->invalid_instruction; if (fn->type_entry->data.fn.is_generic) { ir_add_error(ira, &instruction->base, buf_sprintf("@Frame() of generic function")); return ira->codegen->invalid_instruction; } ZigType *ty = get_fn_frame_type(ira->codegen, fn); return ir_const_type(ira, &instruction->base, ty); } static IrInstruction *ir_analyze_instruction_frame_size(IrAnalyze *ira, IrInstructionFrameSizeSrc *instruction) { IrInstruction *fn = instruction->fn->child; if (type_is_invalid(fn->value.type)) return ira->codegen->invalid_instruction; if (fn->value.type->id != ZigTypeIdFn) { ir_add_error(ira, fn, buf_sprintf("expected function, found '%s'", buf_ptr(&fn->value.type->name))); return ira->codegen->invalid_instruction; } IrInstruction *result = ir_build_frame_size_gen(&ira->new_irb, instruction->base.scope, instruction->base.source_node, fn); result->value.type = ira->codegen->builtin_types.entry_usize; return result; } static IrInstruction *ir_analyze_instruction_align_of(IrAnalyze *ira, IrInstructionAlignOf *instruction) { // Here we create a lazy value in order to avoid resolving the alignment of the type // immediately. This avoids false positive dependency loops such as: // const Node = struct { // field: []align(@alignOf(Node)) Node, // }; IrInstruction *result = ir_const(ira, &instruction->base, ira->codegen->builtin_types.entry_num_lit_int); result->value.special = ConstValSpecialLazy; LazyValueAlignOf *lazy_align_of = allocate(1); result->value.data.x_lazy = &lazy_align_of->base; lazy_align_of->base.id = LazyValueIdAlignOf; lazy_align_of->base.exec = ira->new_irb.exec; lazy_align_of->target_type_val = ir_resolve_type_lazy(ira, instruction->type_value->child); if (lazy_align_of->target_type_val == nullptr) return ira->codegen->invalid_instruction; lazy_align_of->target_type_src_node = instruction->type_value->source_node; return result; } static IrInstruction *ir_analyze_instruction_overflow_op(IrAnalyze *ira, IrInstructionOverflowOp *instruction) { Error err; IrInstruction *type_value = instruction->type_value->child; if (type_is_invalid(type_value->value.type)) return ira->codegen->invalid_instruction; ZigType *dest_type = ir_resolve_type(ira, type_value); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; if (dest_type->id != ZigTypeIdInt) { ir_add_error(ira, type_value, buf_sprintf("expected integer type, found '%s'", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *op1 = instruction->op1->child; if (type_is_invalid(op1->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_op1 = ir_implicit_cast(ira, op1, dest_type); if (type_is_invalid(casted_op1->value.type)) return ira->codegen->invalid_instruction; IrInstruction *op2 = instruction->op2->child; if (type_is_invalid(op2->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_op2; if (instruction->op == IrOverflowOpShl) { ZigType *shift_amt_type = get_smallest_unsigned_int_type(ira->codegen, dest_type->data.integral.bit_count - 1); casted_op2 = ir_implicit_cast(ira, op2, shift_amt_type); } else { casted_op2 = ir_implicit_cast(ira, op2, dest_type); } if (type_is_invalid(casted_op2->value.type)) return ira->codegen->invalid_instruction; IrInstruction *result_ptr = instruction->result_ptr->child; if (type_is_invalid(result_ptr->value.type)) return ira->codegen->invalid_instruction; ZigType *expected_ptr_type; if (result_ptr->value.type->id == ZigTypeIdPointer) { uint32_t alignment; if ((err = resolve_ptr_align(ira, result_ptr->value.type, &alignment))) return ira->codegen->invalid_instruction; expected_ptr_type = get_pointer_to_type_extra(ira->codegen, dest_type, false, result_ptr->value.type->data.pointer.is_volatile, PtrLenSingle, alignment, 0, 0, false); } else { expected_ptr_type = get_pointer_to_type(ira->codegen, dest_type, false); } IrInstruction *casted_result_ptr = ir_implicit_cast(ira, result_ptr, expected_ptr_type); if (type_is_invalid(casted_result_ptr->value.type)) return ira->codegen->invalid_instruction; if (instr_is_comptime(casted_op1) && instr_is_comptime(casted_op2) && instr_is_comptime(casted_result_ptr)) { ConstExprValue *op1_val = ir_resolve_const(ira, casted_op1, UndefBad); if (op1_val == nullptr) return ira->codegen->invalid_instruction; ConstExprValue *op2_val = ir_resolve_const(ira, casted_op2, UndefBad); if (op2_val == nullptr) return ira->codegen->invalid_instruction; ConstExprValue *result_val = ir_resolve_const(ira, casted_result_ptr, UndefBad); if (result_val == nullptr) return ira->codegen->invalid_instruction; BigInt *op1_bigint = &op1_val->data.x_bigint; BigInt *op2_bigint = &op2_val->data.x_bigint; ConstExprValue *pointee_val = const_ptr_pointee(ira, ira->codegen, result_val, casted_result_ptr->source_node); if (pointee_val == nullptr) return ira->codegen->invalid_instruction; BigInt *dest_bigint = &pointee_val->data.x_bigint; switch (instruction->op) { case IrOverflowOpAdd: bigint_add(dest_bigint, op1_bigint, op2_bigint); break; case IrOverflowOpSub: bigint_sub(dest_bigint, op1_bigint, op2_bigint); break; case IrOverflowOpMul: bigint_mul(dest_bigint, op1_bigint, op2_bigint); break; case IrOverflowOpShl: bigint_shl(dest_bigint, op1_bigint, op2_bigint); break; } bool result_bool = false; if (!bigint_fits_in_bits(dest_bigint, dest_type->data.integral.bit_count, dest_type->data.integral.is_signed)) { result_bool = true; BigInt tmp_bigint; bigint_init_bigint(&tmp_bigint, dest_bigint); bigint_truncate(dest_bigint, &tmp_bigint, dest_type->data.integral.bit_count, dest_type->data.integral.is_signed); } pointee_val->special = ConstValSpecialStatic; return ir_const_bool(ira, &instruction->base, result_bool); } IrInstruction *result = ir_build_overflow_op(&ira->new_irb, instruction->base.scope, instruction->base.source_node, instruction->op, type_value, casted_op1, casted_op2, casted_result_ptr, dest_type); result->value.type = ira->codegen->builtin_types.entry_bool; return result; } static void ir_eval_mul_add(IrAnalyze *ira, IrInstructionMulAdd *source_instr, ZigType *float_type, ConstExprValue *op1, ConstExprValue *op2, ConstExprValue *op3, ConstExprValue *out_val) { if (float_type->id == ZigTypeIdComptimeFloat) { f128M_mulAdd(&out_val->data.x_bigfloat.value, &op1->data.x_bigfloat.value, &op2->data.x_bigfloat.value, &op3->data.x_bigfloat.value); } else if (float_type->id == ZigTypeIdFloat) { switch (float_type->data.floating.bit_count) { case 16: out_val->data.x_f16 = f16_mulAdd(op1->data.x_f16, op2->data.x_f16, op3->data.x_f16); break; case 32: out_val->data.x_f32 = fmaf(op1->data.x_f32, op2->data.x_f32, op3->data.x_f32); break; case 64: out_val->data.x_f64 = fma(op1->data.x_f64, op2->data.x_f64, op3->data.x_f64); break; case 128: f128M_mulAdd(&op1->data.x_f128, &op2->data.x_f128, &op3->data.x_f128, &out_val->data.x_f128); break; default: zig_unreachable(); } } else { zig_unreachable(); } } static IrInstruction *ir_analyze_instruction_mul_add(IrAnalyze *ira, IrInstructionMulAdd *instruction) { IrInstruction *type_value = instruction->type_value->child; if (type_is_invalid(type_value->value.type)) return ira->codegen->invalid_instruction; ZigType *expr_type = ir_resolve_type(ira, type_value); if (type_is_invalid(expr_type)) return ira->codegen->invalid_instruction; // Only allow float types, and vectors of floats. ZigType *float_type = (expr_type->id == ZigTypeIdVector) ? expr_type->data.vector.elem_type : expr_type; if (float_type->id != ZigTypeIdFloat) { ir_add_error(ira, type_value, buf_sprintf("expected float or vector of float type, found '%s'", buf_ptr(&float_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *op1 = instruction->op1->child; if (type_is_invalid(op1->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_op1 = ir_implicit_cast(ira, op1, expr_type); if (type_is_invalid(casted_op1->value.type)) return ira->codegen->invalid_instruction; IrInstruction *op2 = instruction->op2->child; if (type_is_invalid(op2->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_op2 = ir_implicit_cast(ira, op2, expr_type); if (type_is_invalid(casted_op2->value.type)) return ira->codegen->invalid_instruction; IrInstruction *op3 = instruction->op3->child; if (type_is_invalid(op3->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_op3 = ir_implicit_cast(ira, op3, expr_type); if (type_is_invalid(casted_op3->value.type)) return ira->codegen->invalid_instruction; if (instr_is_comptime(casted_op1) && instr_is_comptime(casted_op2) && instr_is_comptime(casted_op3)) { ConstExprValue *op1_const = ir_resolve_const(ira, casted_op1, UndefBad); if (!op1_const) return ira->codegen->invalid_instruction; ConstExprValue *op2_const = ir_resolve_const(ira, casted_op2, UndefBad); if (!op2_const) return ira->codegen->invalid_instruction; ConstExprValue *op3_const = ir_resolve_const(ira, casted_op3, UndefBad); if (!op3_const) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, &instruction->base, expr_type); ConstExprValue *out_val = &result->value; if (expr_type->id == ZigTypeIdVector) { expand_undef_array(ira->codegen, op1_const); expand_undef_array(ira->codegen, op2_const); expand_undef_array(ira->codegen, op3_const); out_val->special = ConstValSpecialUndef; expand_undef_array(ira->codegen, out_val); size_t len = expr_type->data.vector.len; for (size_t i = 0; i < len; i += 1) { ConstExprValue *float_operand_op1 = &op1_const->data.x_array.data.s_none.elements[i]; ConstExprValue *float_operand_op2 = &op2_const->data.x_array.data.s_none.elements[i]; ConstExprValue *float_operand_op3 = &op3_const->data.x_array.data.s_none.elements[i]; ConstExprValue *float_out_val = &out_val->data.x_array.data.s_none.elements[i]; assert(float_operand_op1->type == float_type); assert(float_operand_op2->type == float_type); assert(float_operand_op3->type == float_type); assert(float_out_val->type == float_type); ir_eval_mul_add(ira, instruction, float_type, op1_const, op2_const, op3_const, float_out_val); float_out_val->type = float_type; } out_val->type = expr_type; out_val->special = ConstValSpecialStatic; } else { ir_eval_mul_add(ira, instruction, float_type, op1_const, op2_const, op3_const, out_val); } return result; } IrInstruction *result = ir_build_mul_add(&ira->new_irb, instruction->base.scope, instruction->base.source_node, type_value, casted_op1, casted_op2, casted_op3); result->value.type = expr_type; return result; } static IrInstruction *ir_analyze_instruction_test_err(IrAnalyze *ira, IrInstructionTestErrSrc *instruction) { IrInstruction *base_ptr = instruction->base_ptr->child; if (type_is_invalid(base_ptr->value.type)) return ira->codegen->invalid_instruction; IrInstruction *value; if (instruction->base_ptr_is_payload) { value = base_ptr; } else { value = ir_get_deref(ira, &instruction->base, base_ptr, nullptr); } ZigType *type_entry = value->value.type; if (type_is_invalid(type_entry)) return ira->codegen->invalid_instruction; if (type_entry->id == ZigTypeIdErrorUnion) { if (instr_is_comptime(value)) { ConstExprValue *err_union_val = ir_resolve_const(ira, value, UndefBad); if (!err_union_val) return ira->codegen->invalid_instruction; if (err_union_val->special != ConstValSpecialRuntime) { ErrorTableEntry *err = err_union_val->data.x_err_union.error_set->data.x_err_set; return ir_const_bool(ira, &instruction->base, (err != nullptr)); } } if (instruction->resolve_err_set) { ZigType *err_set_type = type_entry->data.error_union.err_set_type; if (!resolve_inferred_error_set(ira->codegen, err_set_type, instruction->base.source_node)) { return ira->codegen->invalid_instruction; } if (!type_is_global_error_set(err_set_type) && err_set_type->data.error_set.err_count == 0) { assert(err_set_type->data.error_set.infer_fn == nullptr); return ir_const_bool(ira, &instruction->base, false); } } return ir_build_test_err_gen(ira, &instruction->base, value); } else if (type_entry->id == ZigTypeIdErrorSet) { return ir_const_bool(ira, &instruction->base, true); } else { return ir_const_bool(ira, &instruction->base, false); } } static IrInstruction *ir_analyze_unwrap_err_code(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *base_ptr, bool initializing) { ZigType *ptr_type = base_ptr->value.type; // This will be a pointer type because unwrap err payload IR instruction operates on a pointer to a thing. assert(ptr_type->id == ZigTypeIdPointer); ZigType *type_entry = ptr_type->data.pointer.child_type; if (type_is_invalid(type_entry)) return ira->codegen->invalid_instruction; if (type_entry->id != ZigTypeIdErrorUnion) { ir_add_error(ira, base_ptr, buf_sprintf("expected error union type, found '%s'", buf_ptr(&type_entry->name))); return ira->codegen->invalid_instruction; } ZigType *err_set_type = type_entry->data.error_union.err_set_type; ZigType *result_type = get_pointer_to_type_extra(ira->codegen, err_set_type, ptr_type->data.pointer.is_const, ptr_type->data.pointer.is_volatile, PtrLenSingle, ptr_type->data.pointer.explicit_alignment, 0, 0, false); if (instr_is_comptime(base_ptr)) { ConstExprValue *ptr_val = ir_resolve_const(ira, base_ptr, UndefBad); if (!ptr_val) return ira->codegen->invalid_instruction; if (ptr_val->data.x_ptr.mut != ConstPtrMutRuntimeVar && ptr_val->data.x_ptr.special != ConstPtrSpecialHardCodedAddr) { ConstExprValue *err_union_val = const_ptr_pointee(ira, ira->codegen, ptr_val, source_instr->source_node); if (err_union_val == nullptr) return ira->codegen->invalid_instruction; if (initializing && err_union_val->special == ConstValSpecialUndef) { ConstExprValue *vals = create_const_vals(2); ConstExprValue *err_set_val = &vals[0]; ConstExprValue *payload_val = &vals[1]; err_set_val->special = ConstValSpecialUndef; err_set_val->type = err_set_type; err_set_val->parent.id = ConstParentIdErrUnionCode; err_set_val->parent.data.p_err_union_code.err_union_val = err_union_val; payload_val->special = ConstValSpecialUndef; payload_val->type = type_entry->data.error_union.payload_type; payload_val->parent.id = ConstParentIdErrUnionPayload; payload_val->parent.data.p_err_union_payload.err_union_val = err_union_val; err_union_val->special = ConstValSpecialStatic; err_union_val->data.x_err_union.error_set = err_set_val; err_union_val->data.x_err_union.payload = payload_val; } ir_assert(err_union_val->special != ConstValSpecialRuntime, source_instr); IrInstruction *result; if (ptr_val->data.x_ptr.mut == ConstPtrMutInfer) { result = ir_build_unwrap_err_code(&ira->new_irb, source_instr->scope, source_instr->source_node, base_ptr); result->value.type = result_type; result->value.special = ConstValSpecialStatic; } else { result = ir_const(ira, source_instr, result_type); } ConstExprValue *const_val = &result->value; const_val->data.x_ptr.special = ConstPtrSpecialBaseErrorUnionCode; const_val->data.x_ptr.data.base_err_union_code.err_union_val = err_union_val; const_val->data.x_ptr.mut = ptr_val->data.x_ptr.mut; return result; } } IrInstruction *result = ir_build_unwrap_err_code(&ira->new_irb, source_instr->scope, source_instr->source_node, base_ptr); result->value.type = result_type; return result; } static IrInstruction *ir_analyze_instruction_unwrap_err_code(IrAnalyze *ira, IrInstructionUnwrapErrCode *instruction) { IrInstruction *base_ptr = instruction->err_union_ptr->child; if (type_is_invalid(base_ptr->value.type)) return ira->codegen->invalid_instruction; return ir_analyze_unwrap_err_code(ira, &instruction->base, base_ptr, false); } static IrInstruction *ir_analyze_unwrap_error_payload(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *base_ptr, bool safety_check_on, bool initializing) { ZigType *ptr_type = base_ptr->value.type; // This will be a pointer type because unwrap err payload IR instruction operates on a pointer to a thing. assert(ptr_type->id == ZigTypeIdPointer); ZigType *type_entry = ptr_type->data.pointer.child_type; if (type_is_invalid(type_entry)) return ira->codegen->invalid_instruction; if (type_entry->id != ZigTypeIdErrorUnion) { ir_add_error(ira, base_ptr, buf_sprintf("expected error union type, found '%s'", buf_ptr(&type_entry->name))); return ira->codegen->invalid_instruction; } ZigType *payload_type = type_entry->data.error_union.payload_type; if (type_is_invalid(payload_type)) return ira->codegen->invalid_instruction; ZigType *result_type = get_pointer_to_type_extra(ira->codegen, payload_type, ptr_type->data.pointer.is_const, ptr_type->data.pointer.is_volatile, PtrLenSingle, 0, 0, 0, false); if (instr_is_comptime(base_ptr)) { ConstExprValue *ptr_val = ir_resolve_const(ira, base_ptr, UndefBad); if (!ptr_val) return ira->codegen->invalid_instruction; if (ptr_val->data.x_ptr.mut != ConstPtrMutRuntimeVar) { ConstExprValue *err_union_val = const_ptr_pointee(ira, ira->codegen, ptr_val, source_instr->source_node); if (err_union_val == nullptr) return ira->codegen->invalid_instruction; if (initializing && err_union_val->special == ConstValSpecialUndef) { ConstExprValue *vals = create_const_vals(2); ConstExprValue *err_set_val = &vals[0]; ConstExprValue *payload_val = &vals[1]; err_set_val->special = ConstValSpecialStatic; err_set_val->type = type_entry->data.error_union.err_set_type; err_set_val->data.x_err_set = nullptr; payload_val->special = ConstValSpecialUndef; payload_val->type = payload_type; err_union_val->special = ConstValSpecialStatic; err_union_val->data.x_err_union.error_set = err_set_val; err_union_val->data.x_err_union.payload = payload_val; } if (err_union_val->special != ConstValSpecialRuntime) { ErrorTableEntry *err = err_union_val->data.x_err_union.error_set->data.x_err_set; if (err != nullptr) { ir_add_error(ira, source_instr, buf_sprintf("caught unexpected error '%s'", buf_ptr(&err->name))); return ira->codegen->invalid_instruction; } IrInstruction *result; if (ptr_val->data.x_ptr.mut == ConstPtrMutInfer) { result = ir_build_unwrap_err_payload(&ira->new_irb, source_instr->scope, source_instr->source_node, base_ptr, safety_check_on, initializing); result->value.type = result_type; result->value.special = ConstValSpecialStatic; } else { result = ir_const(ira, source_instr, result_type); } result->value.data.x_ptr.special = ConstPtrSpecialRef; result->value.data.x_ptr.data.ref.pointee = err_union_val->data.x_err_union.payload; result->value.data.x_ptr.mut = ptr_val->data.x_ptr.mut; return result; } } } IrInstruction *result = ir_build_unwrap_err_payload(&ira->new_irb, source_instr->scope, source_instr->source_node, base_ptr, safety_check_on, initializing); result->value.type = result_type; return result; } static IrInstruction *ir_analyze_instruction_unwrap_err_payload(IrAnalyze *ira, IrInstructionUnwrapErrPayload *instruction) { assert(instruction->value->child); IrInstruction *value = instruction->value->child; if (type_is_invalid(value->value.type)) return ira->codegen->invalid_instruction; return ir_analyze_unwrap_error_payload(ira, &instruction->base, value, instruction->safety_check_on, false); } static IrInstruction *ir_analyze_instruction_fn_proto(IrAnalyze *ira, IrInstructionFnProto *instruction) { AstNode *proto_node = instruction->base.source_node; assert(proto_node->type == NodeTypeFnProto); IrInstruction *result = ir_const(ira, &instruction->base, ira->codegen->builtin_types.entry_type); result->value.special = ConstValSpecialLazy; LazyValueFnType *lazy_fn_type = allocate(1); result->value.data.x_lazy = &lazy_fn_type->base; lazy_fn_type->base.id = LazyValueIdFnType; lazy_fn_type->base.exec = ira->new_irb.exec; if (proto_node->data.fn_proto.auto_err_set) { ir_add_error(ira, &instruction->base, buf_sprintf("inferring error set of return type valid only for function definitions")); return ira->codegen->invalid_instruction; } size_t param_count = proto_node->data.fn_proto.params.length; lazy_fn_type->proto_node = proto_node; lazy_fn_type->param_types = allocate(param_count); for (size_t param_index = 0; param_index < param_count; param_index += 1) { AstNode *param_node = proto_node->data.fn_proto.params.at(param_index); assert(param_node->type == NodeTypeParamDecl); bool param_is_var_args = param_node->data.param_decl.is_var_args; if (param_is_var_args) { if (proto_node->data.fn_proto.cc == CallingConventionC) { break; } else if (proto_node->data.fn_proto.cc == CallingConventionUnspecified) { lazy_fn_type->is_generic = true; return result; } else { zig_unreachable(); } } if (instruction->param_types[param_index] == nullptr) { lazy_fn_type->is_generic = true; return result; } IrInstruction *param_type_value = instruction->param_types[param_index]->child; if (type_is_invalid(param_type_value->value.type)) return ira->codegen->invalid_instruction; ConstExprValue *param_type_val = ir_resolve_const(ira, param_type_value, LazyOk); if (param_type_val == nullptr) return ira->codegen->invalid_instruction; lazy_fn_type->param_types[param_index] = param_type_val; } if (instruction->align_value != nullptr) { lazy_fn_type->align_val = ir_resolve_const(ira, instruction->align_value->child, LazyOk); if (lazy_fn_type->align_val == nullptr) return ira->codegen->invalid_instruction; } lazy_fn_type->return_type = ir_resolve_const(ira, instruction->return_type->child, LazyOk); if (lazy_fn_type->return_type == nullptr) return ira->codegen->invalid_instruction; return result; } static IrInstruction *ir_analyze_instruction_test_comptime(IrAnalyze *ira, IrInstructionTestComptime *instruction) { IrInstruction *value = instruction->value->child; if (type_is_invalid(value->value.type)) return ira->codegen->invalid_instruction; return ir_const_bool(ira, &instruction->base, instr_is_comptime(value)); } static IrInstruction *ir_analyze_instruction_check_switch_prongs(IrAnalyze *ira, IrInstructionCheckSwitchProngs *instruction) { IrInstruction *target_value = instruction->target_value->child; ZigType *switch_type = target_value->value.type; if (type_is_invalid(switch_type)) return ira->codegen->invalid_instruction; if (switch_type->id == ZigTypeIdEnum) { HashMap field_prev_uses = {}; field_prev_uses.init(switch_type->data.enumeration.src_field_count); for (size_t range_i = 0; range_i < instruction->range_count; range_i += 1) { IrInstructionCheckSwitchProngsRange *range = &instruction->ranges[range_i]; IrInstruction *start_value_uncasted = range->start->child; if (type_is_invalid(start_value_uncasted->value.type)) return ira->codegen->invalid_instruction; IrInstruction *start_value = ir_implicit_cast(ira, start_value_uncasted, switch_type); if (type_is_invalid(start_value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *end_value_uncasted = range->end->child; if (type_is_invalid(end_value_uncasted->value.type)) return ira->codegen->invalid_instruction; IrInstruction *end_value = ir_implicit_cast(ira, end_value_uncasted, switch_type); if (type_is_invalid(end_value->value.type)) return ira->codegen->invalid_instruction; BigInt start_index; bigint_init_bigint(&start_index, &start_value->value.data.x_enum_tag); assert(end_value->value.type->id == ZigTypeIdEnum); BigInt end_index; bigint_init_bigint(&end_index, &end_value->value.data.x_enum_tag); BigInt field_index; bigint_init_bigint(&field_index, &start_index); for (;;) { Cmp cmp = bigint_cmp(&field_index, &end_index); if (cmp == CmpGT) { break; } auto entry = field_prev_uses.put_unique(field_index, start_value->source_node); if (entry) { AstNode *prev_node = entry->value; TypeEnumField *enum_field = find_enum_field_by_tag(switch_type, &field_index); assert(enum_field != nullptr); ErrorMsg *msg = ir_add_error(ira, start_value, buf_sprintf("duplicate switch value: '%s.%s'", buf_ptr(&switch_type->name), buf_ptr(enum_field->name))); add_error_note(ira->codegen, msg, prev_node, buf_sprintf("other value is here")); } bigint_incr(&field_index); } } if (!instruction->have_else_prong) { for (uint32_t i = 0; i < switch_type->data.enumeration.src_field_count; i += 1) { TypeEnumField *enum_field = &switch_type->data.enumeration.fields[i]; auto entry = field_prev_uses.maybe_get(enum_field->value); if (!entry) { ir_add_error(ira, &instruction->base, buf_sprintf("enumeration value '%s.%s' not handled in switch", buf_ptr(&switch_type->name), buf_ptr(enum_field->name))); } } } } else if (switch_type->id == ZigTypeIdErrorSet) { if (!resolve_inferred_error_set(ira->codegen, switch_type, target_value->source_node)) { return ira->codegen->invalid_instruction; } AstNode **field_prev_uses = allocate(ira->codegen->errors_by_index.length); for (size_t range_i = 0; range_i < instruction->range_count; range_i += 1) { IrInstructionCheckSwitchProngsRange *range = &instruction->ranges[range_i]; IrInstruction *start_value_uncasted = range->start->child; if (type_is_invalid(start_value_uncasted->value.type)) return ira->codegen->invalid_instruction; IrInstruction *start_value = ir_implicit_cast(ira, start_value_uncasted, switch_type); if (type_is_invalid(start_value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *end_value_uncasted = range->end->child; if (type_is_invalid(end_value_uncasted->value.type)) return ira->codegen->invalid_instruction; IrInstruction *end_value = ir_implicit_cast(ira, end_value_uncasted, switch_type); if (type_is_invalid(end_value->value.type)) return ira->codegen->invalid_instruction; ir_assert(start_value->value.type->id == ZigTypeIdErrorSet, &instruction->base); uint32_t start_index = start_value->value.data.x_err_set->value; ir_assert(end_value->value.type->id == ZigTypeIdErrorSet, &instruction->base); uint32_t end_index = end_value->value.data.x_err_set->value; if (start_index != end_index) { ir_add_error(ira, end_value, buf_sprintf("ranges not allowed when switching on errors")); return ira->codegen->invalid_instruction; } AstNode *prev_node = field_prev_uses[start_index]; if (prev_node != nullptr) { Buf *err_name = &ira->codegen->errors_by_index.at(start_index)->name; ErrorMsg *msg = ir_add_error(ira, start_value, buf_sprintf("duplicate switch value: '%s.%s'", buf_ptr(&switch_type->name), buf_ptr(err_name))); add_error_note(ira->codegen, msg, prev_node, buf_sprintf("other value is here")); } field_prev_uses[start_index] = start_value->source_node; } if (!instruction->have_else_prong) { if (type_is_global_error_set(switch_type)) { ir_add_error(ira, &instruction->base, buf_sprintf("else prong required when switching on type 'anyerror'")); return ira->codegen->invalid_instruction; } else { for (uint32_t i = 0; i < switch_type->data.error_set.err_count; i += 1) { ErrorTableEntry *err_entry = switch_type->data.error_set.errors[i]; AstNode *prev_node = field_prev_uses[err_entry->value]; if (prev_node == nullptr) { ir_add_error(ira, &instruction->base, buf_sprintf("error.%s not handled in switch", buf_ptr(&err_entry->name))); } } } } free(field_prev_uses); } else if (switch_type->id == ZigTypeIdInt) { RangeSet rs = {0}; for (size_t range_i = 0; range_i < instruction->range_count; range_i += 1) { IrInstructionCheckSwitchProngsRange *range = &instruction->ranges[range_i]; IrInstruction *start_value = range->start->child; if (type_is_invalid(start_value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_start_value = ir_implicit_cast(ira, start_value, switch_type); if (type_is_invalid(casted_start_value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *end_value = range->end->child; if (type_is_invalid(end_value->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_end_value = ir_implicit_cast(ira, end_value, switch_type); if (type_is_invalid(casted_end_value->value.type)) return ira->codegen->invalid_instruction; ConstExprValue *start_val = ir_resolve_const(ira, casted_start_value, UndefBad); if (!start_val) return ira->codegen->invalid_instruction; ConstExprValue *end_val = ir_resolve_const(ira, casted_end_value, UndefBad); if (!end_val) return ira->codegen->invalid_instruction; assert(start_val->type->id == ZigTypeIdInt || start_val->type->id == ZigTypeIdComptimeInt); assert(end_val->type->id == ZigTypeIdInt || end_val->type->id == ZigTypeIdComptimeInt); AstNode *prev_node = rangeset_add_range(&rs, &start_val->data.x_bigint, &end_val->data.x_bigint, start_value->source_node); if (prev_node != nullptr) { ErrorMsg *msg = ir_add_error(ira, start_value, buf_sprintf("duplicate switch value")); add_error_note(ira->codegen, msg, prev_node, buf_sprintf("previous value is here")); return ira->codegen->invalid_instruction; } } if (!instruction->have_else_prong) { BigInt min_val; eval_min_max_value_int(ira->codegen, switch_type, &min_val, false); BigInt max_val; eval_min_max_value_int(ira->codegen, switch_type, &max_val, true); if (!rangeset_spans(&rs, &min_val, &max_val)) { ir_add_error(ira, &instruction->base, buf_sprintf("switch must handle all possibilities")); return ira->codegen->invalid_instruction; } } } else if (switch_type->id == ZigTypeIdBool) { int seenTrue = 0; int seenFalse = 0; for (size_t range_i = 0; range_i < instruction->range_count; range_i += 1) { IrInstructionCheckSwitchProngsRange *range = &instruction->ranges[range_i]; IrInstruction *value = range->start->child; IrInstruction *casted_value = ir_implicit_cast(ira, value, switch_type); if (type_is_invalid(casted_value->value.type)) return ira->codegen->invalid_instruction; ConstExprValue *const_expr_val = ir_resolve_const(ira, casted_value, UndefBad); if (!const_expr_val) return ira->codegen->invalid_instruction; assert(const_expr_val->type->id == ZigTypeIdBool); if (const_expr_val->data.x_bool == true) { seenTrue += 1; } else { seenFalse += 1; } if ((seenTrue > 1) || (seenFalse > 1)) { ir_add_error(ira, value, buf_sprintf("duplicate switch value")); return ira->codegen->invalid_instruction; } } if (((seenTrue < 1) || (seenFalse < 1)) && !instruction->have_else_prong) { ir_add_error(ira, &instruction->base, buf_sprintf("switch must handle all possibilities")); return ira->codegen->invalid_instruction; } } else if (!instruction->have_else_prong) { ir_add_error(ira, &instruction->base, buf_sprintf("else prong required when switching on type '%s'", buf_ptr(&switch_type->name))); return ira->codegen->invalid_instruction; } return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_check_statement_is_void(IrAnalyze *ira, IrInstructionCheckStatementIsVoid *instruction) { IrInstruction *statement_value = instruction->statement_value->child; ZigType *statement_type = statement_value->value.type; if (type_is_invalid(statement_type)) return ira->codegen->invalid_instruction; if (statement_type->id != ZigTypeIdVoid && statement_type->id != ZigTypeIdUnreachable) { ir_add_error(ira, &instruction->base, buf_sprintf("expression value is ignored")); } return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_panic(IrAnalyze *ira, IrInstructionPanic *instruction) { IrInstruction *msg = instruction->msg->child; if (type_is_invalid(msg->value.type)) return ir_unreach_error(ira); if (ir_should_inline(ira->new_irb.exec, instruction->base.scope)) { ir_add_error(ira, &instruction->base, buf_sprintf("encountered @panic at compile-time")); return ir_unreach_error(ira); } ZigType *u8_ptr_type = get_pointer_to_type_extra(ira->codegen, ira->codegen->builtin_types.entry_u8, true, false, PtrLenUnknown, 0, 0, 0, false); ZigType *str_type = get_slice_type(ira->codegen, u8_ptr_type); IrInstruction *casted_msg = ir_implicit_cast(ira, msg, str_type); if (type_is_invalid(casted_msg->value.type)) return ir_unreach_error(ira); IrInstruction *new_instruction = ir_build_panic(&ira->new_irb, instruction->base.scope, instruction->base.source_node, casted_msg); return ir_finish_anal(ira, new_instruction); } static IrInstruction *ir_align_cast(IrAnalyze *ira, IrInstruction *target, uint32_t align_bytes, bool safety_check_on) { Error err; ZigType *target_type = target->value.type; assert(!type_is_invalid(target_type)); ZigType *result_type; uint32_t old_align_bytes; if (target_type->id == ZigTypeIdPointer) { result_type = adjust_ptr_align(ira->codegen, target_type, align_bytes); if ((err = resolve_ptr_align(ira, target_type, &old_align_bytes))) return ira->codegen->invalid_instruction; } else if (target_type->id == ZigTypeIdFn) { FnTypeId fn_type_id = target_type->data.fn.fn_type_id; old_align_bytes = fn_type_id.alignment; fn_type_id.alignment = align_bytes; result_type = get_fn_type(ira->codegen, &fn_type_id); } else if (target_type->id == ZigTypeIdOptional && target_type->data.maybe.child_type->id == ZigTypeIdPointer) { ZigType *ptr_type = target_type->data.maybe.child_type; if ((err = resolve_ptr_align(ira, ptr_type, &old_align_bytes))) return ira->codegen->invalid_instruction; ZigType *better_ptr_type = adjust_ptr_align(ira->codegen, ptr_type, align_bytes); result_type = get_optional_type(ira->codegen, better_ptr_type); } else if (target_type->id == ZigTypeIdOptional && target_type->data.maybe.child_type->id == ZigTypeIdFn) { FnTypeId fn_type_id = target_type->data.maybe.child_type->data.fn.fn_type_id; old_align_bytes = fn_type_id.alignment; fn_type_id.alignment = align_bytes; ZigType *fn_type = get_fn_type(ira->codegen, &fn_type_id); result_type = get_optional_type(ira->codegen, fn_type); } else if (is_slice(target_type)) { ZigType *slice_ptr_type = target_type->data.structure.fields[slice_ptr_index].type_entry; if ((err = resolve_ptr_align(ira, slice_ptr_type, &old_align_bytes))) return ira->codegen->invalid_instruction; ZigType *result_ptr_type = adjust_ptr_align(ira->codegen, slice_ptr_type, align_bytes); result_type = get_slice_type(ira->codegen, result_ptr_type); } else { ir_add_error(ira, target, buf_sprintf("expected pointer or slice, found '%s'", buf_ptr(&target_type->name))); return ira->codegen->invalid_instruction; } if (instr_is_comptime(target)) { ConstExprValue *val = ir_resolve_const(ira, target, UndefBad); if (!val) return ira->codegen->invalid_instruction; if (val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr && val->data.x_ptr.data.hard_coded_addr.addr % align_bytes != 0) { ir_add_error(ira, target, buf_sprintf("pointer address 0x%" ZIG_PRI_x64 " is not aligned to %" PRIu32 " bytes", val->data.x_ptr.data.hard_coded_addr.addr, align_bytes)); return ira->codegen->invalid_instruction; } IrInstruction *result = ir_const(ira, target, result_type); copy_const_val(&result->value, val, true); result->value.type = result_type; return result; } IrInstruction *result; if (safety_check_on && align_bytes > old_align_bytes && align_bytes != 1) { result = ir_build_align_cast(&ira->new_irb, target->scope, target->source_node, nullptr, target); } else { result = ir_build_cast(&ira->new_irb, target->scope, target->source_node, result_type, target, CastOpNoop); } result->value.type = result_type; return result; } static IrInstruction *ir_analyze_ptr_cast(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *ptr, ZigType *dest_type, IrInstruction *dest_type_src, bool safety_check_on) { Error err; ZigType *src_type = ptr->value.type; assert(!type_is_invalid(src_type)); // We have a check for zero bits later so we use get_src_ptr_type to // validate src_type and dest_type. ZigType *src_ptr_type = get_src_ptr_type(src_type); if (src_ptr_type == nullptr) { ir_add_error(ira, ptr, buf_sprintf("expected pointer, found '%s'", buf_ptr(&src_type->name))); return ira->codegen->invalid_instruction; } ZigType *dest_ptr_type = get_src_ptr_type(dest_type); if (dest_ptr_type == nullptr) { ir_add_error(ira, dest_type_src, buf_sprintf("expected pointer, found '%s'", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } if (get_ptr_const(src_type) && !get_ptr_const(dest_type)) { ir_add_error(ira, source_instr, buf_sprintf("cast discards const qualifier")); return ira->codegen->invalid_instruction; } uint32_t src_align_bytes; if ((err = resolve_ptr_align(ira, src_type, &src_align_bytes))) return ira->codegen->invalid_instruction; uint32_t dest_align_bytes; if ((err = resolve_ptr_align(ira, dest_type, &dest_align_bytes))) return ira->codegen->invalid_instruction; if (instr_is_comptime(ptr)) { bool dest_allows_addr_zero = ptr_allows_addr_zero(dest_type); UndefAllowed is_undef_allowed = dest_allows_addr_zero ? UndefOk : UndefBad; ConstExprValue *val = ir_resolve_const(ira, ptr, is_undef_allowed); if (!val) return ira->codegen->invalid_instruction; if (value_is_comptime(val) && val->special != ConstValSpecialUndef) { bool is_addr_zero = val->data.x_ptr.special == ConstPtrSpecialNull || (val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr && val->data.x_ptr.data.hard_coded_addr.addr == 0); if (is_addr_zero && !dest_allows_addr_zero) { ir_add_error(ira, source_instr, buf_sprintf("null pointer casted to type '%s'", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } } IrInstruction *result; if (ptr->value.data.x_ptr.mut == ConstPtrMutInfer) { result = ir_build_ptr_cast_gen(ira, source_instr, dest_type, ptr, safety_check_on); } else { result = ir_const(ira, source_instr, dest_type); } copy_const_val(&result->value, val, true); result->value.type = dest_type; // Keep the bigger alignment, it can only help- // unless the target is zero bits. if (src_align_bytes > dest_align_bytes && type_has_bits(dest_type)) { result = ir_align_cast(ira, result, src_align_bytes, false); } return result; } if (dest_align_bytes > src_align_bytes) { ErrorMsg *msg = ir_add_error(ira, source_instr, buf_sprintf("cast increases pointer alignment")); add_error_note(ira->codegen, msg, ptr->source_node, buf_sprintf("'%s' has alignment %" PRIu32, buf_ptr(&src_type->name), src_align_bytes)); add_error_note(ira->codegen, msg, dest_type_src->source_node, buf_sprintf("'%s' has alignment %" PRIu32, buf_ptr(&dest_type->name), dest_align_bytes)); return ira->codegen->invalid_instruction; } IrInstruction *casted_ptr = ir_build_ptr_cast_gen(ira, source_instr, dest_type, ptr, safety_check_on); if ((err = type_resolve(ira->codegen, dest_type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; if ((err = type_resolve(ira->codegen, src_type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; if (type_has_bits(dest_type) && !type_has_bits(src_type)) { ErrorMsg *msg = ir_add_error(ira, source_instr, buf_sprintf("'%s' and '%s' do not have the same in-memory representation", buf_ptr(&src_type->name), buf_ptr(&dest_type->name))); add_error_note(ira->codegen, msg, ptr->source_node, buf_sprintf("'%s' has no in-memory bits", buf_ptr(&src_type->name))); add_error_note(ira->codegen, msg, dest_type_src->source_node, buf_sprintf("'%s' has in-memory bits", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } // Keep the bigger alignment, it can only help- // unless the target is zero bits. IrInstruction *result; if (src_align_bytes > dest_align_bytes && type_has_bits(dest_type)) { result = ir_align_cast(ira, casted_ptr, src_align_bytes, false); if (type_is_invalid(result->value.type)) return ira->codegen->invalid_instruction; } else { result = casted_ptr; } return result; } static IrInstruction *ir_analyze_instruction_ptr_cast(IrAnalyze *ira, IrInstructionPtrCastSrc *instruction) { IrInstruction *dest_type_value = instruction->dest_type->child; ZigType *dest_type = ir_resolve_type(ira, dest_type_value); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; IrInstruction *ptr = instruction->ptr->child; ZigType *src_type = ptr->value.type; if (type_is_invalid(src_type)) return ira->codegen->invalid_instruction; return ir_analyze_ptr_cast(ira, &instruction->base, ptr, dest_type, dest_type_value, instruction->safety_check_on); } static void buf_write_value_bytes_array(CodeGen *codegen, uint8_t *buf, ConstExprValue *val, size_t len) { size_t buf_i = 0; // TODO optimize the buf case expand_undef_array(codegen, val); for (size_t elem_i = 0; elem_i < val->type->data.array.len; elem_i += 1) { ConstExprValue *elem = &val->data.x_array.data.s_none.elements[elem_i]; buf_write_value_bytes(codegen, &buf[buf_i], elem); buf_i += type_size(codegen, elem->type); } } static void buf_write_value_bytes(CodeGen *codegen, uint8_t *buf, ConstExprValue *val) { if (val->special == ConstValSpecialUndef) { expand_undef_struct(codegen, val); val->special = ConstValSpecialStatic; } assert(val->special == ConstValSpecialStatic); switch (val->type->id) { case ZigTypeIdInvalid: case ZigTypeIdMetaType: case ZigTypeIdOpaque: case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdUnreachable: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdErrorUnion: case ZigTypeIdErrorSet: zig_unreachable(); case ZigTypeIdVoid: return; case ZigTypeIdBool: buf[0] = val->data.x_bool ? 1 : 0; return; case ZigTypeIdInt: bigint_write_twos_complement(&val->data.x_bigint, buf, val->type->data.integral.bit_count, codegen->is_big_endian); return; case ZigTypeIdEnum: bigint_write_twos_complement(&val->data.x_enum_tag, buf, val->type->data.enumeration.tag_int_type->data.integral.bit_count, codegen->is_big_endian); return; case ZigTypeIdFloat: float_write_ieee597(val, buf, codegen->is_big_endian); return; case ZigTypeIdPointer: if (val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr) { BigInt bn; bigint_init_unsigned(&bn, val->data.x_ptr.data.hard_coded_addr.addr); bigint_write_twos_complement(&bn, buf, codegen->builtin_types.entry_usize->data.integral.bit_count, codegen->is_big_endian); return; } else { zig_unreachable(); } case ZigTypeIdArray: return buf_write_value_bytes_array(codegen, buf, val, val->type->data.array.len); case ZigTypeIdVector: return buf_write_value_bytes_array(codegen, buf, val, val->type->data.vector.len); case ZigTypeIdStruct: switch (val->type->data.structure.layout) { case ContainerLayoutAuto: zig_unreachable(); case ContainerLayoutExtern: { size_t src_field_count = val->type->data.structure.src_field_count; for (size_t field_i = 0; field_i < src_field_count; field_i += 1) { TypeStructField *struct_field = &val->type->data.structure.fields[field_i]; if (struct_field->gen_index == SIZE_MAX) continue; ConstExprValue *field_val = &val->data.x_struct.fields[field_i]; size_t offset = struct_field->offset; buf_write_value_bytes(codegen, buf + offset, field_val); } return; } case ContainerLayoutPacked: { size_t src_field_count = val->type->data.structure.src_field_count; size_t gen_field_count = val->type->data.structure.gen_field_count; size_t gen_i = 0; size_t src_i = 0; size_t offset = 0; bool is_big_endian = codegen->is_big_endian; uint8_t child_buf_prealloc[16]; size_t child_buf_len = 16; uint8_t *child_buf = child_buf_prealloc; while (gen_i < gen_field_count) { size_t big_int_byte_count = val->type->data.structure.host_int_bytes[gen_i]; if (big_int_byte_count > child_buf_len) { child_buf = allocate_nonzero(big_int_byte_count); child_buf_len = big_int_byte_count; } BigInt big_int; bigint_init_unsigned(&big_int, 0); size_t used_bits = 0; while (src_i < src_field_count) { TypeStructField *field = &val->type->data.structure.fields[src_i]; assert(field->gen_index != SIZE_MAX); if (field->gen_index != gen_i) break; uint32_t packed_bits_size = type_size_bits(codegen, field->type_entry); buf_write_value_bytes(codegen, child_buf, &val->data.x_struct.fields[src_i]); BigInt child_val; bigint_read_twos_complement(&child_val, child_buf, packed_bits_size, is_big_endian, false); if (is_big_endian) { BigInt shift_amt; bigint_init_unsigned(&shift_amt, packed_bits_size); BigInt shifted; bigint_shl(&shifted, &big_int, &shift_amt); bigint_or(&big_int, &shifted, &child_val); } else { BigInt shift_amt; bigint_init_unsigned(&shift_amt, used_bits); BigInt child_val_shifted; bigint_shl(&child_val_shifted, &child_val, &shift_amt); BigInt tmp; bigint_or(&tmp, &big_int, &child_val_shifted); big_int = tmp; used_bits += packed_bits_size; } src_i += 1; } bigint_write_twos_complement(&big_int, buf + offset, big_int_byte_count * 8, is_big_endian); offset += big_int_byte_count; gen_i += 1; } return; } } case ZigTypeIdOptional: zig_panic("TODO buf_write_value_bytes maybe type"); case ZigTypeIdFn: zig_panic("TODO buf_write_value_bytes fn type"); case ZigTypeIdUnion: zig_panic("TODO buf_write_value_bytes union type"); case ZigTypeIdFnFrame: zig_panic("TODO buf_write_value_bytes async fn frame type"); case ZigTypeIdAnyFrame: zig_panic("TODO buf_write_value_bytes anyframe type"); } zig_unreachable(); } static Error buf_read_value_bytes_array(IrAnalyze *ira, CodeGen *codegen, AstNode *source_node, uint8_t *buf, ConstExprValue *val, ZigType *elem_type, size_t len) { Error err; uint64_t elem_size = type_size(codegen, elem_type); switch (val->data.x_array.special) { case ConstArraySpecialNone: val->data.x_array.data.s_none.elements = create_const_vals(len); for (size_t i = 0; i < len; i++) { ConstExprValue *elem = &val->data.x_array.data.s_none.elements[i]; elem->special = ConstValSpecialStatic; elem->type = elem_type; if ((err = buf_read_value_bytes(ira, codegen, source_node, buf + (elem_size * i), elem))) return err; } return ErrorNone; case ConstArraySpecialUndef: zig_panic("TODO buf_read_value_bytes ConstArraySpecialUndef array type"); case ConstArraySpecialBuf: zig_panic("TODO buf_read_value_bytes ConstArraySpecialBuf array type"); } zig_unreachable(); } static Error buf_read_value_bytes(IrAnalyze *ira, CodeGen *codegen, AstNode *source_node, uint8_t *buf, ConstExprValue *val) { Error err; src_assert(val->special == ConstValSpecialStatic, source_node); switch (val->type->id) { case ZigTypeIdInvalid: case ZigTypeIdMetaType: case ZigTypeIdOpaque: case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdUnreachable: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdUndefined: case ZigTypeIdNull: zig_unreachable(); case ZigTypeIdVoid: return ErrorNone; case ZigTypeIdBool: val->data.x_bool = (buf[0] != 0); return ErrorNone; case ZigTypeIdInt: bigint_read_twos_complement(&val->data.x_bigint, buf, val->type->data.integral.bit_count, codegen->is_big_endian, val->type->data.integral.is_signed); return ErrorNone; case ZigTypeIdFloat: float_read_ieee597(val, buf, codegen->is_big_endian); return ErrorNone; case ZigTypeIdPointer: { val->data.x_ptr.special = ConstPtrSpecialHardCodedAddr; BigInt bn; bigint_read_twos_complement(&bn, buf, codegen->builtin_types.entry_usize->data.integral.bit_count, codegen->is_big_endian, false); val->data.x_ptr.data.hard_coded_addr.addr = bigint_as_usize(&bn); return ErrorNone; } case ZigTypeIdArray: return buf_read_value_bytes_array(ira, codegen, source_node, buf, val, val->type->data.array.child_type, val->type->data.array.len); case ZigTypeIdVector: return buf_read_value_bytes_array(ira, codegen, source_node, buf, val, val->type->data.vector.elem_type, val->type->data.vector.len); case ZigTypeIdEnum: switch (val->type->data.enumeration.layout) { case ContainerLayoutAuto: zig_panic("TODO buf_read_value_bytes enum auto"); case ContainerLayoutPacked: zig_panic("TODO buf_read_value_bytes enum packed"); case ContainerLayoutExtern: { ZigType *tag_int_type = val->type->data.enumeration.tag_int_type; src_assert(tag_int_type->id == ZigTypeIdInt, source_node); bigint_read_twos_complement(&val->data.x_enum_tag, buf, tag_int_type->data.integral.bit_count, codegen->is_big_endian, tag_int_type->data.integral.is_signed); return ErrorNone; } } zig_unreachable(); case ZigTypeIdStruct: switch (val->type->data.structure.layout) { case ContainerLayoutAuto: { ErrorMsg *msg = opt_ir_add_error_node(ira, codegen, source_node, buf_sprintf("non-extern, non-packed struct '%s' cannot have its bytes reinterpreted", buf_ptr(&val->type->name))); add_error_note(codegen, msg, val->type->data.structure.decl_node, buf_sprintf("declared here")); return ErrorSemanticAnalyzeFail; } case ContainerLayoutExtern: { size_t src_field_count = val->type->data.structure.src_field_count; val->data.x_struct.fields = create_const_vals(src_field_count); for (size_t field_i = 0; field_i < src_field_count; field_i += 1) { ConstExprValue *field_val = &val->data.x_struct.fields[field_i]; field_val->special = ConstValSpecialStatic; TypeStructField *struct_field = &val->type->data.structure.fields[field_i]; field_val->type = struct_field->type_entry; if (struct_field->gen_index == SIZE_MAX) continue; size_t offset = struct_field->offset; uint8_t *new_buf = buf + offset; if ((err = buf_read_value_bytes(ira, codegen, source_node, new_buf, field_val))) return err; } return ErrorNone; } case ContainerLayoutPacked: { size_t src_field_count = val->type->data.structure.src_field_count; val->data.x_struct.fields = create_const_vals(src_field_count); size_t gen_field_count = val->type->data.structure.gen_field_count; size_t gen_i = 0; size_t src_i = 0; size_t offset = 0; bool is_big_endian = codegen->is_big_endian; uint8_t child_buf_prealloc[16]; size_t child_buf_len = 16; uint8_t *child_buf = child_buf_prealloc; while (gen_i < gen_field_count) { size_t big_int_byte_count = val->type->data.structure.host_int_bytes[gen_i]; if (big_int_byte_count > child_buf_len) { child_buf = allocate_nonzero(big_int_byte_count); child_buf_len = big_int_byte_count; } BigInt big_int; bigint_read_twos_complement(&big_int, buf + offset, big_int_byte_count * 8, is_big_endian, false); while (src_i < src_field_count) { TypeStructField *field = &val->type->data.structure.fields[src_i]; src_assert(field->gen_index != SIZE_MAX, source_node); if (field->gen_index != gen_i) break; ConstExprValue *field_val = &val->data.x_struct.fields[src_i]; field_val->special = ConstValSpecialStatic; field_val->type = field->type_entry; uint32_t packed_bits_size = type_size_bits(codegen, field->type_entry); BigInt child_val; if (is_big_endian) { zig_panic("TODO buf_read_value_bytes packed struct big endian"); } else { BigInt packed_bits_size_bi; bigint_init_unsigned(&packed_bits_size_bi, packed_bits_size); bigint_truncate(&child_val, &big_int, packed_bits_size, false); BigInt tmp; bigint_shr(&tmp, &big_int, &packed_bits_size_bi); big_int = tmp; } bigint_write_twos_complement(&child_val, child_buf, big_int_byte_count * 8, is_big_endian); if ((err = buf_read_value_bytes(ira, codegen, source_node, child_buf, field_val))) { return err; } src_i += 1; } offset += big_int_byte_count; gen_i += 1; } return ErrorNone; } } zig_unreachable(); case ZigTypeIdOptional: zig_panic("TODO buf_read_value_bytes maybe type"); case ZigTypeIdErrorUnion: zig_panic("TODO buf_read_value_bytes error union"); case ZigTypeIdErrorSet: zig_panic("TODO buf_read_value_bytes pure error type"); case ZigTypeIdFn: zig_panic("TODO buf_read_value_bytes fn type"); case ZigTypeIdUnion: zig_panic("TODO buf_read_value_bytes union type"); case ZigTypeIdFnFrame: zig_panic("TODO buf_read_value_bytes async fn frame type"); case ZigTypeIdAnyFrame: zig_panic("TODO buf_read_value_bytes anyframe type"); } zig_unreachable(); } static IrInstruction *ir_analyze_bit_cast(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value, ZigType *dest_type) { Error err; ZigType *src_type = value->value.type; ir_assert(get_codegen_ptr_type(src_type) == nullptr, source_instr); ir_assert(type_can_bit_cast(src_type), source_instr); ir_assert(get_codegen_ptr_type(dest_type) == nullptr, source_instr); ir_assert(type_can_bit_cast(dest_type), source_instr); if ((err = type_resolve(ira->codegen, dest_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; if ((err = type_resolve(ira->codegen, src_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; uint64_t dest_size_bytes = type_size(ira->codegen, dest_type); uint64_t src_size_bytes = type_size(ira->codegen, src_type); if (dest_size_bytes != src_size_bytes) { ir_add_error(ira, source_instr, buf_sprintf("destination type '%s' has size %" ZIG_PRI_u64 " but source type '%s' has size %" ZIG_PRI_u64, buf_ptr(&dest_type->name), dest_size_bytes, buf_ptr(&src_type->name), src_size_bytes)); return ira->codegen->invalid_instruction; } uint64_t dest_size_bits = type_size_bits(ira->codegen, dest_type); uint64_t src_size_bits = type_size_bits(ira->codegen, src_type); if (dest_size_bits != src_size_bits) { ir_add_error(ira, source_instr, buf_sprintf("destination type '%s' has %" ZIG_PRI_u64 " bits but source type '%s' has %" ZIG_PRI_u64 " bits", buf_ptr(&dest_type->name), dest_size_bits, buf_ptr(&src_type->name), src_size_bits)); return ira->codegen->invalid_instruction; } if (instr_is_comptime(value)) { ConstExprValue *val = ir_resolve_const(ira, value, UndefBad); if (!val) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, source_instr, dest_type); uint8_t *buf = allocate_nonzero(src_size_bytes); buf_write_value_bytes(ira->codegen, buf, val); if ((err = buf_read_value_bytes(ira, ira->codegen, source_instr->source_node, buf, &result->value))) return ira->codegen->invalid_instruction; return result; } return ir_build_bit_cast_gen(ira, source_instr, value, dest_type); } static IrInstruction *ir_analyze_int_to_ptr(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *target, ZigType *ptr_type) { ir_assert(get_src_ptr_type(ptr_type) != nullptr, source_instr); ir_assert(type_has_bits(ptr_type), source_instr); IrInstruction *casted_int = ir_implicit_cast(ira, target, ira->codegen->builtin_types.entry_usize); if (type_is_invalid(casted_int->value.type)) return ira->codegen->invalid_instruction; if (instr_is_comptime(casted_int)) { ConstExprValue *val = ir_resolve_const(ira, casted_int, UndefBad); if (!val) return ira->codegen->invalid_instruction; uint64_t addr = bigint_as_u64(&val->data.x_bigint); if (!ptr_allows_addr_zero(ptr_type) && addr == 0) { ir_add_error(ira, source_instr, buf_sprintf("pointer type '%s' does not allow address zero", buf_ptr(&ptr_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *result = ir_const(ira, source_instr, ptr_type); result->value.data.x_ptr.special = ConstPtrSpecialHardCodedAddr; result->value.data.x_ptr.mut = ConstPtrMutRuntimeVar; result->value.data.x_ptr.data.hard_coded_addr.addr = addr; return result; } IrInstruction *result = ir_build_int_to_ptr(&ira->new_irb, source_instr->scope, source_instr->source_node, nullptr, casted_int); result->value.type = ptr_type; return result; } static IrInstruction *ir_analyze_instruction_int_to_ptr(IrAnalyze *ira, IrInstructionIntToPtr *instruction) { Error err; IrInstruction *dest_type_value = instruction->dest_type->child; ZigType *dest_type = ir_resolve_type(ira, dest_type_value); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; // We explicitly check for the size, so we can use get_src_ptr_type if (get_src_ptr_type(dest_type) == nullptr) { ir_add_error(ira, dest_type_value, buf_sprintf("expected pointer, found '%s'", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } if ((err = type_resolve(ira->codegen, dest_type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; if (!type_has_bits(dest_type)) { ir_add_error(ira, dest_type_value, buf_sprintf("type '%s' has 0 bits and cannot store information", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; return ir_analyze_int_to_ptr(ira, &instruction->base, target, dest_type); } static IrInstruction *ir_analyze_instruction_decl_ref(IrAnalyze *ira, IrInstructionDeclRef *instruction) { IrInstruction *ref_instruction = ir_analyze_decl_ref(ira, &instruction->base, instruction->tld); if (type_is_invalid(ref_instruction->value.type)) { return ira->codegen->invalid_instruction; } if (instruction->lval == LValPtr) { return ref_instruction; } else { return ir_get_deref(ira, &instruction->base, ref_instruction, nullptr); } } static IrInstruction *ir_analyze_instruction_ptr_to_int(IrAnalyze *ira, IrInstructionPtrToInt *instruction) { IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; ZigType *usize = ira->codegen->builtin_types.entry_usize; // We check size explicitly so we can use get_src_ptr_type here. if (get_src_ptr_type(target->value.type) == nullptr) { ir_add_error(ira, target, buf_sprintf("expected pointer, found '%s'", buf_ptr(&target->value.type->name))); return ira->codegen->invalid_instruction; } if (!type_has_bits(target->value.type)) { ir_add_error(ira, target, buf_sprintf("pointer to size 0 type has no address")); return ira->codegen->invalid_instruction; } if (instr_is_comptime(target)) { ConstExprValue *val = ir_resolve_const(ira, target, UndefBad); if (!val) return ira->codegen->invalid_instruction; if (val->type->id == ZigTypeIdPointer && val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr) { IrInstruction *result = ir_const(ira, &instruction->base, usize); bigint_init_unsigned(&result->value.data.x_bigint, val->data.x_ptr.data.hard_coded_addr.addr); result->value.type = usize; return result; } } IrInstruction *result = ir_build_ptr_to_int(&ira->new_irb, instruction->base.scope, instruction->base.source_node, target); result->value.type = usize; return result; } static IrInstruction *ir_analyze_instruction_ptr_type(IrAnalyze *ira, IrInstructionPtrType *instruction) { IrInstruction *result = ir_const(ira, &instruction->base, ira->codegen->builtin_types.entry_type); result->value.special = ConstValSpecialLazy; LazyValuePtrType *lazy_ptr_type = allocate(1); result->value.data.x_lazy = &lazy_ptr_type->base; lazy_ptr_type->base.id = LazyValueIdPtrType; lazy_ptr_type->base.exec = ira->new_irb.exec; lazy_ptr_type->elem_type_val = ir_resolve_type_lazy(ira, instruction->child_type->child); if (lazy_ptr_type->elem_type_val == nullptr) return ira->codegen->invalid_instruction; lazy_ptr_type->elem_type_src_node = instruction->child_type->source_node; if (instruction->align_value != nullptr) { lazy_ptr_type->align_val = ir_resolve_const(ira, instruction->align_value->child, LazyOk); if (lazy_ptr_type->align_val == nullptr) return ira->codegen->invalid_instruction; } lazy_ptr_type->ptr_len = instruction->ptr_len; lazy_ptr_type->is_const = instruction->is_const; lazy_ptr_type->is_volatile = instruction->is_volatile; lazy_ptr_type->is_allowzero = instruction->is_allow_zero; lazy_ptr_type->bit_offset_in_host = instruction->bit_offset_start; lazy_ptr_type->host_int_bytes = instruction->host_int_bytes; return result; } static IrInstruction *ir_analyze_instruction_align_cast(IrAnalyze *ira, IrInstructionAlignCast *instruction) { uint32_t align_bytes; IrInstruction *align_bytes_inst = instruction->align_bytes->child; if (!ir_resolve_align(ira, align_bytes_inst, &align_bytes)) return ira->codegen->invalid_instruction; IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; IrInstruction *result = ir_align_cast(ira, target, align_bytes, true); if (type_is_invalid(result->value.type)) return ira->codegen->invalid_instruction; return result; } static IrInstruction *ir_analyze_instruction_opaque_type(IrAnalyze *ira, IrInstructionOpaqueType *instruction) { Buf *bare_name = buf_alloc(); Buf *full_name = get_anon_type_name(ira->codegen, ira->new_irb.exec, "opaque", instruction->base.scope, instruction->base.source_node, bare_name); ZigType *result_type = get_opaque_type(ira->codegen, instruction->base.scope, instruction->base.source_node, buf_ptr(full_name), bare_name); return ir_const_type(ira, &instruction->base, result_type); } static IrInstruction *ir_analyze_instruction_set_align_stack(IrAnalyze *ira, IrInstructionSetAlignStack *instruction) { uint32_t align_bytes; IrInstruction *align_bytes_inst = instruction->align_bytes->child; if (!ir_resolve_align(ira, align_bytes_inst, &align_bytes)) return ira->codegen->invalid_instruction; if (align_bytes > 256) { ir_add_error(ira, &instruction->base, buf_sprintf("attempt to @setAlignStack(%" PRIu32 "); maximum is 256", align_bytes)); return ira->codegen->invalid_instruction; } ZigFn *fn_entry = exec_fn_entry(ira->new_irb.exec); if (fn_entry == nullptr) { ir_add_error(ira, &instruction->base, buf_sprintf("@setAlignStack outside function")); return ira->codegen->invalid_instruction; } if (fn_entry->type_entry->data.fn.fn_type_id.cc == CallingConventionNaked) { ir_add_error(ira, &instruction->base, buf_sprintf("@setAlignStack in naked function")); return ira->codegen->invalid_instruction; } if (fn_entry->fn_inline == FnInlineAlways) { ir_add_error(ira, &instruction->base, buf_sprintf("@setAlignStack in inline function")); return ira->codegen->invalid_instruction; } if (fn_entry->set_alignstack_node != nullptr) { ErrorMsg *msg = ir_add_error_node(ira, instruction->base.source_node, buf_sprintf("alignstack set twice")); add_error_note(ira->codegen, msg, fn_entry->set_alignstack_node, buf_sprintf("first set here")); return ira->codegen->invalid_instruction; } fn_entry->set_alignstack_node = instruction->base.source_node; fn_entry->alignstack_value = align_bytes; return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_arg_type(IrAnalyze *ira, IrInstructionArgType *instruction) { IrInstruction *fn_type_inst = instruction->fn_type->child; ZigType *fn_type = ir_resolve_type(ira, fn_type_inst); if (type_is_invalid(fn_type)) return ira->codegen->invalid_instruction; IrInstruction *arg_index_inst = instruction->arg_index->child; uint64_t arg_index; if (!ir_resolve_usize(ira, arg_index_inst, &arg_index)) return ira->codegen->invalid_instruction; if (fn_type->id != ZigTypeIdFn) { ir_add_error(ira, fn_type_inst, buf_sprintf("expected function, found '%s'", buf_ptr(&fn_type->name))); return ira->codegen->invalid_instruction; } FnTypeId *fn_type_id = &fn_type->data.fn.fn_type_id; if (arg_index >= fn_type_id->param_count) { ir_add_error(ira, arg_index_inst, buf_sprintf("arg index %" ZIG_PRI_u64 " out of bounds; '%s' has %" ZIG_PRI_usize " arguments", arg_index, buf_ptr(&fn_type->name), fn_type_id->param_count)); return ira->codegen->invalid_instruction; } ZigType *result_type = fn_type_id->param_info[arg_index].type; if (result_type == nullptr) { // Args are only unresolved if our function is generic. ir_assert(fn_type->data.fn.is_generic, &instruction->base); ir_add_error(ira, arg_index_inst, buf_sprintf("@ArgType could not resolve the type of arg %" ZIG_PRI_u64 " because '%s' is generic", arg_index, buf_ptr(&fn_type->name))); return ira->codegen->invalid_instruction; } return ir_const_type(ira, &instruction->base, result_type); } static IrInstruction *ir_analyze_instruction_tag_type(IrAnalyze *ira, IrInstructionTagType *instruction) { Error err; IrInstruction *target_inst = instruction->target->child; ZigType *enum_type = ir_resolve_type(ira, target_inst); if (type_is_invalid(enum_type)) return ira->codegen->invalid_instruction; if (enum_type->id == ZigTypeIdEnum) { if ((err = type_resolve(ira->codegen, enum_type, ResolveStatusSizeKnown))) return ira->codegen->invalid_instruction; return ir_const_type(ira, &instruction->base, enum_type->data.enumeration.tag_int_type); } else if (enum_type->id == ZigTypeIdUnion) { ZigType *tag_type = ir_resolve_union_tag_type(ira, instruction->target, enum_type); if (type_is_invalid(tag_type)) return ira->codegen->invalid_instruction; return ir_const_type(ira, &instruction->base, tag_type); } else { ir_add_error(ira, target_inst, buf_sprintf("expected enum or union, found '%s'", buf_ptr(&enum_type->name))); return ira->codegen->invalid_instruction; } } static ZigType *ir_resolve_atomic_operand_type(IrAnalyze *ira, IrInstruction *op) { ZigType *operand_type = ir_resolve_type(ira, op); if (type_is_invalid(operand_type)) return ira->codegen->builtin_types.entry_invalid; if (operand_type->id == ZigTypeIdInt) { if (operand_type->data.integral.bit_count < 8) { ir_add_error(ira, op, buf_sprintf("expected integer type 8 bits or larger, found %" PRIu32 "-bit integer type", operand_type->data.integral.bit_count)); return ira->codegen->builtin_types.entry_invalid; } uint32_t max_atomic_bits = target_arch_largest_atomic_bits(ira->codegen->zig_target->arch); if (operand_type->data.integral.bit_count > max_atomic_bits) { ir_add_error(ira, op, buf_sprintf("expected %" PRIu32 "-bit integer type or smaller, found %" PRIu32 "-bit integer type", max_atomic_bits, operand_type->data.integral.bit_count)); return ira->codegen->builtin_types.entry_invalid; } if (!is_power_of_2(operand_type->data.integral.bit_count)) { ir_add_error(ira, op, buf_sprintf("%" PRIu32 "-bit integer type is not a power of 2", operand_type->data.integral.bit_count)); return ira->codegen->builtin_types.entry_invalid; } } else if (get_codegen_ptr_type(operand_type) == nullptr) { ir_add_error(ira, op, buf_sprintf("expected integer or pointer type, found '%s'", buf_ptr(&operand_type->name))); return ira->codegen->builtin_types.entry_invalid; } return operand_type; } static IrInstruction *ir_analyze_instruction_atomic_rmw(IrAnalyze *ira, IrInstructionAtomicRmw *instruction) { ZigType *operand_type = ir_resolve_atomic_operand_type(ira, instruction->operand_type->child); if (type_is_invalid(operand_type)) return ira->codegen->invalid_instruction; IrInstruction *ptr_inst = instruction->ptr->child; if (type_is_invalid(ptr_inst->value.type)) return ira->codegen->invalid_instruction; // TODO let this be volatile ZigType *ptr_type = get_pointer_to_type(ira->codegen, operand_type, false); IrInstruction *casted_ptr = ir_implicit_cast(ira, ptr_inst, ptr_type); if (type_is_invalid(casted_ptr->value.type)) return ira->codegen->invalid_instruction; AtomicRmwOp op; if (instruction->op == nullptr) { op = instruction->resolved_op; } else { if (!ir_resolve_atomic_rmw_op(ira, instruction->op->child, &op)) { return ira->codegen->invalid_instruction; } } IrInstruction *operand = instruction->operand->child; if (type_is_invalid(operand->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_operand = ir_implicit_cast(ira, operand, operand_type); if (type_is_invalid(casted_operand->value.type)) return ira->codegen->invalid_instruction; AtomicOrder ordering; if (instruction->ordering == nullptr) { ordering = instruction->resolved_ordering; } else { if (!ir_resolve_atomic_order(ira, instruction->ordering->child, &ordering)) return ira->codegen->invalid_instruction; if (ordering == AtomicOrderUnordered) { ir_add_error(ira, instruction->ordering, buf_sprintf("@atomicRmw atomic ordering must not be Unordered")); return ira->codegen->invalid_instruction; } } if (instr_is_comptime(casted_operand) && instr_is_comptime(casted_ptr) && casted_ptr->value.data.x_ptr.mut == ConstPtrMutComptimeVar) { zig_panic("TODO compile-time execution of atomicRmw"); } IrInstruction *result = ir_build_atomic_rmw(&ira->new_irb, instruction->base.scope, instruction->base.source_node, nullptr, casted_ptr, nullptr, casted_operand, nullptr, op, ordering); result->value.type = operand_type; return result; } static IrInstruction *ir_analyze_instruction_atomic_load(IrAnalyze *ira, IrInstructionAtomicLoad *instruction) { ZigType *operand_type = ir_resolve_atomic_operand_type(ira, instruction->operand_type->child); if (type_is_invalid(operand_type)) return ira->codegen->invalid_instruction; IrInstruction *ptr_inst = instruction->ptr->child; if (type_is_invalid(ptr_inst->value.type)) return ira->codegen->invalid_instruction; ZigType *ptr_type = get_pointer_to_type(ira->codegen, operand_type, true); IrInstruction *casted_ptr = ir_implicit_cast(ira, ptr_inst, ptr_type); if (type_is_invalid(casted_ptr->value.type)) return ira->codegen->invalid_instruction; AtomicOrder ordering; if (instruction->ordering == nullptr) { ordering = instruction->resolved_ordering; } else { if (!ir_resolve_atomic_order(ira, instruction->ordering->child, &ordering)) return ira->codegen->invalid_instruction; } if (ordering == AtomicOrderRelease || ordering == AtomicOrderAcqRel) { ir_assert(instruction->ordering != nullptr, &instruction->base); ir_add_error(ira, instruction->ordering, buf_sprintf("@atomicLoad atomic ordering must not be Release or AcqRel")); return ira->codegen->invalid_instruction; } if (instr_is_comptime(casted_ptr)) { IrInstruction *result = ir_get_deref(ira, &instruction->base, casted_ptr, nullptr); ir_assert(result->value.type != nullptr, &instruction->base); return result; } IrInstruction *result = ir_build_atomic_load(&ira->new_irb, instruction->base.scope, instruction->base.source_node, nullptr, casted_ptr, nullptr, ordering); result->value.type = operand_type; return result; } static IrInstruction *ir_analyze_instruction_save_err_ret_addr(IrAnalyze *ira, IrInstructionSaveErrRetAddr *instruction) { IrInstruction *result = ir_build_save_err_ret_addr(&ira->new_irb, instruction->base.scope, instruction->base.source_node); result->value.type = ira->codegen->builtin_types.entry_void; return result; } static void ir_eval_float_op(IrAnalyze *ira, IrInstructionFloatOp *source_instr, ZigType *float_type, ConstExprValue *op, ConstExprValue *out_val) { assert(ira && source_instr && float_type && out_val && op); assert(float_type->id == ZigTypeIdFloat || float_type->id == ZigTypeIdComptimeFloat); BuiltinFnId fop = source_instr->op; unsigned bits; switch (float_type->id) { case ZigTypeIdComptimeFloat: bits = 128; break; case ZigTypeIdFloat: bits = float_type->data.floating.bit_count; break; default: zig_unreachable(); } switch (bits) { case 16: { switch (fop) { case BuiltinFnIdSqrt: out_val->data.x_f16 = f16_sqrt(op->data.x_f16); break; case BuiltinFnIdSin: case BuiltinFnIdCos: case BuiltinFnIdExp: case BuiltinFnIdExp2: case BuiltinFnIdLn: case BuiltinFnIdLog10: case BuiltinFnIdLog2: case BuiltinFnIdFabs: case BuiltinFnIdFloor: case BuiltinFnIdCeil: case BuiltinFnIdTrunc: case BuiltinFnIdNearbyInt: case BuiltinFnIdRound: zig_panic("unimplemented f16 builtin"); default: zig_unreachable(); }; break; }; case 32: { switch (fop) { case BuiltinFnIdSqrt: out_val->data.x_f32 = sqrtf(op->data.x_f32); break; case BuiltinFnIdSin: out_val->data.x_f32 = sinf(op->data.x_f32); break; case BuiltinFnIdCos: out_val->data.x_f32 = cosf(op->data.x_f32); break; case BuiltinFnIdExp: out_val->data.x_f32 = expf(op->data.x_f32); break; case BuiltinFnIdExp2: out_val->data.x_f32 = exp2f(op->data.x_f32); break; case BuiltinFnIdLn: out_val->data.x_f32 = logf(op->data.x_f32); break; case BuiltinFnIdLog10: out_val->data.x_f32 = log10f(op->data.x_f32); break; case BuiltinFnIdLog2: out_val->data.x_f32 = log2f(op->data.x_f32); break; case BuiltinFnIdFabs: out_val->data.x_f32 = fabsf(op->data.x_f32); break; case BuiltinFnIdFloor: out_val->data.x_f32 = floorf(op->data.x_f32); break; case BuiltinFnIdCeil: out_val->data.x_f32 = ceilf(op->data.x_f32); break; case BuiltinFnIdTrunc: out_val->data.x_f32 = truncf(op->data.x_f32); break; case BuiltinFnIdNearbyInt: out_val->data.x_f32 = nearbyintf(op->data.x_f32); break; case BuiltinFnIdRound: out_val->data.x_f32 = roundf(op->data.x_f32); break; default: zig_unreachable(); }; break; }; case 64: { switch (fop) { case BuiltinFnIdSqrt: out_val->data.x_f64 = sqrt(op->data.x_f64); break; case BuiltinFnIdSin: out_val->data.x_f64 = sin(op->data.x_f64); break; case BuiltinFnIdCos: out_val->data.x_f64 = cos(op->data.x_f64); break; case BuiltinFnIdExp: out_val->data.x_f64 = exp(op->data.x_f64); break; case BuiltinFnIdExp2: out_val->data.x_f64 = exp2(op->data.x_f64); break; case BuiltinFnIdLn: out_val->data.x_f64 = log(op->data.x_f64); break; case BuiltinFnIdLog10: out_val->data.x_f64 = log10(op->data.x_f64); break; case BuiltinFnIdLog2: out_val->data.x_f64 = log2(op->data.x_f64); break; case BuiltinFnIdFabs: out_val->data.x_f64 = fabs(op->data.x_f64); break; case BuiltinFnIdFloor: out_val->data.x_f64 = floor(op->data.x_f64); break; case BuiltinFnIdCeil: out_val->data.x_f64 = ceil(op->data.x_f64); break; case BuiltinFnIdTrunc: out_val->data.x_f64 = trunc(op->data.x_f64); break; case BuiltinFnIdNearbyInt: out_val->data.x_f64 = nearbyint(op->data.x_f64); break; case BuiltinFnIdRound: out_val->data.x_f64 = round(op->data.x_f64); break; default: zig_unreachable(); } break; }; case 128: { float128_t *out, *in; if (float_type->id == ZigTypeIdComptimeFloat) { out = &out_val->data.x_bigfloat.value; in = &op->data.x_bigfloat.value; } else { out = &out_val->data.x_f128; in = &op->data.x_f128; } switch (fop) { case BuiltinFnIdSqrt: f128M_sqrt(in, out); break; case BuiltinFnIdNearbyInt: case BuiltinFnIdSin: case BuiltinFnIdCos: case BuiltinFnIdExp: case BuiltinFnIdExp2: case BuiltinFnIdLn: case BuiltinFnIdLog10: case BuiltinFnIdLog2: case BuiltinFnIdFabs: case BuiltinFnIdFloor: case BuiltinFnIdCeil: case BuiltinFnIdTrunc: case BuiltinFnIdRound: zig_panic("unimplemented f128 builtin"); default: zig_unreachable(); } break; }; default: zig_unreachable(); } } static IrInstruction *ir_analyze_instruction_float_op(IrAnalyze *ira, IrInstructionFloatOp *instruction) { IrInstruction *type = instruction->type->child; if (type_is_invalid(type->value.type)) return ira->codegen->invalid_instruction; ZigType *expr_type = ir_resolve_type(ira, type); if (type_is_invalid(expr_type)) return ira->codegen->invalid_instruction; // Only allow float types, and vectors of floats. ZigType *float_type = (expr_type->id == ZigTypeIdVector) ? expr_type->data.vector.elem_type : expr_type; if (float_type->id != ZigTypeIdFloat && float_type->id != ZigTypeIdComptimeFloat) { ir_add_error(ira, instruction->type, buf_sprintf("@%s does not support type '%s'", float_op_to_name(instruction->op, false), buf_ptr(&float_type->name))); return ira->codegen->invalid_instruction; } IrInstruction *op1 = instruction->op1->child; if (type_is_invalid(op1->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_op1 = ir_implicit_cast(ira, op1, float_type); if (type_is_invalid(casted_op1->value.type)) return ira->codegen->invalid_instruction; if (instr_is_comptime(casted_op1)) { // Our comptime 16-bit and 128-bit support is quite limited. if ((float_type->id == ZigTypeIdComptimeFloat || float_type->data.floating.bit_count == 16 || float_type->data.floating.bit_count == 128) && instruction->op != BuiltinFnIdSqrt) { ir_add_error(ira, instruction->type, buf_sprintf("@%s does not support type '%s'", float_op_to_name(instruction->op, false), buf_ptr(&float_type->name))); return ira->codegen->invalid_instruction; } ConstExprValue *op1_const = ir_resolve_const(ira, casted_op1, UndefBad); if (!op1_const) return ira->codegen->invalid_instruction; IrInstruction *result = ir_const(ira, &instruction->base, expr_type); ConstExprValue *out_val = &result->value; if (expr_type->id == ZigTypeIdVector) { expand_undef_array(ira->codegen, op1_const); out_val->special = ConstValSpecialUndef; expand_undef_array(ira->codegen, out_val); size_t len = expr_type->data.vector.len; for (size_t i = 0; i < len; i += 1) { ConstExprValue *float_operand_op1 = &op1_const->data.x_array.data.s_none.elements[i]; ConstExprValue *float_out_val = &out_val->data.x_array.data.s_none.elements[i]; assert(float_operand_op1->type == float_type); assert(float_out_val->type == float_type); ir_eval_float_op(ira, instruction, float_type, op1_const, float_out_val); float_out_val->type = float_type; } out_val->type = expr_type; out_val->special = ConstValSpecialStatic; } else { ir_eval_float_op(ira, instruction, float_type, op1_const, out_val); } return result; } ir_assert(float_type->id == ZigTypeIdFloat, &instruction->base); IrInstruction *result = ir_build_float_op(&ira->new_irb, instruction->base.scope, instruction->base.source_node, nullptr, casted_op1, instruction->op); result->value.type = expr_type; return result; } static IrInstruction *ir_analyze_instruction_bswap(IrAnalyze *ira, IrInstructionBswap *instruction) { ZigType *int_type = ir_resolve_int_type(ira, instruction->type->child); if (type_is_invalid(int_type)) return ira->codegen->invalid_instruction; IrInstruction *op = ir_implicit_cast(ira, instruction->op->child, int_type); if (type_is_invalid(op->value.type)) return ira->codegen->invalid_instruction; if (int_type->data.integral.bit_count == 0) { IrInstruction *result = ir_const(ira, &instruction->base, int_type); bigint_init_unsigned(&result->value.data.x_bigint, 0); return result; } if (int_type->data.integral.bit_count == 8) return op; if (int_type->data.integral.bit_count % 8 != 0) { ir_add_error(ira, instruction->op, buf_sprintf("@byteSwap integer type '%s' has %" PRIu32 " bits which is not evenly divisible by 8", buf_ptr(&int_type->name), int_type->data.integral.bit_count)); return ira->codegen->invalid_instruction; } if (instr_is_comptime(op)) { ConstExprValue *val = ir_resolve_const(ira, op, UndefOk); if (val == nullptr) return ira->codegen->invalid_instruction; if (val->special == ConstValSpecialUndef) return ir_const_undef(ira, &instruction->base, int_type); IrInstruction *result = ir_const(ira, &instruction->base, int_type); size_t buf_size = int_type->data.integral.bit_count / 8; uint8_t *buf = allocate_nonzero(buf_size); bigint_write_twos_complement(&val->data.x_bigint, buf, int_type->data.integral.bit_count, true); bigint_read_twos_complement(&result->value.data.x_bigint, buf, int_type->data.integral.bit_count, false, int_type->data.integral.is_signed); return result; } IrInstruction *result = ir_build_bswap(&ira->new_irb, instruction->base.scope, instruction->base.source_node, nullptr, op); result->value.type = int_type; return result; } static IrInstruction *ir_analyze_instruction_bit_reverse(IrAnalyze *ira, IrInstructionBitReverse *instruction) { ZigType *int_type = ir_resolve_int_type(ira, instruction->type->child); if (type_is_invalid(int_type)) return ira->codegen->invalid_instruction; IrInstruction *op = ir_implicit_cast(ira, instruction->op->child, int_type); if (type_is_invalid(op->value.type)) return ira->codegen->invalid_instruction; if (int_type->data.integral.bit_count == 0) { IrInstruction *result = ir_const(ira, &instruction->base, int_type); bigint_init_unsigned(&result->value.data.x_bigint, 0); return result; } if (instr_is_comptime(op)) { ConstExprValue *val = ir_resolve_const(ira, op, UndefOk); if (val == nullptr) return ira->codegen->invalid_instruction; if (val->special == ConstValSpecialUndef) return ir_const_undef(ira, &instruction->base, int_type); IrInstruction *result = ir_const(ira, &instruction->base, int_type); size_t num_bits = int_type->data.integral.bit_count; size_t buf_size = (num_bits + 7) / 8; uint8_t *comptime_buf = allocate_nonzero(buf_size); uint8_t *result_buf = allocate_nonzero(buf_size); memset(comptime_buf,0,buf_size); memset(result_buf,0,buf_size); bigint_write_twos_complement(&val->data.x_bigint,comptime_buf,num_bits,ira->codegen->is_big_endian); size_t bit_i = 0; size_t bit_rev_i = num_bits - 1; for (; bit_i < num_bits; bit_i++, bit_rev_i--) { if (comptime_buf[bit_i / 8] & (1 << (bit_i % 8))) { result_buf[bit_rev_i / 8] |= (1 << (bit_rev_i % 8)); } } bigint_read_twos_complement(&result->value.data.x_bigint, result_buf, int_type->data.integral.bit_count, ira->codegen->is_big_endian, int_type->data.integral.is_signed); return result; } IrInstruction *result = ir_build_bit_reverse(&ira->new_irb, instruction->base.scope, instruction->base.source_node, nullptr, op); result->value.type = int_type; return result; } static IrInstruction *ir_analyze_instruction_enum_to_int(IrAnalyze *ira, IrInstructionEnumToInt *instruction) { IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; return ir_analyze_enum_to_int(ira, &instruction->base, target); } static IrInstruction *ir_analyze_instruction_int_to_enum(IrAnalyze *ira, IrInstructionIntToEnum *instruction) { Error err; IrInstruction *dest_type_value = instruction->dest_type->child; ZigType *dest_type = ir_resolve_type(ira, dest_type_value); if (type_is_invalid(dest_type)) return ira->codegen->invalid_instruction; if (dest_type->id != ZigTypeIdEnum) { ir_add_error(ira, instruction->dest_type, buf_sprintf("expected enum, found type '%s'", buf_ptr(&dest_type->name))); return ira->codegen->invalid_instruction; } if ((err = type_resolve(ira->codegen, dest_type, ResolveStatusZeroBitsKnown))) return ira->codegen->invalid_instruction; ZigType *tag_type = dest_type->data.enumeration.tag_int_type; IrInstruction *target = instruction->target->child; if (type_is_invalid(target->value.type)) return ira->codegen->invalid_instruction; IrInstruction *casted_target = ir_implicit_cast(ira, target, tag_type); if (type_is_invalid(casted_target->value.type)) return ira->codegen->invalid_instruction; return ir_analyze_int_to_enum(ira, &instruction->base, casted_target, dest_type); } static IrInstruction *ir_analyze_instruction_check_runtime_scope(IrAnalyze *ira, IrInstructionCheckRuntimeScope *instruction) { IrInstruction *block_comptime_inst = instruction->scope_is_comptime->child; bool scope_is_comptime; if (!ir_resolve_bool(ira, block_comptime_inst, &scope_is_comptime)) return ira->codegen->invalid_instruction; IrInstruction *is_comptime_inst = instruction->is_comptime->child; bool is_comptime; if (!ir_resolve_bool(ira, is_comptime_inst, &is_comptime)) return ira->codegen->invalid_instruction; if (!scope_is_comptime && is_comptime) { ErrorMsg *msg = ir_add_error(ira, &instruction->base, buf_sprintf("comptime control flow inside runtime block")); add_error_note(ira->codegen, msg, block_comptime_inst->source_node, buf_sprintf("runtime block created here")); return ira->codegen->invalid_instruction; } return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_has_decl(IrAnalyze *ira, IrInstructionHasDecl *instruction) { ZigType *container_type = ir_resolve_type(ira, instruction->container->child); if (type_is_invalid(container_type)) return ira->codegen->invalid_instruction; Buf *name = ir_resolve_str(ira, instruction->name->child); if (name == nullptr) return ira->codegen->invalid_instruction; if (!is_container(container_type)) { ir_add_error(ira, instruction->container, buf_sprintf("expected struct, enum, or union; found '%s'", buf_ptr(&container_type->name))); return ira->codegen->invalid_instruction; } ScopeDecls *container_scope = get_container_scope(container_type); Tld *tld = find_container_decl(ira->codegen, container_scope, name); if (tld == nullptr) return ir_const_bool(ira, &instruction->base, false); if (tld->visib_mod == VisibModPrivate && tld->import != get_scope_import(instruction->base.scope)) { return ir_const_bool(ira, &instruction->base, false); } return ir_const_bool(ira, &instruction->base, true); } static IrInstruction *ir_analyze_instruction_undeclared_ident(IrAnalyze *ira, IrInstructionUndeclaredIdent *instruction) { // put a variable of same name with invalid type in global scope // so that future references to this same name will find a variable with an invalid type populate_invalid_variable_in_scope(ira->codegen, instruction->base.scope, instruction->base.source_node, instruction->name); ir_add_error(ira, &instruction->base, buf_sprintf("use of undeclared identifier '%s'", buf_ptr(instruction->name))); return ira->codegen->invalid_instruction; } static IrInstruction *ir_analyze_instruction_end_expr(IrAnalyze *ira, IrInstructionEndExpr *instruction) { IrInstruction *value = instruction->value->child; if (type_is_invalid(value->value.type)) return ira->codegen->invalid_instruction; bool was_written = instruction->result_loc->written; IrInstruction *result_loc = ir_resolve_result(ira, &instruction->base, instruction->result_loc, value->value.type, value, false, false, true); if (result_loc != nullptr) { if (type_is_invalid(result_loc->value.type)) return ira->codegen->invalid_instruction; if (result_loc->value.type->id == ZigTypeIdUnreachable) return result_loc; if (!was_written) { IrInstruction *store_ptr = ir_analyze_store_ptr(ira, &instruction->base, result_loc, value, instruction->result_loc->allow_write_through_const); if (type_is_invalid(store_ptr->value.type)) { return ira->codegen->invalid_instruction; } } if (result_loc->value.data.x_ptr.mut == ConstPtrMutInfer) { if (instr_is_comptime(value)) { result_loc->value.data.x_ptr.mut = ConstPtrMutComptimeConst; } else { result_loc->value.special = ConstValSpecialRuntime; } } } return ir_const_void(ira, &instruction->base); } static IrInstruction *ir_analyze_instruction_bit_cast_src(IrAnalyze *ira, IrInstructionBitCastSrc *instruction) { IrInstruction *operand = instruction->operand->child; if (type_is_invalid(operand->value.type)) return operand; IrInstruction *result_loc = ir_resolve_result(ira, &instruction->base, &instruction->result_loc_bit_cast->base, operand->value.type, operand, false, false, true); if (result_loc != nullptr && (type_is_invalid(result_loc->value.type) || instr_is_unreachable(result_loc))) return result_loc; if (instruction->result_loc_bit_cast->parent->gen_instruction != nullptr) { return instruction->result_loc_bit_cast->parent->gen_instruction; } return result_loc; } static IrInstruction *ir_analyze_instruction_union_init_named_field(IrAnalyze *ira, IrInstructionUnionInitNamedField *instruction) { ZigType *union_type = ir_resolve_type(ira, instruction->union_type->child); if (type_is_invalid(union_type)) return ira->codegen->invalid_instruction; if (union_type->id != ZigTypeIdUnion) { ir_add_error(ira, instruction->union_type, buf_sprintf("non-union type '%s' passed to @unionInit", buf_ptr(&union_type->name))); return ira->codegen->invalid_instruction; } Buf *field_name = ir_resolve_str(ira, instruction->field_name->child); if (field_name == nullptr) return ira->codegen->invalid_instruction; IrInstruction *field_result_loc = instruction->field_result_loc->child; if (type_is_invalid(field_result_loc->value.type)) return ira->codegen->invalid_instruction; IrInstruction *result_loc = instruction->result_loc->child; if (type_is_invalid(result_loc->value.type)) return ira->codegen->invalid_instruction; return ir_analyze_union_init(ira, &instruction->base, instruction->base.source_node, union_type, field_name, field_result_loc, result_loc); } static IrInstruction *ir_analyze_instruction_suspend_begin(IrAnalyze *ira, IrInstructionSuspendBegin *instruction) { IrInstructionSuspendBegin *result = ir_build_suspend_begin(&ira->new_irb, instruction->base.scope, instruction->base.source_node); return &result->base; } static IrInstruction *ir_analyze_instruction_suspend_finish(IrAnalyze *ira, IrInstructionSuspendFinish *instruction) { IrInstruction *begin_base = instruction->begin->base.child; if (type_is_invalid(begin_base->value.type)) return ira->codegen->invalid_instruction; ir_assert(begin_base->id == IrInstructionIdSuspendBegin, &instruction->base); IrInstructionSuspendBegin *begin = reinterpret_cast(begin_base); ZigFn *fn_entry = exec_fn_entry(ira->new_irb.exec); ir_assert(fn_entry != nullptr, &instruction->base); if (fn_entry->inferred_async_node == nullptr) { fn_entry->inferred_async_node = instruction->base.source_node; } return ir_build_suspend_finish(&ira->new_irb, instruction->base.scope, instruction->base.source_node, begin); } static IrInstruction *analyze_frame_ptr_to_anyframe_T(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *frame_ptr) { if (type_is_invalid(frame_ptr->value.type)) return ira->codegen->invalid_instruction; ZigType *result_type; IrInstruction *frame; if (frame_ptr->value.type->id == ZigTypeIdPointer && frame_ptr->value.type->data.pointer.ptr_len == PtrLenSingle && frame_ptr->value.type->data.pointer.child_type->id == ZigTypeIdFnFrame) { result_type = frame_ptr->value.type->data.pointer.child_type->data.frame.fn->type_entry->data.fn.fn_type_id.return_type; frame = frame_ptr; } else { frame = ir_get_deref(ira, source_instr, frame_ptr, nullptr); if (frame->value.type->id == ZigTypeIdPointer && frame->value.type->data.pointer.ptr_len == PtrLenSingle && frame->value.type->data.pointer.child_type->id == ZigTypeIdFnFrame) { result_type = frame->value.type->data.pointer.child_type->data.frame.fn->type_entry->data.fn.fn_type_id.return_type; } else if (frame->value.type->id != ZigTypeIdAnyFrame || frame->value.type->data.any_frame.result_type == nullptr) { ir_add_error(ira, source_instr, buf_sprintf("expected anyframe->T, found '%s'", buf_ptr(&frame->value.type->name))); return ira->codegen->invalid_instruction; } else { result_type = frame->value.type->data.any_frame.result_type; } } ZigType *any_frame_type = get_any_frame_type(ira->codegen, result_type); IrInstruction *casted_frame = ir_implicit_cast(ira, frame, any_frame_type); if (type_is_invalid(casted_frame->value.type)) return ira->codegen->invalid_instruction; return casted_frame; } static IrInstruction *ir_analyze_instruction_await(IrAnalyze *ira, IrInstructionAwaitSrc *instruction) { IrInstruction *frame = analyze_frame_ptr_to_anyframe_T(ira, &instruction->base, instruction->frame->child); if (type_is_invalid(frame->value.type)) return ira->codegen->invalid_instruction; ZigType *result_type = frame->value.type->data.any_frame.result_type; ZigFn *fn_entry = exec_fn_entry(ira->new_irb.exec); ir_assert(fn_entry != nullptr, &instruction->base); if (fn_entry->inferred_async_node == nullptr) { fn_entry->inferred_async_node = instruction->base.source_node; } if (type_can_fail(result_type)) { fn_entry->calls_or_awaits_errorable_fn = true; } IrInstruction *result_loc; if (type_has_bits(result_type)) { result_loc = ir_resolve_result(ira, &instruction->base, instruction->result_loc, result_type, nullptr, true, true, true); if (result_loc != nullptr && (type_is_invalid(result_loc->value.type) || instr_is_unreachable(result_loc))) return result_loc; } else { result_loc = nullptr; } IrInstruction *result = ir_build_await_gen(ira, &instruction->base, frame, result_type, result_loc); return ir_finish_anal(ira, result); } static IrInstruction *ir_analyze_instruction_resume(IrAnalyze *ira, IrInstructionResume *instruction) { IrInstruction *frame_ptr = instruction->frame->child; if (type_is_invalid(frame_ptr->value.type)) return ira->codegen->invalid_instruction; IrInstruction *frame; if (frame_ptr->value.type->id == ZigTypeIdPointer && frame_ptr->value.type->data.pointer.ptr_len == PtrLenSingle && frame_ptr->value.type->data.pointer.child_type->id == ZigTypeIdFnFrame) { frame = frame_ptr; } else { frame = ir_get_deref(ira, &instruction->base, frame_ptr, nullptr); } ZigType *any_frame_type = get_any_frame_type(ira->codegen, nullptr); IrInstruction *casted_frame = ir_implicit_cast(ira, frame, any_frame_type); if (type_is_invalid(casted_frame->value.type)) return ira->codegen->invalid_instruction; return ir_build_resume(&ira->new_irb, instruction->base.scope, instruction->base.source_node, casted_frame); } static IrInstruction *ir_analyze_instruction_spill_begin(IrAnalyze *ira, IrInstructionSpillBegin *instruction) { if (ir_should_inline(ira->new_irb.exec, instruction->base.scope)) return ir_const_void(ira, &instruction->base); IrInstruction *operand = instruction->operand->child; if (type_is_invalid(operand->value.type)) return ira->codegen->invalid_instruction; if (!type_has_bits(operand->value.type)) return ir_const_void(ira, &instruction->base); ir_assert(instruction->spill_id == SpillIdRetErrCode, &instruction->base); ira->new_irb.exec->need_err_code_spill = true; IrInstructionSpillBegin *result = ir_build_spill_begin(&ira->new_irb, instruction->base.scope, instruction->base.source_node, operand, instruction->spill_id); return &result->base; } static IrInstruction *ir_analyze_instruction_spill_end(IrAnalyze *ira, IrInstructionSpillEnd *instruction) { IrInstruction *operand = instruction->begin->operand->child; if (type_is_invalid(operand->value.type)) return ira->codegen->invalid_instruction; if (ir_should_inline(ira->new_irb.exec, instruction->base.scope) || !type_has_bits(operand->value.type)) return operand; ir_assert(instruction->begin->base.child->id == IrInstructionIdSpillBegin, &instruction->base); IrInstructionSpillBegin *begin = reinterpret_cast(instruction->begin->base.child); IrInstruction *result = ir_build_spill_end(&ira->new_irb, instruction->base.scope, instruction->base.source_node, begin); result->value.type = operand->value.type; return result; } static IrInstruction *ir_analyze_instruction_base(IrAnalyze *ira, IrInstruction *instruction) { switch (instruction->id) { case IrInstructionIdInvalid: case IrInstructionIdWidenOrShorten: case IrInstructionIdStructFieldPtr: case IrInstructionIdUnionFieldPtr: case IrInstructionIdOptionalWrap: case IrInstructionIdErrWrapCode: case IrInstructionIdErrWrapPayload: case IrInstructionIdCast: case IrInstructionIdDeclVarGen: case IrInstructionIdPtrCastGen: case IrInstructionIdCmpxchgGen: case IrInstructionIdArrayToVector: case IrInstructionIdVectorToArray: case IrInstructionIdPtrOfArrayToSlice: case IrInstructionIdAssertZero: case IrInstructionIdAssertNonNull: case IrInstructionIdResizeSlice: case IrInstructionIdLoadPtrGen: case IrInstructionIdBitCastGen: case IrInstructionIdCallGen: case IrInstructionIdReturnPtr: case IrInstructionIdAllocaGen: case IrInstructionIdSliceGen: case IrInstructionIdRefGen: case IrInstructionIdTestErrGen: case IrInstructionIdFrameSizeGen: case IrInstructionIdAwaitGen: zig_unreachable(); case IrInstructionIdReturn: return ir_analyze_instruction_return(ira, (IrInstructionReturn *)instruction); case IrInstructionIdConst: return ir_analyze_instruction_const(ira, (IrInstructionConst *)instruction); case IrInstructionIdUnOp: return ir_analyze_instruction_un_op(ira, (IrInstructionUnOp *)instruction); case IrInstructionIdBinOp: return ir_analyze_instruction_bin_op(ira, (IrInstructionBinOp *)instruction); case IrInstructionIdDeclVarSrc: return ir_analyze_instruction_decl_var(ira, (IrInstructionDeclVarSrc *)instruction); case IrInstructionIdLoadPtr: return ir_analyze_instruction_load_ptr(ira, (IrInstructionLoadPtr *)instruction); case IrInstructionIdStorePtr: return ir_analyze_instruction_store_ptr(ira, (IrInstructionStorePtr *)instruction); case IrInstructionIdElemPtr: return ir_analyze_instruction_elem_ptr(ira, (IrInstructionElemPtr *)instruction); case IrInstructionIdVarPtr: return ir_analyze_instruction_var_ptr(ira, (IrInstructionVarPtr *)instruction); case IrInstructionIdFieldPtr: return ir_analyze_instruction_field_ptr(ira, (IrInstructionFieldPtr *)instruction); case IrInstructionIdCallSrc: return ir_analyze_instruction_call(ira, (IrInstructionCallSrc *)instruction); case IrInstructionIdBr: return ir_analyze_instruction_br(ira, (IrInstructionBr *)instruction); case IrInstructionIdCondBr: return ir_analyze_instruction_cond_br(ira, (IrInstructionCondBr *)instruction); case IrInstructionIdUnreachable: return ir_analyze_instruction_unreachable(ira, (IrInstructionUnreachable *)instruction); case IrInstructionIdPhi: return ir_analyze_instruction_phi(ira, (IrInstructionPhi *)instruction); case IrInstructionIdTypeOf: return ir_analyze_instruction_typeof(ira, (IrInstructionTypeOf *)instruction); case IrInstructionIdSetCold: return ir_analyze_instruction_set_cold(ira, (IrInstructionSetCold *)instruction); case IrInstructionIdSetRuntimeSafety: return ir_analyze_instruction_set_runtime_safety(ira, (IrInstructionSetRuntimeSafety *)instruction); case IrInstructionIdSetFloatMode: return ir_analyze_instruction_set_float_mode(ira, (IrInstructionSetFloatMode *)instruction); case IrInstructionIdAnyFrameType: return ir_analyze_instruction_any_frame_type(ira, (IrInstructionAnyFrameType *)instruction); case IrInstructionIdSliceType: return ir_analyze_instruction_slice_type(ira, (IrInstructionSliceType *)instruction); case IrInstructionIdGlobalAsm: return ir_analyze_instruction_global_asm(ira, (IrInstructionGlobalAsm *)instruction); case IrInstructionIdAsm: return ir_analyze_instruction_asm(ira, (IrInstructionAsm *)instruction); case IrInstructionIdArrayType: return ir_analyze_instruction_array_type(ira, (IrInstructionArrayType *)instruction); case IrInstructionIdSizeOf: return ir_analyze_instruction_size_of(ira, (IrInstructionSizeOf *)instruction); case IrInstructionIdTestNonNull: return ir_analyze_instruction_test_non_null(ira, (IrInstructionTestNonNull *)instruction); case IrInstructionIdOptionalUnwrapPtr: return ir_analyze_instruction_optional_unwrap_ptr(ira, (IrInstructionOptionalUnwrapPtr *)instruction); case IrInstructionIdClz: return ir_analyze_instruction_clz(ira, (IrInstructionClz *)instruction); case IrInstructionIdCtz: return ir_analyze_instruction_ctz(ira, (IrInstructionCtz *)instruction); case IrInstructionIdPopCount: return ir_analyze_instruction_pop_count(ira, (IrInstructionPopCount *)instruction); case IrInstructionIdBswap: return ir_analyze_instruction_bswap(ira, (IrInstructionBswap *)instruction); case IrInstructionIdBitReverse: return ir_analyze_instruction_bit_reverse(ira, (IrInstructionBitReverse *)instruction); case IrInstructionIdSwitchBr: return ir_analyze_instruction_switch_br(ira, (IrInstructionSwitchBr *)instruction); case IrInstructionIdSwitchTarget: return ir_analyze_instruction_switch_target(ira, (IrInstructionSwitchTarget *)instruction); case IrInstructionIdSwitchVar: return ir_analyze_instruction_switch_var(ira, (IrInstructionSwitchVar *)instruction); case IrInstructionIdSwitchElseVar: return ir_analyze_instruction_switch_else_var(ira, (IrInstructionSwitchElseVar *)instruction); case IrInstructionIdUnionTag: return ir_analyze_instruction_union_tag(ira, (IrInstructionUnionTag *)instruction); case IrInstructionIdImport: return ir_analyze_instruction_import(ira, (IrInstructionImport *)instruction); case IrInstructionIdRef: return ir_analyze_instruction_ref(ira, (IrInstructionRef *)instruction); case IrInstructionIdContainerInitList: return ir_analyze_instruction_container_init_list(ira, (IrInstructionContainerInitList *)instruction); case IrInstructionIdContainerInitFields: return ir_analyze_instruction_container_init_fields(ira, (IrInstructionContainerInitFields *)instruction); case IrInstructionIdCompileErr: return ir_analyze_instruction_compile_err(ira, (IrInstructionCompileErr *)instruction); case IrInstructionIdCompileLog: return ir_analyze_instruction_compile_log(ira, (IrInstructionCompileLog *)instruction); case IrInstructionIdErrName: return ir_analyze_instruction_err_name(ira, (IrInstructionErrName *)instruction); case IrInstructionIdTypeName: return ir_analyze_instruction_type_name(ira, (IrInstructionTypeName *)instruction); case IrInstructionIdCImport: return ir_analyze_instruction_c_import(ira, (IrInstructionCImport *)instruction); case IrInstructionIdCInclude: return ir_analyze_instruction_c_include(ira, (IrInstructionCInclude *)instruction); case IrInstructionIdCDefine: return ir_analyze_instruction_c_define(ira, (IrInstructionCDefine *)instruction); case IrInstructionIdCUndef: return ir_analyze_instruction_c_undef(ira, (IrInstructionCUndef *)instruction); case IrInstructionIdEmbedFile: return ir_analyze_instruction_embed_file(ira, (IrInstructionEmbedFile *)instruction); case IrInstructionIdCmpxchgSrc: return ir_analyze_instruction_cmpxchg(ira, (IrInstructionCmpxchgSrc *)instruction); case IrInstructionIdFence: return ir_analyze_instruction_fence(ira, (IrInstructionFence *)instruction); case IrInstructionIdTruncate: return ir_analyze_instruction_truncate(ira, (IrInstructionTruncate *)instruction); case IrInstructionIdIntCast: return ir_analyze_instruction_int_cast(ira, (IrInstructionIntCast *)instruction); case IrInstructionIdFloatCast: return ir_analyze_instruction_float_cast(ira, (IrInstructionFloatCast *)instruction); case IrInstructionIdErrSetCast: return ir_analyze_instruction_err_set_cast(ira, (IrInstructionErrSetCast *)instruction); case IrInstructionIdFromBytes: return ir_analyze_instruction_from_bytes(ira, (IrInstructionFromBytes *)instruction); case IrInstructionIdToBytes: return ir_analyze_instruction_to_bytes(ira, (IrInstructionToBytes *)instruction); case IrInstructionIdIntToFloat: return ir_analyze_instruction_int_to_float(ira, (IrInstructionIntToFloat *)instruction); case IrInstructionIdFloatToInt: return ir_analyze_instruction_float_to_int(ira, (IrInstructionFloatToInt *)instruction); case IrInstructionIdBoolToInt: return ir_analyze_instruction_bool_to_int(ira, (IrInstructionBoolToInt *)instruction); case IrInstructionIdIntType: return ir_analyze_instruction_int_type(ira, (IrInstructionIntType *)instruction); case IrInstructionIdVectorType: return ir_analyze_instruction_vector_type(ira, (IrInstructionVectorType *)instruction); case IrInstructionIdBoolNot: return ir_analyze_instruction_bool_not(ira, (IrInstructionBoolNot *)instruction); case IrInstructionIdMemset: return ir_analyze_instruction_memset(ira, (IrInstructionMemset *)instruction); case IrInstructionIdMemcpy: return ir_analyze_instruction_memcpy(ira, (IrInstructionMemcpy *)instruction); case IrInstructionIdSliceSrc: return ir_analyze_instruction_slice(ira, (IrInstructionSliceSrc *)instruction); case IrInstructionIdMemberCount: return ir_analyze_instruction_member_count(ira, (IrInstructionMemberCount *)instruction); case IrInstructionIdMemberType: return ir_analyze_instruction_member_type(ira, (IrInstructionMemberType *)instruction); case IrInstructionIdMemberName: return ir_analyze_instruction_member_name(ira, (IrInstructionMemberName *)instruction); case IrInstructionIdBreakpoint: return ir_analyze_instruction_breakpoint(ira, (IrInstructionBreakpoint *)instruction); case IrInstructionIdReturnAddress: return ir_analyze_instruction_return_address(ira, (IrInstructionReturnAddress *)instruction); case IrInstructionIdFrameAddress: return ir_analyze_instruction_frame_address(ira, (IrInstructionFrameAddress *)instruction); case IrInstructionIdFrameHandle: return ir_analyze_instruction_frame_handle(ira, (IrInstructionFrameHandle *)instruction); case IrInstructionIdFrameType: return ir_analyze_instruction_frame_type(ira, (IrInstructionFrameType *)instruction); case IrInstructionIdFrameSizeSrc: return ir_analyze_instruction_frame_size(ira, (IrInstructionFrameSizeSrc *)instruction); case IrInstructionIdAlignOf: return ir_analyze_instruction_align_of(ira, (IrInstructionAlignOf *)instruction); case IrInstructionIdOverflowOp: return ir_analyze_instruction_overflow_op(ira, (IrInstructionOverflowOp *)instruction); case IrInstructionIdTestErrSrc: return ir_analyze_instruction_test_err(ira, (IrInstructionTestErrSrc *)instruction); case IrInstructionIdUnwrapErrCode: return ir_analyze_instruction_unwrap_err_code(ira, (IrInstructionUnwrapErrCode *)instruction); case IrInstructionIdUnwrapErrPayload: return ir_analyze_instruction_unwrap_err_payload(ira, (IrInstructionUnwrapErrPayload *)instruction); case IrInstructionIdFnProto: return ir_analyze_instruction_fn_proto(ira, (IrInstructionFnProto *)instruction); case IrInstructionIdTestComptime: return ir_analyze_instruction_test_comptime(ira, (IrInstructionTestComptime *)instruction); case IrInstructionIdCheckSwitchProngs: return ir_analyze_instruction_check_switch_prongs(ira, (IrInstructionCheckSwitchProngs *)instruction); case IrInstructionIdCheckStatementIsVoid: return ir_analyze_instruction_check_statement_is_void(ira, (IrInstructionCheckStatementIsVoid *)instruction); case IrInstructionIdDeclRef: return ir_analyze_instruction_decl_ref(ira, (IrInstructionDeclRef *)instruction); case IrInstructionIdPanic: return ir_analyze_instruction_panic(ira, (IrInstructionPanic *)instruction); case IrInstructionIdPtrCastSrc: return ir_analyze_instruction_ptr_cast(ira, (IrInstructionPtrCastSrc *)instruction); case IrInstructionIdIntToPtr: return ir_analyze_instruction_int_to_ptr(ira, (IrInstructionIntToPtr *)instruction); case IrInstructionIdPtrToInt: return ir_analyze_instruction_ptr_to_int(ira, (IrInstructionPtrToInt *)instruction); case IrInstructionIdTagName: return ir_analyze_instruction_enum_tag_name(ira, (IrInstructionTagName *)instruction); case IrInstructionIdFieldParentPtr: return ir_analyze_instruction_field_parent_ptr(ira, (IrInstructionFieldParentPtr *)instruction); case IrInstructionIdByteOffsetOf: return ir_analyze_instruction_byte_offset_of(ira, (IrInstructionByteOffsetOf *)instruction); case IrInstructionIdBitOffsetOf: return ir_analyze_instruction_bit_offset_of(ira, (IrInstructionBitOffsetOf *)instruction); case IrInstructionIdTypeInfo: return ir_analyze_instruction_type_info(ira, (IrInstructionTypeInfo *) instruction); case IrInstructionIdHasField: return ir_analyze_instruction_has_field(ira, (IrInstructionHasField *) instruction); case IrInstructionIdTypeId: return ir_analyze_instruction_type_id(ira, (IrInstructionTypeId *)instruction); case IrInstructionIdSetEvalBranchQuota: return ir_analyze_instruction_set_eval_branch_quota(ira, (IrInstructionSetEvalBranchQuota *)instruction); case IrInstructionIdPtrType: return ir_analyze_instruction_ptr_type(ira, (IrInstructionPtrType *)instruction); case IrInstructionIdAlignCast: return ir_analyze_instruction_align_cast(ira, (IrInstructionAlignCast *)instruction); case IrInstructionIdImplicitCast: return ir_analyze_instruction_implicit_cast(ira, (IrInstructionImplicitCast *)instruction); case IrInstructionIdResolveResult: return ir_analyze_instruction_resolve_result(ira, (IrInstructionResolveResult *)instruction); case IrInstructionIdResetResult: return ir_analyze_instruction_reset_result(ira, (IrInstructionResetResult *)instruction); case IrInstructionIdOpaqueType: return ir_analyze_instruction_opaque_type(ira, (IrInstructionOpaqueType *)instruction); case IrInstructionIdSetAlignStack: return ir_analyze_instruction_set_align_stack(ira, (IrInstructionSetAlignStack *)instruction); case IrInstructionIdArgType: return ir_analyze_instruction_arg_type(ira, (IrInstructionArgType *)instruction); case IrInstructionIdTagType: return ir_analyze_instruction_tag_type(ira, (IrInstructionTagType *)instruction); case IrInstructionIdExport: return ir_analyze_instruction_export(ira, (IrInstructionExport *)instruction); case IrInstructionIdErrorReturnTrace: return ir_analyze_instruction_error_return_trace(ira, (IrInstructionErrorReturnTrace *)instruction); case IrInstructionIdErrorUnion: return ir_analyze_instruction_error_union(ira, (IrInstructionErrorUnion *)instruction); case IrInstructionIdAtomicRmw: return ir_analyze_instruction_atomic_rmw(ira, (IrInstructionAtomicRmw *)instruction); case IrInstructionIdAtomicLoad: return ir_analyze_instruction_atomic_load(ira, (IrInstructionAtomicLoad *)instruction); case IrInstructionIdSaveErrRetAddr: return ir_analyze_instruction_save_err_ret_addr(ira, (IrInstructionSaveErrRetAddr *)instruction); case IrInstructionIdAddImplicitReturnType: return ir_analyze_instruction_add_implicit_return_type(ira, (IrInstructionAddImplicitReturnType *)instruction); case IrInstructionIdFloatOp: return ir_analyze_instruction_float_op(ira, (IrInstructionFloatOp *)instruction); case IrInstructionIdMulAdd: return ir_analyze_instruction_mul_add(ira, (IrInstructionMulAdd *)instruction); case IrInstructionIdIntToErr: return ir_analyze_instruction_int_to_err(ira, (IrInstructionIntToErr *)instruction); case IrInstructionIdErrToInt: return ir_analyze_instruction_err_to_int(ira, (IrInstructionErrToInt *)instruction); case IrInstructionIdIntToEnum: return ir_analyze_instruction_int_to_enum(ira, (IrInstructionIntToEnum *)instruction); case IrInstructionIdEnumToInt: return ir_analyze_instruction_enum_to_int(ira, (IrInstructionEnumToInt *)instruction); case IrInstructionIdCheckRuntimeScope: return ir_analyze_instruction_check_runtime_scope(ira, (IrInstructionCheckRuntimeScope *)instruction); case IrInstructionIdHasDecl: return ir_analyze_instruction_has_decl(ira, (IrInstructionHasDecl *)instruction); case IrInstructionIdUndeclaredIdent: return ir_analyze_instruction_undeclared_ident(ira, (IrInstructionUndeclaredIdent *)instruction); case IrInstructionIdAllocaSrc: return nullptr; case IrInstructionIdEndExpr: return ir_analyze_instruction_end_expr(ira, (IrInstructionEndExpr *)instruction); case IrInstructionIdBitCastSrc: return ir_analyze_instruction_bit_cast_src(ira, (IrInstructionBitCastSrc *)instruction); case IrInstructionIdUnionInitNamedField: return ir_analyze_instruction_union_init_named_field(ira, (IrInstructionUnionInitNamedField *)instruction); case IrInstructionIdSuspendBegin: return ir_analyze_instruction_suspend_begin(ira, (IrInstructionSuspendBegin *)instruction); case IrInstructionIdSuspendFinish: return ir_analyze_instruction_suspend_finish(ira, (IrInstructionSuspendFinish *)instruction); case IrInstructionIdResume: return ir_analyze_instruction_resume(ira, (IrInstructionResume *)instruction); case IrInstructionIdAwaitSrc: return ir_analyze_instruction_await(ira, (IrInstructionAwaitSrc *)instruction); case IrInstructionIdSpillBegin: return ir_analyze_instruction_spill_begin(ira, (IrInstructionSpillBegin *)instruction); case IrInstructionIdSpillEnd: return ir_analyze_instruction_spill_end(ira, (IrInstructionSpillEnd *)instruction); } zig_unreachable(); } // This function attempts to evaluate IR code while doing type checking and other analysis. // It emits a new IrExecutable which is partially evaluated IR code. ZigType *ir_analyze(CodeGen *codegen, IrExecutable *old_exec, IrExecutable *new_exec, ZigType *expected_type, AstNode *expected_type_source_node) { assert(old_exec->first_err_trace_msg == nullptr); assert(expected_type == nullptr || !type_is_invalid(expected_type)); IrAnalyze *ira = allocate(1); old_exec->analysis = ira; ira->codegen = codegen; ira->explicit_return_type = expected_type; ira->explicit_return_type_source_node = expected_type_source_node; ira->old_irb.codegen = codegen; ira->old_irb.exec = old_exec; ira->new_irb.codegen = codegen; ira->new_irb.exec = new_exec; ConstExprValue *vals = create_const_vals(ira->old_irb.exec->mem_slot_count); ira->exec_context.mem_slot_list.resize(ira->old_irb.exec->mem_slot_count); for (size_t i = 0; i < ira->exec_context.mem_slot_list.length; i += 1) { ira->exec_context.mem_slot_list.items[i] = &vals[i]; } IrBasicBlock *old_entry_bb = ira->old_irb.exec->basic_block_list.at(0); IrBasicBlock *new_entry_bb = ir_get_new_bb(ira, old_entry_bb, nullptr); ir_ref_bb(new_entry_bb); ira->new_irb.current_basic_block = new_entry_bb; ira->old_bb_index = 0; ir_start_bb(ira, old_entry_bb, nullptr); while (ira->old_bb_index < ira->old_irb.exec->basic_block_list.length) { IrInstruction *old_instruction = ira->old_irb.current_basic_block->instruction_list.at(ira->instruction_index); if (old_instruction->ref_count == 0 && !ir_has_side_effects(old_instruction)) { ira->instruction_index += 1; continue; } if (ira->codegen->verbose_ir) { fprintf(stderr, "analyze #%zu\n", old_instruction->debug_id); } IrInstruction *new_instruction = ir_analyze_instruction_base(ira, old_instruction); if (new_instruction != nullptr) { ir_assert(new_instruction->value.type != nullptr || new_instruction->value.type != nullptr, old_instruction); old_instruction->child = new_instruction; if (type_is_invalid(new_instruction->value.type)) { if (new_exec->first_err_trace_msg != nullptr) { ira->codegen->trace_err = new_exec->first_err_trace_msg; } else { new_exec->first_err_trace_msg = ira->codegen->trace_err; } if (new_exec->first_err_trace_msg != nullptr) { new_exec->first_err_trace_msg = add_error_note(ira->codegen, new_exec->first_err_trace_msg, old_instruction->source_node, buf_create_from_str("referenced here")); } return ira->codegen->builtin_types.entry_invalid; } // unreachable instructions do their own control flow. if (new_instruction->value.type->id == ZigTypeIdUnreachable) continue; } ira->instruction_index += 1; } if (new_exec->first_err_trace_msg != nullptr) { codegen->trace_err = new_exec->first_err_trace_msg; if (codegen->trace_err != nullptr) { codegen->trace_err = add_error_note(codegen, codegen->trace_err, new_exec->source_node, buf_create_from_str("referenced here")); } return ira->codegen->builtin_types.entry_invalid; } else if (ira->src_implicit_return_type_list.length == 0) { return codegen->builtin_types.entry_unreachable; } else { return ir_resolve_peer_types(ira, expected_type_source_node, expected_type, ira->src_implicit_return_type_list.items, ira->src_implicit_return_type_list.length); } } bool ir_has_side_effects(IrInstruction *instruction) { switch (instruction->id) { case IrInstructionIdInvalid: zig_unreachable(); case IrInstructionIdBr: case IrInstructionIdCondBr: case IrInstructionIdSwitchBr: case IrInstructionIdDeclVarSrc: case IrInstructionIdDeclVarGen: case IrInstructionIdStorePtr: case IrInstructionIdCallSrc: case IrInstructionIdCallGen: case IrInstructionIdReturn: case IrInstructionIdUnreachable: case IrInstructionIdSetCold: case IrInstructionIdSetRuntimeSafety: case IrInstructionIdSetFloatMode: case IrInstructionIdImport: case IrInstructionIdCompileErr: case IrInstructionIdCompileLog: case IrInstructionIdCImport: case IrInstructionIdCInclude: case IrInstructionIdCDefine: case IrInstructionIdCUndef: case IrInstructionIdFence: case IrInstructionIdMemset: case IrInstructionIdMemcpy: case IrInstructionIdBreakpoint: case IrInstructionIdOverflowOp: // TODO when we support multiple returns this can be side effect free case IrInstructionIdCheckSwitchProngs: case IrInstructionIdCheckStatementIsVoid: case IrInstructionIdCheckRuntimeScope: case IrInstructionIdPanic: case IrInstructionIdSetEvalBranchQuota: case IrInstructionIdPtrType: case IrInstructionIdSetAlignStack: case IrInstructionIdExport: case IrInstructionIdSaveErrRetAddr: case IrInstructionIdAddImplicitReturnType: case IrInstructionIdAtomicRmw: case IrInstructionIdCmpxchgGen: case IrInstructionIdCmpxchgSrc: case IrInstructionIdAssertZero: case IrInstructionIdAssertNonNull: case IrInstructionIdResizeSlice: case IrInstructionIdGlobalAsm: case IrInstructionIdUndeclaredIdent: case IrInstructionIdEndExpr: case IrInstructionIdPtrOfArrayToSlice: case IrInstructionIdSliceGen: case IrInstructionIdOptionalWrap: case IrInstructionIdVectorToArray: case IrInstructionIdResetResult: case IrInstructionIdSuspendBegin: case IrInstructionIdSuspendFinish: case IrInstructionIdResume: case IrInstructionIdAwaitSrc: case IrInstructionIdAwaitGen: case IrInstructionIdSpillBegin: return true; case IrInstructionIdPhi: case IrInstructionIdUnOp: case IrInstructionIdBinOp: case IrInstructionIdLoadPtr: case IrInstructionIdConst: case IrInstructionIdCast: case IrInstructionIdContainerInitList: case IrInstructionIdContainerInitFields: case IrInstructionIdUnionInitNamedField: case IrInstructionIdFieldPtr: case IrInstructionIdElemPtr: case IrInstructionIdVarPtr: case IrInstructionIdReturnPtr: case IrInstructionIdTypeOf: case IrInstructionIdStructFieldPtr: case IrInstructionIdArrayType: case IrInstructionIdSliceType: case IrInstructionIdAnyFrameType: case IrInstructionIdSizeOf: case IrInstructionIdTestNonNull: case IrInstructionIdOptionalUnwrapPtr: case IrInstructionIdClz: case IrInstructionIdCtz: case IrInstructionIdPopCount: case IrInstructionIdBswap: case IrInstructionIdBitReverse: case IrInstructionIdSwitchVar: case IrInstructionIdSwitchElseVar: case IrInstructionIdSwitchTarget: case IrInstructionIdUnionTag: case IrInstructionIdRef: case IrInstructionIdEmbedFile: case IrInstructionIdTruncate: case IrInstructionIdIntType: case IrInstructionIdVectorType: case IrInstructionIdBoolNot: case IrInstructionIdSliceSrc: case IrInstructionIdMemberCount: case IrInstructionIdMemberType: case IrInstructionIdMemberName: case IrInstructionIdAlignOf: case IrInstructionIdReturnAddress: case IrInstructionIdFrameAddress: case IrInstructionIdFrameHandle: case IrInstructionIdFrameType: case IrInstructionIdFrameSizeSrc: case IrInstructionIdFrameSizeGen: case IrInstructionIdTestErrSrc: case IrInstructionIdTestErrGen: case IrInstructionIdFnProto: case IrInstructionIdTestComptime: case IrInstructionIdPtrCastSrc: case IrInstructionIdPtrCastGen: case IrInstructionIdBitCastSrc: case IrInstructionIdBitCastGen: case IrInstructionIdWidenOrShorten: case IrInstructionIdPtrToInt: case IrInstructionIdIntToPtr: case IrInstructionIdIntToEnum: case IrInstructionIdIntToErr: case IrInstructionIdErrToInt: case IrInstructionIdDeclRef: case IrInstructionIdErrName: case IrInstructionIdTypeName: case IrInstructionIdTagName: case IrInstructionIdFieldParentPtr: case IrInstructionIdByteOffsetOf: case IrInstructionIdBitOffsetOf: case IrInstructionIdTypeInfo: case IrInstructionIdHasField: case IrInstructionIdTypeId: case IrInstructionIdAlignCast: case IrInstructionIdImplicitCast: case IrInstructionIdResolveResult: case IrInstructionIdOpaqueType: case IrInstructionIdArgType: case IrInstructionIdTagType: case IrInstructionIdErrorReturnTrace: case IrInstructionIdErrorUnion: case IrInstructionIdFloatOp: case IrInstructionIdMulAdd: case IrInstructionIdAtomicLoad: case IrInstructionIdIntCast: case IrInstructionIdFloatCast: case IrInstructionIdErrSetCast: case IrInstructionIdIntToFloat: case IrInstructionIdFloatToInt: case IrInstructionIdBoolToInt: case IrInstructionIdFromBytes: case IrInstructionIdToBytes: case IrInstructionIdEnumToInt: case IrInstructionIdArrayToVector: case IrInstructionIdHasDecl: case IrInstructionIdAllocaSrc: case IrInstructionIdAllocaGen: case IrInstructionIdSpillEnd: return false; case IrInstructionIdAsm: { IrInstructionAsm *asm_instruction = (IrInstructionAsm *)instruction; return asm_instruction->has_side_effects; } case IrInstructionIdUnwrapErrPayload: { IrInstructionUnwrapErrPayload *unwrap_err_payload_instruction = (IrInstructionUnwrapErrPayload *)instruction; return unwrap_err_payload_instruction->safety_check_on || unwrap_err_payload_instruction->initializing; } case IrInstructionIdUnwrapErrCode: return reinterpret_cast(instruction)->initializing; case IrInstructionIdUnionFieldPtr: return reinterpret_cast(instruction)->initializing; case IrInstructionIdErrWrapPayload: return reinterpret_cast(instruction)->result_loc != nullptr; case IrInstructionIdErrWrapCode: return reinterpret_cast(instruction)->result_loc != nullptr; case IrInstructionIdLoadPtrGen: return reinterpret_cast(instruction)->result_loc != nullptr; case IrInstructionIdRefGen: return reinterpret_cast(instruction)->result_loc != nullptr; } zig_unreachable(); } static ZigType *ir_resolve_lazy_fn_type(CodeGen *codegen, IrExecutable *exec, AstNode *source_node, LazyValueFnType *lazy_fn_type) { Error err; AstNode *proto_node = lazy_fn_type->proto_node; FnTypeId fn_type_id = {0}; init_fn_type_id(&fn_type_id, proto_node, proto_node->data.fn_proto.params.length); for (; fn_type_id.next_param_index < fn_type_id.param_count; fn_type_id.next_param_index += 1) { AstNode *param_node = proto_node->data.fn_proto.params.at(fn_type_id.next_param_index); assert(param_node->type == NodeTypeParamDecl); bool param_is_var_args = param_node->data.param_decl.is_var_args; if (param_is_var_args) { if (fn_type_id.cc == CallingConventionC) { fn_type_id.param_count = fn_type_id.next_param_index; continue; } else if (fn_type_id.cc == CallingConventionUnspecified) { return get_generic_fn_type(codegen, &fn_type_id); } else { zig_unreachable(); } } FnTypeParamInfo *param_info = &fn_type_id.param_info[fn_type_id.next_param_index]; param_info->is_noalias = param_node->data.param_decl.is_noalias; if (lazy_fn_type->param_types[fn_type_id.next_param_index] == nullptr) { param_info->type = nullptr; return get_generic_fn_type(codegen, &fn_type_id); } else { ZigType *param_type = ir_resolve_const_type(codegen, exec, source_node, lazy_fn_type->param_types[fn_type_id.next_param_index]); if (type_is_invalid(param_type)) return nullptr; switch (type_requires_comptime(codegen, param_type)) { case ReqCompTimeYes: if (!calling_convention_allows_zig_types(fn_type_id.cc)) { exec_add_error_node(codegen, exec, source_node, buf_sprintf("parameter of type '%s' not allowed in function with calling convention '%s'", buf_ptr(¶m_type->name), calling_convention_name(fn_type_id.cc))); return nullptr; } param_info->type = param_type; fn_type_id.next_param_index += 1; return get_generic_fn_type(codegen, &fn_type_id); case ReqCompTimeInvalid: return nullptr; case ReqCompTimeNo: break; } if (!calling_convention_allows_zig_types(fn_type_id.cc)) { if ((err = type_resolve(codegen, param_type, ResolveStatusZeroBitsKnown))) return nullptr; if (!type_has_bits(param_type)) { exec_add_error_node(codegen, exec, source_node, buf_sprintf("parameter of type '%s' has 0 bits; not allowed in function with calling convention '%s'", buf_ptr(¶m_type->name), calling_convention_name(fn_type_id.cc))); return nullptr; } } param_info->type = param_type; } } if (lazy_fn_type->align_val != nullptr) { if (!ir_resolve_const_align(codegen, exec, source_node, lazy_fn_type->align_val, &fn_type_id.alignment)) return nullptr; } fn_type_id.return_type = ir_resolve_const_type(codegen, exec, source_node, lazy_fn_type->return_type); if (type_is_invalid(fn_type_id.return_type)) return nullptr; if (fn_type_id.return_type->id == ZigTypeIdOpaque) { exec_add_error_node(codegen, exec, source_node, buf_create_from_str("return type cannot be opaque")); return nullptr; } return get_fn_type(codegen, &fn_type_id); } static Error ir_resolve_lazy_raw(CodeGen *codegen, AstNode *source_node, ConstExprValue *val) { Error err; if (val->special != ConstValSpecialLazy) return ErrorNone; IrExecutable *exec = val->data.x_lazy->exec; switch (val->data.x_lazy->id) { case LazyValueIdInvalid: zig_unreachable(); case LazyValueIdAlignOf: { LazyValueAlignOf *lazy_align_of = reinterpret_cast(val->data.x_lazy); if (lazy_align_of->target_type_val->special == ConstValSpecialStatic) { switch (lazy_align_of->target_type_val->data.x_type->id) { case ZigTypeIdInvalid: zig_unreachable(); case ZigTypeIdMetaType: case ZigTypeIdUnreachable: case ZigTypeIdComptimeFloat: case ZigTypeIdComptimeInt: case ZigTypeIdEnumLiteral: case ZigTypeIdUndefined: case ZigTypeIdNull: case ZigTypeIdBoundFn: case ZigTypeIdArgTuple: case ZigTypeIdVoid: case ZigTypeIdOpaque: exec_add_error_node(codegen, exec, lazy_align_of->target_type_src_node, buf_sprintf("no align available for type '%s'", buf_ptr(&lazy_align_of->target_type_val->data.x_type->name))); return ErrorSemanticAnalyzeFail; case ZigTypeIdBool: case ZigTypeIdInt: case ZigTypeIdFloat: case ZigTypeIdPointer: case ZigTypeIdArray: case ZigTypeIdStruct: case ZigTypeIdOptional: case ZigTypeIdErrorUnion: case ZigTypeIdErrorSet: case ZigTypeIdEnum: case ZigTypeIdUnion: case ZigTypeIdFn: case ZigTypeIdVector: case ZigTypeIdFnFrame: case ZigTypeIdAnyFrame: break; } } uint32_t align_in_bytes; if ((err = type_val_resolve_abi_align(codegen, lazy_align_of->target_type_val, &align_in_bytes))) return err; val->special = ConstValSpecialStatic; assert(val->type->id == ZigTypeIdComptimeInt); bigint_init_unsigned(&val->data.x_bigint, align_in_bytes); return ErrorNone; } case LazyValueIdSliceType: { LazyValueSliceType *lazy_slice_type = reinterpret_cast(val->data.x_lazy); uint32_t align_bytes = 0; if (lazy_slice_type->align_val != nullptr) { if (!ir_resolve_const_align(codegen, exec, source_node, lazy_slice_type->align_val, &align_bytes)) return ErrorSemanticAnalyzeFail; } ResolveStatus needed_status = (align_bytes == 0) ? ResolveStatusZeroBitsKnown : ResolveStatusAlignmentKnown; if ((err = type_resolve(codegen, lazy_slice_type->elem_type, needed_status))) return err; ZigType *slice_ptr_type = get_pointer_to_type_extra(codegen, lazy_slice_type->elem_type, lazy_slice_type->is_const, lazy_slice_type->is_volatile, PtrLenUnknown, align_bytes, 0, 0, lazy_slice_type->is_allowzero); val->special = ConstValSpecialStatic; assert(val->type->id == ZigTypeIdMetaType); val->data.x_type = get_slice_type(codegen, slice_ptr_type); return ErrorNone; } case LazyValueIdPtrType: { LazyValuePtrType *lazy_ptr_type = reinterpret_cast(val->data.x_lazy); uint32_t align_bytes = 0; if (lazy_ptr_type->align_val != nullptr) { if (!ir_resolve_const_align(codegen, exec, source_node, lazy_ptr_type->align_val, &align_bytes)) return ErrorSemanticAnalyzeFail; } ZigType *elem_type = ir_resolve_const_type(codegen, exec, lazy_ptr_type->elem_type_src_node, lazy_ptr_type->elem_type_val); if (type_is_invalid(elem_type)) return ErrorSemanticAnalyzeFail; if (elem_type->id == ZigTypeIdUnreachable) { exec_add_error_node(codegen, exec, lazy_ptr_type->elem_type_src_node, buf_create_from_str("pointer to noreturn not allowed")); return ErrorSemanticAnalyzeFail; } else if (elem_type->id == ZigTypeIdOpaque && lazy_ptr_type->ptr_len == PtrLenUnknown) { exec_add_error_node(codegen, exec, lazy_ptr_type->elem_type_src_node, buf_create_from_str("unknown-length pointer to opaque")); return ErrorSemanticAnalyzeFail; } else if (lazy_ptr_type->ptr_len == PtrLenC) { if (!type_allowed_in_extern(codegen, elem_type)) { exec_add_error_node(codegen, exec, lazy_ptr_type->elem_type_src_node, buf_sprintf("C pointers cannot point to non-C-ABI-compatible type '%s'", buf_ptr(&elem_type->name))); return ErrorSemanticAnalyzeFail; } else if (elem_type->id == ZigTypeIdOpaque) { exec_add_error_node(codegen, exec, lazy_ptr_type->elem_type_src_node, buf_sprintf("C pointers cannot point opaque types")); return ErrorSemanticAnalyzeFail; } else if (lazy_ptr_type->is_allowzero) { exec_add_error_node(codegen, exec, lazy_ptr_type->elem_type_src_node, buf_sprintf("C pointers always allow address zero")); return ErrorSemanticAnalyzeFail; } } if (align_bytes != 0) { if ((err = type_resolve(codegen, elem_type, ResolveStatusAlignmentKnown))) return err; if (!type_has_bits(elem_type)) align_bytes = 0; } bool allow_zero = lazy_ptr_type->is_allowzero || lazy_ptr_type->ptr_len == PtrLenC; assert(val->type->id == ZigTypeIdMetaType); val->data.x_type = get_pointer_to_type_extra(codegen, elem_type, lazy_ptr_type->is_const, lazy_ptr_type->is_volatile, lazy_ptr_type->ptr_len, align_bytes, lazy_ptr_type->bit_offset_in_host, lazy_ptr_type->host_int_bytes, allow_zero); val->special = ConstValSpecialStatic; return ErrorNone; } case LazyValueIdOptType: { LazyValueOptType *lazy_opt_type = reinterpret_cast(val->data.x_lazy); ZigType *payload_type = ir_resolve_const_type(codegen, exec, lazy_opt_type->payload_type_src_node, lazy_opt_type->payload_type_val); if (type_is_invalid(payload_type)) return ErrorSemanticAnalyzeFail; if (payload_type->id == ZigTypeIdOpaque || payload_type->id == ZigTypeIdUnreachable) { exec_add_error_node(codegen, exec, lazy_opt_type->payload_type_src_node, buf_sprintf("type '%s' cannot be optional", buf_ptr(&payload_type->name))); return ErrorSemanticAnalyzeFail; } if ((err = type_resolve(codegen, payload_type, ResolveStatusSizeKnown))) return err; assert(val->type->id == ZigTypeIdMetaType); val->data.x_type = get_optional_type(codegen, payload_type); val->special = ConstValSpecialStatic; return ErrorNone; } case LazyValueIdFnType: { ZigType *fn_type = ir_resolve_lazy_fn_type(codegen, exec, source_node, reinterpret_cast(val->data.x_lazy)); if (fn_type == nullptr) return ErrorSemanticAnalyzeFail; val->special = ConstValSpecialStatic; assert(val->type->id == ZigTypeIdMetaType); val->data.x_type = fn_type; return ErrorNone; } } zig_unreachable(); } Error ir_resolve_lazy(CodeGen *codegen, AstNode *source_node, ConstExprValue *val) { Error err; if ((err = ir_resolve_lazy_raw(codegen, source_node, val))) { if (codegen->trace_err != nullptr) { codegen->trace_err = add_error_note(codegen, codegen->trace_err, source_node, buf_create_from_str("referenced here")); } return err; } return ErrorNone; }