const std = @import("std.zig"); const builtin = std.builtin; const math = std.math; const mem = std.mem; const io = std.io; const os = std.os; const fs = std.fs; const process = std.process; const elf = std.elf; const DW = std.dwarf; const macho = std.macho; const coff = std.coff; const pdb = std.pdb; const ArrayList = std.ArrayList; const root = @import("root"); const maxInt = std.math.maxInt; const File = std.fs.File; const windows = std.os.windows; pub const leb = @import("debug/leb128.zig"); pub const global_allocator = @compileError("Please switch to std.testing.allocator."); pub const failing_allocator = @compileError("Please switch to std.testing.failing_allocator."); pub const runtime_safety = switch (builtin.mode) { .Debug, .ReleaseSafe => true, .ReleaseFast, .ReleaseSmall => false, }; const Module = struct { mod_info: pdb.ModInfo, module_name: []u8, obj_file_name: []u8, populated: bool, symbols: []u8, subsect_info: []u8, checksum_offset: ?usize, }; pub const LineInfo = struct { line: u64, column: u64, file_name: []const u8, allocator: ?*mem.Allocator, fn deinit(self: LineInfo) void { const allocator = self.allocator orelse return; allocator.free(self.file_name); } }; /// Tries to write to stderr, unbuffered, and ignores any error returned. /// Does not append a newline. var stderr_file: File = undefined; var stderr_file_out_stream: File.OutStream = undefined; var stderr_stream: ?*File.OutStream = null; var stderr_mutex = std.Mutex.init(); pub fn warn(comptime fmt: []const u8, args: var) void { const held = stderr_mutex.acquire(); defer held.release(); const stderr = getStderrStream(); nosuspend stderr.print(fmt, args) catch return; } pub fn getStderrStream() *File.OutStream { if (stderr_stream) |st| { return st; } else { stderr_file = io.getStdErr(); stderr_file_out_stream = stderr_file.outStream(); const st = &stderr_file_out_stream; stderr_stream = st; return st; } } pub fn getStderrMutex() *std.Mutex { return &stderr_mutex; } /// TODO multithreaded awareness var self_debug_info: ?DebugInfo = null; pub fn getSelfDebugInfo() !*DebugInfo { if (self_debug_info) |*info| { return info; } else { self_debug_info = try openSelfDebugInfo(getDebugInfoAllocator()); return &self_debug_info.?; } } pub fn detectTTYConfig() TTY.Config { var bytes: [128]u8 = undefined; const allocator = &std.heap.FixedBufferAllocator.init(bytes[0..]).allocator; if (process.getEnvVarOwned(allocator, "ZIG_DEBUG_COLOR")) |_| { return .escape_codes; } else |_| { if (stderr_file.supportsAnsiEscapeCodes()) { return .escape_codes; } else if (builtin.os.tag == .windows and stderr_file.isTty()) { return .windows_api; } else { return .no_color; } } } /// Tries to print the current stack trace to stderr, unbuffered, and ignores any error returned. /// TODO multithreaded awareness pub fn dumpCurrentStackTrace(start_addr: ?usize) void { nosuspend { const stderr = getStderrStream(); if (builtin.strip_debug_info) { stderr.print("Unable to dump stack trace: debug info stripped\n", .{}) catch return; return; } const debug_info = getSelfDebugInfo() catch |err| { stderr.print("Unable to dump stack trace: Unable to open debug info: {}\n", .{@errorName(err)}) catch return; return; }; writeCurrentStackTrace(stderr, debug_info, detectTTYConfig(), start_addr) catch |err| { stderr.print("Unable to dump stack trace: {}\n", .{@errorName(err)}) catch return; return; }; } } /// Tries to print the stack trace starting from the supplied base pointer to stderr, /// unbuffered, and ignores any error returned. /// TODO multithreaded awareness pub fn dumpStackTraceFromBase(bp: usize, ip: usize) void { nosuspend { const stderr = getStderrStream(); if (builtin.strip_debug_info) { stderr.print("Unable to dump stack trace: debug info stripped\n", .{}) catch return; return; } const debug_info = getSelfDebugInfo() catch |err| { stderr.print("Unable to dump stack trace: Unable to open debug info: {}\n", .{@errorName(err)}) catch return; return; }; const tty_config = detectTTYConfig(); printSourceAtAddress(debug_info, stderr, ip, tty_config) catch return; var it = StackIterator.init(null, bp); while (it.next()) |return_address| { printSourceAtAddress(debug_info, stderr, return_address - 1, tty_config) catch return; } } } /// Returns a slice with the same pointer as addresses, with a potentially smaller len. /// On Windows, when first_address is not null, we ask for at least 32 stack frames, /// and then try to find the first address. If addresses.len is more than 32, we /// capture that many stack frames exactly, and then look for the first address, /// chopping off the irrelevant frames and shifting so that the returned addresses pointer /// equals the passed in addresses pointer. pub fn captureStackTrace(first_address: ?usize, stack_trace: *builtin.StackTrace) void { if (builtin.os.tag == .windows) { const addrs = stack_trace.instruction_addresses; const u32_addrs_len = @intCast(u32, addrs.len); const first_addr = first_address orelse { stack_trace.index = windows.ntdll.RtlCaptureStackBackTrace( 0, u32_addrs_len, @ptrCast(**c_void, addrs.ptr), null, ); return; }; var addr_buf_stack: [32]usize = undefined; const addr_buf = if (addr_buf_stack.len > addrs.len) addr_buf_stack[0..] else addrs; const n = windows.ntdll.RtlCaptureStackBackTrace(0, u32_addrs_len, @ptrCast(**c_void, addr_buf.ptr), null); const first_index = for (addr_buf[0..n]) |addr, i| { if (addr == first_addr) { break i; } } else { stack_trace.index = 0; return; }; const slice = addr_buf[first_index..n]; // We use a for loop here because slice and addrs may alias. for (slice) |addr, i| { addrs[i] = addr; } stack_trace.index = slice.len; } else { var it = StackIterator.init(first_address, null); for (stack_trace.instruction_addresses) |*addr, i| { addr.* = it.next() orelse { stack_trace.index = i; return; }; } stack_trace.index = stack_trace.instruction_addresses.len; } } /// Tries to print a stack trace to stderr, unbuffered, and ignores any error returned. /// TODO multithreaded awareness pub fn dumpStackTrace(stack_trace: builtin.StackTrace) void { nosuspend { const stderr = getStderrStream(); if (builtin.strip_debug_info) { stderr.print("Unable to dump stack trace: debug info stripped\n", .{}) catch return; return; } const debug_info = getSelfDebugInfo() catch |err| { stderr.print("Unable to dump stack trace: Unable to open debug info: {}\n", .{@errorName(err)}) catch return; return; }; writeStackTrace(stack_trace, stderr, getDebugInfoAllocator(), debug_info, detectTTYConfig()) catch |err| { stderr.print("Unable to dump stack trace: {}\n", .{@errorName(err)}) catch return; return; }; } } /// This function invokes undefined behavior when `ok` is `false`. /// In Debug and ReleaseSafe modes, calls to this function are always /// generated, and the `unreachable` statement triggers a panic. /// In ReleaseFast and ReleaseSmall modes, calls to this function are /// optimized away, and in fact the optimizer is able to use the assertion /// in its heuristics. /// Inside a test block, it is best to use the `std.testing` module rather /// than this function, because this function may not detect a test failure /// in ReleaseFast and ReleaseSmall mode. Outside of a test block, this assert /// function is the correct function to use. pub fn assert(ok: bool) void { if (!ok) unreachable; // assertion failure } pub fn panic(comptime format: []const u8, args: var) noreturn { @setCold(true); // TODO: remove conditional once wasi / LLVM defines __builtin_return_address const first_trace_addr = if (builtin.os.tag == .wasi) null else @returnAddress(); panicExtra(null, first_trace_addr, format, args); } /// Non-zero whenever the program triggered a panic. /// The counter is incremented/decremented atomically. var panicking: u8 = 0; // Locked to avoid interleaving panic messages from multiple threads. var panic_mutex = std.Mutex.init(); /// Counts how many times the panic handler is invoked by this thread. /// This is used to catch and handle panics triggered by the panic handler. threadlocal var panic_stage: usize = 0; pub fn panicExtra(trace: ?*const builtin.StackTrace, first_trace_addr: ?usize, comptime format: []const u8, args: var) noreturn { @setCold(true); if (enable_segfault_handler) { // If a segfault happens while panicking, we want it to actually segfault, not trigger // the handler. resetSegfaultHandler(); } nosuspend switch (panic_stage) { 0 => { panic_stage = 1; _ = @atomicRmw(u8, &panicking, .Add, 1, .SeqCst); // Make sure to release the mutex when done { const held = panic_mutex.acquire(); defer held.release(); const stderr = getStderrStream(); stderr.print(format ++ "\n", args) catch os.abort(); if (trace) |t| { dumpStackTrace(t.*); } dumpCurrentStackTrace(first_trace_addr); } if (@atomicRmw(u8, &panicking, .Sub, 1, .SeqCst) != 1) { // Another thread is panicking, wait for the last one to finish // and call abort() // Sleep forever without hammering the CPU var event = std.ResetEvent.init(); event.wait(); unreachable; } }, 1 => { panic_stage = 2; // A panic happened while trying to print a previous panic message, // we're still holding the mutex but that's fine as we're going to // call abort() const stderr = getStderrStream(); stderr.print("Panicked during a panic. Aborting.\n", .{}) catch os.abort(); }, else => { // Panicked while printing "Panicked during a panic." }, }; os.abort(); } const RED = "\x1b[31;1m"; const GREEN = "\x1b[32;1m"; const CYAN = "\x1b[36;1m"; const WHITE = "\x1b[37;1m"; const DIM = "\x1b[2m"; const RESET = "\x1b[0m"; pub fn writeStackTrace( stack_trace: builtin.StackTrace, out_stream: var, allocator: *mem.Allocator, debug_info: *DebugInfo, tty_config: TTY.Config, ) !void { if (builtin.strip_debug_info) return error.MissingDebugInfo; var frame_index: usize = 0; var frames_left: usize = std.math.min(stack_trace.index, stack_trace.instruction_addresses.len); while (frames_left != 0) : ({ frames_left -= 1; frame_index = (frame_index + 1) % stack_trace.instruction_addresses.len; }) { const return_address = stack_trace.instruction_addresses[frame_index]; try printSourceAtAddress(debug_info, out_stream, return_address - 1, tty_config); } } pub const StackIterator = struct { // Skip every frame before this address is found first_address: ?usize, // Last known value of the frame pointer register fp: usize, pub fn init(first_address: ?usize, fp: ?usize) StackIterator { return StackIterator{ .first_address = first_address, .fp = fp orelse @frameAddress(), }; } // On some architectures such as x86 the frame pointer is the address where // the previous fp is stored, while on some other architectures such as // RISC-V it points to the "top" of the frame, just above where the previous // fp and the return address are stored. const fp_offset = if (builtin.arch.isRISCV()) 2 * @sizeOf(usize) else 0; pub fn next(self: *StackIterator) ?usize { var address = self.next_internal() orelse return null; if (self.first_address) |first_address| { while (address != first_address) { address = self.next_internal() orelse return null; } self.first_address = null; } return address; } fn next_internal(self: *StackIterator) ?usize { const fp = math.sub(usize, self.fp, fp_offset) catch return null; // Sanity check if (fp == 0 or !mem.isAligned(fp, @alignOf(usize))) return null; const new_fp = @intToPtr(*const usize, fp).*; // Sanity check: the stack grows down thus all the parent frames must be // be at addresses that are greater (or equal) than the previous one. // A zero frame pointer often signals this is the last frame, that case // is gracefully handled by the next call to next_internal if (new_fp != 0 and new_fp < self.fp) return null; const new_pc = @intToPtr(*const usize, fp + @sizeOf(usize)).*; self.fp = new_fp; return new_pc; } }; pub fn writeCurrentStackTrace( out_stream: var, debug_info: *DebugInfo, tty_config: TTY.Config, start_addr: ?usize, ) !void { if (builtin.os.tag == .windows) { return writeCurrentStackTraceWindows(out_stream, debug_info, tty_config, start_addr); } var it = StackIterator.init(start_addr, null); while (it.next()) |return_address| { try printSourceAtAddress(debug_info, out_stream, return_address - 1, tty_config); } } pub fn writeCurrentStackTraceWindows( out_stream: var, debug_info: *DebugInfo, tty_config: TTY.Config, start_addr: ?usize, ) !void { var addr_buf: [1024]usize = undefined; const n = windows.ntdll.RtlCaptureStackBackTrace(0, addr_buf.len, @ptrCast(**c_void, &addr_buf), null); const addrs = addr_buf[0..n]; var start_i: usize = if (start_addr) |saddr| blk: { for (addrs) |addr, i| { if (addr == saddr) break :blk i; } return; } else 0; for (addrs[start_i..]) |addr| { try printSourceAtAddress(debug_info, out_stream, addr - 1, tty_config); } } pub const TTY = struct { pub const Color = enum { Red, Green, Cyan, White, Dim, Bold, Reset, }; pub const Config = enum { no_color, escape_codes, // TODO give this a payload of file handle windows_api, fn setColor(conf: Config, out_stream: var, color: Color) void { nosuspend switch (conf) { .no_color => return, .escape_codes => switch (color) { .Red => out_stream.writeAll(RED) catch return, .Green => out_stream.writeAll(GREEN) catch return, .Cyan => out_stream.writeAll(CYAN) catch return, .White, .Bold => out_stream.writeAll(WHITE) catch return, .Dim => out_stream.writeAll(DIM) catch return, .Reset => out_stream.writeAll(RESET) catch return, }, .windows_api => if (builtin.os.tag == .windows) { const S = struct { var attrs: windows.WORD = undefined; var init_attrs = false; }; if (!S.init_attrs) { S.init_attrs = true; var info: windows.CONSOLE_SCREEN_BUFFER_INFO = undefined; // TODO handle error _ = windows.kernel32.GetConsoleScreenBufferInfo(stderr_file.handle, &info); S.attrs = info.wAttributes; } // TODO handle errors switch (color) { .Red => { _ = windows.SetConsoleTextAttribute(stderr_file.handle, windows.FOREGROUND_RED | windows.FOREGROUND_INTENSITY) catch {}; }, .Green => { _ = windows.SetConsoleTextAttribute(stderr_file.handle, windows.FOREGROUND_GREEN | windows.FOREGROUND_INTENSITY) catch {}; }, .Cyan => { _ = windows.SetConsoleTextAttribute(stderr_file.handle, windows.FOREGROUND_GREEN | windows.FOREGROUND_BLUE | windows.FOREGROUND_INTENSITY) catch {}; }, .White, .Bold => { _ = windows.SetConsoleTextAttribute(stderr_file.handle, windows.FOREGROUND_RED | windows.FOREGROUND_GREEN | windows.FOREGROUND_BLUE | windows.FOREGROUND_INTENSITY) catch {}; }, .Dim => { _ = windows.SetConsoleTextAttribute(stderr_file.handle, windows.FOREGROUND_INTENSITY) catch {}; }, .Reset => { _ = windows.SetConsoleTextAttribute(stderr_file.handle, S.attrs) catch {}; }, } } else { unreachable; }, }; } }; }; /// TODO resources https://github.com/ziglang/zig/issues/4353 fn populateModule(di: *ModuleDebugInfo, mod: *Module) !void { if (mod.populated) return; const allocator = getDebugInfoAllocator(); // At most one can be non-zero. if (mod.mod_info.C11ByteSize != 0 and mod.mod_info.C13ByteSize != 0) return error.InvalidDebugInfo; if (mod.mod_info.C13ByteSize == 0) return; const modi = di.pdb.getStreamById(mod.mod_info.ModuleSymStream) orelse return error.MissingDebugInfo; const signature = try modi.inStream().readIntLittle(u32); if (signature != 4) return error.InvalidDebugInfo; mod.symbols = try allocator.alloc(u8, mod.mod_info.SymByteSize - 4); try modi.inStream().readNoEof(mod.symbols); mod.subsect_info = try allocator.alloc(u8, mod.mod_info.C13ByteSize); try modi.inStream().readNoEof(mod.subsect_info); var sect_offset: usize = 0; var skip_len: usize = undefined; while (sect_offset != mod.subsect_info.len) : (sect_offset += skip_len) { const subsect_hdr = @ptrCast(*pdb.DebugSubsectionHeader, &mod.subsect_info[sect_offset]); skip_len = subsect_hdr.Length; sect_offset += @sizeOf(pdb.DebugSubsectionHeader); switch (subsect_hdr.Kind) { .FileChecksums => { mod.checksum_offset = sect_offset; break; }, else => {}, } if (sect_offset > mod.subsect_info.len) return error.InvalidDebugInfo; } mod.populated = true; } fn machoSearchSymbols(symbols: []const MachoSymbol, address: usize) ?*const MachoSymbol { var min: usize = 0; var max: usize = symbols.len - 1; // Exclude sentinel. while (min < max) { const mid = min + (max - min) / 2; const curr = &symbols[mid]; const next = &symbols[mid + 1]; if (address >= next.address()) { min = mid + 1; } else if (address < curr.address()) { max = mid; } else { return curr; } } return null; } /// TODO resources https://github.com/ziglang/zig/issues/4353 pub fn printSourceAtAddress(debug_info: *DebugInfo, out_stream: var, address: usize, tty_config: TTY.Config) !void { const module = debug_info.getModuleForAddress(address) catch |err| switch (err) { error.MissingDebugInfo, error.InvalidDebugInfo => { return printLineInfo( out_stream, null, address, "???", "???", tty_config, printLineFromFileAnyOs, ); }, else => return err, }; const symbol_info = try module.getSymbolAtAddress(address); defer symbol_info.deinit(); return printLineInfo( out_stream, symbol_info.line_info, address, symbol_info.symbol_name, symbol_info.compile_unit_name, tty_config, printLineFromFileAnyOs, ); } fn printLineInfo( out_stream: var, line_info: ?LineInfo, address: usize, symbol_name: []const u8, compile_unit_name: []const u8, tty_config: TTY.Config, comptime printLineFromFile: var, ) !void { nosuspend { tty_config.setColor(out_stream, .White); if (line_info) |*li| { try out_stream.print("{}:{}:{}", .{ li.file_name, li.line, li.column }); } else { try out_stream.writeAll("???:?:?"); } tty_config.setColor(out_stream, .Reset); try out_stream.writeAll(": "); tty_config.setColor(out_stream, .Dim); try out_stream.print("0x{x} in {} ({})", .{ address, symbol_name, compile_unit_name }); tty_config.setColor(out_stream, .Reset); try out_stream.writeAll("\n"); // Show the matching source code line if possible if (line_info) |li| { if (printLineFromFile(out_stream, li)) { if (li.column > 0) { // The caret already takes one char const space_needed = @intCast(usize, li.column - 1); try out_stream.writeByteNTimes(' ', space_needed); tty_config.setColor(out_stream, .Green); try out_stream.writeAll("^"); tty_config.setColor(out_stream, .Reset); } try out_stream.writeAll("\n"); } else |err| switch (err) { error.EndOfFile, error.FileNotFound => {}, error.BadPathName => {}, else => return err, } } } } // TODO use this pub const OpenSelfDebugInfoError = error{ MissingDebugInfo, OutOfMemory, UnsupportedOperatingSystem, }; /// TODO resources https://github.com/ziglang/zig/issues/4353 pub fn openSelfDebugInfo(allocator: *mem.Allocator) anyerror!DebugInfo { nosuspend { if (builtin.strip_debug_info) return error.MissingDebugInfo; if (@hasDecl(root, "os") and @hasDecl(root.os, "debug") and @hasDecl(root.os.debug, "openSelfDebugInfo")) { return root.os.debug.openSelfDebugInfo(allocator); } switch (builtin.os.tag) { .linux, .freebsd, .netbsd, .dragonfly, .macosx, .windows, => return DebugInfo.init(allocator), else => @compileError("openSelfDebugInfo unsupported for this platform"), } } } /// This takes ownership of coff_file: users of this function should not close /// it themselves, even on error. /// TODO resources https://github.com/ziglang/zig/issues/4353 fn readCoffDebugInfo(allocator: *mem.Allocator, coff_file: File) !ModuleDebugInfo { nosuspend { errdefer coff_file.close(); const coff_obj = try allocator.create(coff.Coff); coff_obj.* = coff.Coff.init(allocator, coff_file); var di = ModuleDebugInfo{ .base_address = undefined, .coff = coff_obj, .pdb = undefined, .sect_contribs = undefined, .modules = undefined, }; try di.coff.loadHeader(); var path_buf: [windows.MAX_PATH]u8 = undefined; const len = try di.coff.getPdbPath(path_buf[0..]); const raw_path = path_buf[0..len]; const path = try fs.path.resolve(allocator, &[_][]const u8{raw_path}); try di.pdb.openFile(di.coff, path); var pdb_stream = di.pdb.getStream(pdb.StreamType.Pdb) orelse return error.InvalidDebugInfo; const version = try pdb_stream.inStream().readIntLittle(u32); const signature = try pdb_stream.inStream().readIntLittle(u32); const age = try pdb_stream.inStream().readIntLittle(u32); var guid: [16]u8 = undefined; try pdb_stream.inStream().readNoEof(&guid); if (version != 20000404) // VC70, only value observed by LLVM team return error.UnknownPDBVersion; if (!mem.eql(u8, &di.coff.guid, &guid) or di.coff.age != age) return error.PDBMismatch; // We validated the executable and pdb match. const string_table_index = str_tab_index: { const name_bytes_len = try pdb_stream.inStream().readIntLittle(u32); const name_bytes = try allocator.alloc(u8, name_bytes_len); try pdb_stream.inStream().readNoEof(name_bytes); const HashTableHeader = packed struct { Size: u32, Capacity: u32, fn maxLoad(cap: u32) u32 { return cap * 2 / 3 + 1; } }; const hash_tbl_hdr = try pdb_stream.inStream().readStruct(HashTableHeader); if (hash_tbl_hdr.Capacity == 0) return error.InvalidDebugInfo; if (hash_tbl_hdr.Size > HashTableHeader.maxLoad(hash_tbl_hdr.Capacity)) return error.InvalidDebugInfo; const present = try readSparseBitVector(&pdb_stream.inStream(), allocator); if (present.len != hash_tbl_hdr.Size) return error.InvalidDebugInfo; const deleted = try readSparseBitVector(&pdb_stream.inStream(), allocator); const Bucket = struct { first: u32, second: u32, }; const bucket_list = try allocator.alloc(Bucket, present.len); for (present) |_| { const name_offset = try pdb_stream.inStream().readIntLittle(u32); const name_index = try pdb_stream.inStream().readIntLittle(u32); const name = mem.spanZ(@ptrCast([*:0]u8, name_bytes.ptr + name_offset)); if (mem.eql(u8, name, "/names")) { break :str_tab_index name_index; } } return error.MissingDebugInfo; }; di.pdb.string_table = di.pdb.getStreamById(string_table_index) orelse return error.MissingDebugInfo; di.pdb.dbi = di.pdb.getStream(pdb.StreamType.Dbi) orelse return error.MissingDebugInfo; const dbi = di.pdb.dbi; // Dbi Header const dbi_stream_header = try dbi.inStream().readStruct(pdb.DbiStreamHeader); if (dbi_stream_header.VersionHeader != 19990903) // V70, only value observed by LLVM team return error.UnknownPDBVersion; if (dbi_stream_header.Age != age) return error.UnmatchingPDB; const mod_info_size = dbi_stream_header.ModInfoSize; const section_contrib_size = dbi_stream_header.SectionContributionSize; var modules = ArrayList(Module).init(allocator); // Module Info Substream var mod_info_offset: usize = 0; while (mod_info_offset != mod_info_size) { const mod_info = try dbi.inStream().readStruct(pdb.ModInfo); var this_record_len: usize = @sizeOf(pdb.ModInfo); const module_name = try dbi.readNullTermString(allocator); this_record_len += module_name.len + 1; const obj_file_name = try dbi.readNullTermString(allocator); this_record_len += obj_file_name.len + 1; if (this_record_len % 4 != 0) { const round_to_next_4 = (this_record_len | 0x3) + 1; const march_forward_bytes = round_to_next_4 - this_record_len; try dbi.seekBy(@intCast(isize, march_forward_bytes)); this_record_len += march_forward_bytes; } try modules.append(Module{ .mod_info = mod_info, .module_name = module_name, .obj_file_name = obj_file_name, .populated = false, .symbols = undefined, .subsect_info = undefined, .checksum_offset = null, }); mod_info_offset += this_record_len; if (mod_info_offset > mod_info_size) return error.InvalidDebugInfo; } di.modules = modules.toOwnedSlice(); // Section Contribution Substream var sect_contribs = ArrayList(pdb.SectionContribEntry).init(allocator); var sect_cont_offset: usize = 0; if (section_contrib_size != 0) { const ver = @intToEnum(pdb.SectionContrSubstreamVersion, try dbi.inStream().readIntLittle(u32)); if (ver != pdb.SectionContrSubstreamVersion.Ver60) return error.InvalidDebugInfo; sect_cont_offset += @sizeOf(u32); } while (sect_cont_offset != section_contrib_size) { const entry = try sect_contribs.addOne(); entry.* = try dbi.inStream().readStruct(pdb.SectionContribEntry); sect_cont_offset += @sizeOf(pdb.SectionContribEntry); if (sect_cont_offset > section_contrib_size) return error.InvalidDebugInfo; } di.sect_contribs = sect_contribs.toOwnedSlice(); return di; } } fn readSparseBitVector(stream: var, allocator: *mem.Allocator) ![]usize { const num_words = try stream.readIntLittle(u32); var word_i: usize = 0; var list = ArrayList(usize).init(allocator); while (word_i != num_words) : (word_i += 1) { const word = try stream.readIntLittle(u32); var bit_i: u5 = 0; while (true) : (bit_i += 1) { if (word & (@as(u32, 1) << bit_i) != 0) { try list.append(word_i * 32 + bit_i); } if (bit_i == maxInt(u5)) break; } } return list.toOwnedSlice(); } fn chopSlice(ptr: []const u8, offset: u64, size: u64) ![]const u8 { const start = try math.cast(usize, offset); const end = start + try math.cast(usize, size); return ptr[start..end]; } /// This takes ownership of elf_file: users of this function should not close /// it themselves, even on error. /// TODO resources https://github.com/ziglang/zig/issues/4353 pub fn readElfDebugInfo(allocator: *mem.Allocator, elf_file: File) !ModuleDebugInfo { nosuspend { const mapped_mem = try mapWholeFile(elf_file); const hdr = @ptrCast(*const elf.Ehdr, &mapped_mem[0]); if (!mem.eql(u8, hdr.e_ident[0..4], "\x7fELF")) return error.InvalidElfMagic; if (hdr.e_ident[elf.EI_VERSION] != 1) return error.InvalidElfVersion; const endian: builtin.Endian = switch (hdr.e_ident[elf.EI_DATA]) { elf.ELFDATA2LSB => .Little, elf.ELFDATA2MSB => .Big, else => return error.InvalidElfEndian, }; assert(endian == std.builtin.endian); // this is our own debug info const shoff = hdr.e_shoff; const str_section_off = shoff + @as(u64, hdr.e_shentsize) * @as(u64, hdr.e_shstrndx); const str_shdr = @ptrCast( *const elf.Shdr, @alignCast(@alignOf(elf.Shdr), &mapped_mem[try math.cast(usize, str_section_off)]), ); const header_strings = mapped_mem[str_shdr.sh_offset .. str_shdr.sh_offset + str_shdr.sh_size]; const shdrs = @ptrCast( [*]const elf.Shdr, @alignCast(@alignOf(elf.Shdr), &mapped_mem[shoff]), )[0..hdr.e_shnum]; var opt_debug_info: ?[]const u8 = null; var opt_debug_abbrev: ?[]const u8 = null; var opt_debug_str: ?[]const u8 = null; var opt_debug_line: ?[]const u8 = null; var opt_debug_ranges: ?[]const u8 = null; for (shdrs) |*shdr| { if (shdr.sh_type == elf.SHT_NULL) continue; const name = std.mem.span(@ptrCast([*:0]const u8, header_strings[shdr.sh_name..].ptr)); if (mem.eql(u8, name, ".debug_info")) { opt_debug_info = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size); } else if (mem.eql(u8, name, ".debug_abbrev")) { opt_debug_abbrev = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size); } else if (mem.eql(u8, name, ".debug_str")) { opt_debug_str = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size); } else if (mem.eql(u8, name, ".debug_line")) { opt_debug_line = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size); } else if (mem.eql(u8, name, ".debug_ranges")) { opt_debug_ranges = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size); } } var di = DW.DwarfInfo{ .endian = endian, .debug_info = opt_debug_info orelse return error.MissingDebugInfo, .debug_abbrev = opt_debug_abbrev orelse return error.MissingDebugInfo, .debug_str = opt_debug_str orelse return error.MissingDebugInfo, .debug_line = opt_debug_line orelse return error.MissingDebugInfo, .debug_ranges = opt_debug_ranges, }; try DW.openDwarfDebugInfo(&di, allocator); return ModuleDebugInfo{ .base_address = undefined, .dwarf = di, .mapped_memory = mapped_mem, }; } } /// TODO resources https://github.com/ziglang/zig/issues/4353 /// This takes ownership of coff_file: users of this function should not close /// it themselves, even on error. fn readMachODebugInfo(allocator: *mem.Allocator, macho_file: File) !ModuleDebugInfo { const mapped_mem = try mapWholeFile(macho_file); const hdr = @ptrCast( *const macho.mach_header_64, @alignCast(@alignOf(macho.mach_header_64), mapped_mem.ptr), ); if (hdr.magic != macho.MH_MAGIC_64) return error.InvalidDebugInfo; const hdr_base = @ptrCast([*]const u8, hdr); var ptr = hdr_base + @sizeOf(macho.mach_header_64); var ncmd: u32 = hdr.ncmds; const symtab = while (ncmd != 0) : (ncmd -= 1) { const lc = @ptrCast(*const std.macho.load_command, ptr); switch (lc.cmd) { std.macho.LC_SYMTAB => break @ptrCast(*const std.macho.symtab_command, ptr), else => {}, } ptr = @alignCast(@alignOf(std.macho.load_command), ptr + lc.cmdsize); } else { return error.MissingDebugInfo; }; const syms = @ptrCast([*]const macho.nlist_64, @alignCast(@alignOf(macho.nlist_64), hdr_base + symtab.symoff))[0..symtab.nsyms]; const strings = @ptrCast([*]const u8, hdr_base + symtab.stroff)[0 .. symtab.strsize - 1 :0]; const symbols_buf = try allocator.alloc(MachoSymbol, syms.len); var ofile: ?*const macho.nlist_64 = null; var reloc: u64 = 0; var symbol_index: usize = 0; var last_len: u64 = 0; for (syms) |*sym| { if (sym.n_type & std.macho.N_STAB != 0) { switch (sym.n_type) { std.macho.N_OSO => { ofile = sym; reloc = 0; }, std.macho.N_FUN => { if (sym.n_sect == 0) { last_len = sym.n_value; } else { symbols_buf[symbol_index] = MachoSymbol{ .nlist = sym, .ofile = ofile, .reloc = reloc, }; symbol_index += 1; } }, std.macho.N_BNSYM => { if (reloc == 0) { reloc = sym.n_value; } }, else => continue, } } } const sentinel = try allocator.create(macho.nlist_64); sentinel.* = macho.nlist_64{ .n_strx = 0, .n_type = 36, .n_sect = 0, .n_desc = 0, .n_value = symbols_buf[symbol_index - 1].nlist.n_value + last_len, }; const symbols = allocator.shrink(symbols_buf, symbol_index); // Even though lld emits symbols in ascending order, this debug code // should work for programs linked in any valid way. // This sort is so that we can binary search later. std.sort.sort(MachoSymbol, symbols, MachoSymbol.addressLessThan); return ModuleDebugInfo{ .base_address = undefined, .mapped_memory = mapped_mem, .ofiles = ModuleDebugInfo.OFileTable.init(allocator), .symbols = symbols, .strings = strings, }; } fn printLineFromFileAnyOs(out_stream: var, line_info: LineInfo) !void { // Need this to always block even in async I/O mode, because this could potentially // be called from e.g. the event loop code crashing. var f = try fs.cwd().openFile(line_info.file_name, .{ .intended_io_mode = .blocking }); defer f.close(); // TODO fstat and make sure that the file has the correct size var buf: [mem.page_size]u8 = undefined; var line: usize = 1; var column: usize = 1; var abs_index: usize = 0; while (true) { const amt_read = try f.read(buf[0..]); const slice = buf[0..amt_read]; for (slice) |byte| { if (line == line_info.line) { try out_stream.writeByte(byte); if (byte == '\n') { return; } } if (byte == '\n') { line += 1; column = 1; } else { column += 1; } } if (amt_read < buf.len) return error.EndOfFile; } } const MachoSymbol = struct { nlist: *const macho.nlist_64, ofile: ?*const macho.nlist_64, reloc: u64, /// Returns the address from the macho file fn address(self: MachoSymbol) u64 { return self.nlist.n_value; } fn addressLessThan(lhs: MachoSymbol, rhs: MachoSymbol) bool { return lhs.address() < rhs.address(); } }; fn mapWholeFile(file: File) ![]align(mem.page_size) const u8 { nosuspend { defer file.close(); const file_len = try math.cast(usize, try file.getEndPos()); const mapped_mem = try os.mmap( null, file_len, os.PROT_READ, os.MAP_SHARED, file.handle, 0, ); errdefer os.munmap(mapped_mem); return mapped_mem; } } pub const DebugInfo = struct { allocator: *mem.Allocator, address_map: std.AutoHashMap(usize, *ModuleDebugInfo), pub fn init(allocator: *mem.Allocator) DebugInfo { return DebugInfo{ .allocator = allocator, .address_map = std.AutoHashMap(usize, *ModuleDebugInfo).init(allocator), }; } pub fn deinit(self: *DebugInfo) void { // TODO: resources https://github.com/ziglang/zig/issues/4353 self.address_map.deinit(); } pub fn getModuleForAddress(self: *DebugInfo, address: usize) !*ModuleDebugInfo { if (comptime std.Target.current.isDarwin()) return self.lookupModuleDyld(address) else if (builtin.os.tag == .windows) return self.lookupModuleWin32(address) else return self.lookupModuleDl(address); } fn lookupModuleDyld(self: *DebugInfo, address: usize) !*ModuleDebugInfo { const image_count = std.c._dyld_image_count(); var i: u32 = 0; while (i < image_count) : (i += 1) { const base_address = std.c._dyld_get_image_vmaddr_slide(i); if (address < base_address) continue; const header = std.c._dyld_get_image_header(i) orelse continue; // The array of load commands is right after the header var cmd_ptr = @intToPtr([*]u8, @ptrToInt(header) + @sizeOf(macho.mach_header_64)); var cmds = header.ncmds; while (cmds != 0) : (cmds -= 1) { const lc = @ptrCast( *macho.load_command, @alignCast(@alignOf(macho.load_command), cmd_ptr), ); cmd_ptr += lc.cmdsize; if (lc.cmd != macho.LC_SEGMENT_64) continue; const segment_cmd = @ptrCast( *const std.macho.segment_command_64, @alignCast(@alignOf(std.macho.segment_command_64), lc), ); const rebased_address = address - base_address; const seg_start = segment_cmd.vmaddr; const seg_end = seg_start + segment_cmd.vmsize; if (rebased_address >= seg_start and rebased_address < seg_end) { if (self.address_map.getValue(base_address)) |obj_di| { return obj_di; } const obj_di = try self.allocator.create(ModuleDebugInfo); errdefer self.allocator.destroy(obj_di); const macho_path = mem.spanZ(std.c._dyld_get_image_name(i)); const macho_file = fs.cwd().openFile(macho_path, .{ .always_blocking = true }) catch |err| switch (err) { error.FileNotFound => return error.MissingDebugInfo, else => return err, }; obj_di.* = try readMachODebugInfo(self.allocator, macho_file); obj_di.base_address = base_address; try self.address_map.putNoClobber(base_address, obj_di); return obj_di; } } } return error.MissingDebugInfo; } fn lookupModuleWin32(self: *DebugInfo, address: usize) !*ModuleDebugInfo { const process_handle = windows.kernel32.GetCurrentProcess(); // Find how many modules are actually loaded var dummy: windows.HMODULE = undefined; var bytes_needed: windows.DWORD = undefined; if (windows.kernel32.K32EnumProcessModules( process_handle, @ptrCast([*]windows.HMODULE, &dummy), 0, &bytes_needed, ) == 0) return error.MissingDebugInfo; const needed_modules = bytes_needed / @sizeOf(windows.HMODULE); // Fetch the complete module list var modules = try self.allocator.alloc(windows.HMODULE, needed_modules); defer self.allocator.free(modules); if (windows.kernel32.K32EnumProcessModules( process_handle, modules.ptr, try math.cast(windows.DWORD, modules.len * @sizeOf(windows.HMODULE)), &bytes_needed, ) == 0) return error.MissingDebugInfo; // There's an unavoidable TOCTOU problem here, the module list may have // changed between the two EnumProcessModules call. // Pick the smallest amount of elements to avoid processing garbage. const needed_modules_after = bytes_needed / @sizeOf(windows.HMODULE); const loaded_modules = math.min(needed_modules, needed_modules_after); for (modules[0..loaded_modules]) |module| { var info: windows.MODULEINFO = undefined; if (windows.kernel32.K32GetModuleInformation( process_handle, module, &info, @sizeOf(@TypeOf(info)), ) == 0) return error.MissingDebugInfo; const seg_start = @ptrToInt(info.lpBaseOfDll); const seg_end = seg_start + info.SizeOfImage; if (address >= seg_start and address < seg_end) { if (self.address_map.getValue(seg_start)) |obj_di| { return obj_di; } var name_buffer: [windows.PATH_MAX_WIDE + 4:0]u16 = undefined; // openFileAbsoluteW requires the prefix to be present mem.copy(u16, name_buffer[0..4], &[_]u16{ '\\', '?', '?', '\\' }); const len = windows.kernel32.K32GetModuleFileNameExW( process_handle, module, @ptrCast(windows.LPWSTR, &name_buffer[4]), windows.PATH_MAX_WIDE, ); assert(len > 0); const obj_di = try self.allocator.create(ModuleDebugInfo); errdefer self.allocator.destroy(obj_di); const coff_file = fs.openFileAbsoluteW(name_buffer[0 .. len + 4 :0], .{}) catch |err| switch (err) { error.FileNotFound => return error.MissingDebugInfo, else => return err, }; obj_di.* = try readCoffDebugInfo(self.allocator, coff_file); obj_di.base_address = seg_start; try self.address_map.putNoClobber(seg_start, obj_di); return obj_di; } } return error.MissingDebugInfo; } fn lookupModuleDl(self: *DebugInfo, address: usize) !*ModuleDebugInfo { var ctx: struct { // Input address: usize, // Output base_address: usize = undefined, name: []const u8 = undefined, } = .{ .address = address }; const CtxTy = @TypeOf(ctx); if (os.dl_iterate_phdr(&ctx, anyerror, struct { fn callback(info: *os.dl_phdr_info, size: usize, context: *CtxTy) !void { // The base address is too high if (context.address < info.dlpi_addr) return; const phdrs = info.dlpi_phdr[0..info.dlpi_phnum]; for (phdrs) |*phdr| { if (phdr.p_type != elf.PT_LOAD) continue; const seg_start = info.dlpi_addr + phdr.p_vaddr; const seg_end = seg_start + phdr.p_memsz; if (context.address >= seg_start and context.address < seg_end) { // Android libc uses NULL instead of an empty string to mark the // main program context.name = mem.spanZ(info.dlpi_name) orelse ""; context.base_address = info.dlpi_addr; // Stop the iteration return error.Found; } } } }.callback)) { return error.MissingDebugInfo; } else |err| switch (err) { error.Found => {}, else => return error.MissingDebugInfo, } if (self.address_map.getValue(ctx.base_address)) |obj_di| { return obj_di; } const obj_di = try self.allocator.create(ModuleDebugInfo); errdefer self.allocator.destroy(obj_di); const elf_file = (if (ctx.name.len > 0) fs.cwd().openFile(ctx.name, .{ .always_blocking = true }) else fs.openSelfExe(.{ .always_blocking = true })) catch |err| switch (err) { error.FileNotFound => return error.MissingDebugInfo, else => return err, }; obj_di.* = try readElfDebugInfo(self.allocator, elf_file); obj_di.base_address = ctx.base_address; try self.address_map.putNoClobber(ctx.base_address, obj_di); return obj_di; } }; const SymbolInfo = struct { symbol_name: []const u8 = "???", compile_unit_name: []const u8 = "???", line_info: ?LineInfo = null, fn deinit(self: @This()) void { if (self.line_info) |li| { li.deinit(); } } }; pub const ModuleDebugInfo = switch (builtin.os.tag) { .macosx, .ios, .watchos, .tvos => struct { base_address: usize, mapped_memory: []const u8, symbols: []const MachoSymbol, strings: [:0]const u8, ofiles: OFileTable, const OFileTable = std.StringHashMap(DW.DwarfInfo); pub fn allocator(self: @This()) *mem.Allocator { return self.ofiles.allocator; } fn loadOFile(self: *@This(), o_file_path: []const u8) !DW.DwarfInfo { const o_file = try fs.cwd().openFile(o_file_path, .{ .always_blocking = true }); const mapped_mem = try mapWholeFile(o_file); const hdr = @ptrCast( *const macho.mach_header_64, @alignCast(@alignOf(macho.mach_header_64), mapped_mem.ptr), ); if (hdr.magic != std.macho.MH_MAGIC_64) return error.InvalidDebugInfo; const hdr_base = @ptrCast([*]const u8, hdr); var ptr = hdr_base + @sizeOf(macho.mach_header_64); var ncmd: u32 = hdr.ncmds; const segcmd = while (ncmd != 0) : (ncmd -= 1) { const lc = @ptrCast(*const std.macho.load_command, ptr); switch (lc.cmd) { std.macho.LC_SEGMENT_64 => { break @ptrCast( *const std.macho.segment_command_64, @alignCast(@alignOf(std.macho.segment_command_64), ptr), ); }, else => {}, } ptr = @alignCast(@alignOf(std.macho.load_command), ptr + lc.cmdsize); } else { return error.MissingDebugInfo; }; var opt_debug_line: ?*const macho.section_64 = null; var opt_debug_info: ?*const macho.section_64 = null; var opt_debug_abbrev: ?*const macho.section_64 = null; var opt_debug_str: ?*const macho.section_64 = null; var opt_debug_ranges: ?*const macho.section_64 = null; const sections = @ptrCast( [*]const macho.section_64, @alignCast(@alignOf(macho.section_64), ptr + @sizeOf(std.macho.segment_command_64)), )[0..segcmd.nsects]; for (sections) |*sect| { // The section name may not exceed 16 chars and a trailing null may // not be present const name = if (mem.indexOfScalar(u8, sect.sectname[0..], 0)) |last| sect.sectname[0..last] else sect.sectname[0..]; if (mem.eql(u8, name, "__debug_line")) { opt_debug_line = sect; } else if (mem.eql(u8, name, "__debug_info")) { opt_debug_info = sect; } else if (mem.eql(u8, name, "__debug_abbrev")) { opt_debug_abbrev = sect; } else if (mem.eql(u8, name, "__debug_str")) { opt_debug_str = sect; } else if (mem.eql(u8, name, "__debug_ranges")) { opt_debug_ranges = sect; } } const debug_line = opt_debug_line orelse return error.MissingDebugInfo; const debug_info = opt_debug_info orelse return error.MissingDebugInfo; const debug_str = opt_debug_str orelse return error.MissingDebugInfo; const debug_abbrev = opt_debug_abbrev orelse return error.MissingDebugInfo; var di = DW.DwarfInfo{ .endian = .Little, .debug_info = try chopSlice(mapped_mem, debug_info.offset, debug_info.size), .debug_abbrev = try chopSlice(mapped_mem, debug_abbrev.offset, debug_abbrev.size), .debug_str = try chopSlice(mapped_mem, debug_str.offset, debug_str.size), .debug_line = try chopSlice(mapped_mem, debug_line.offset, debug_line.size), .debug_ranges = if (opt_debug_ranges) |debug_ranges| try chopSlice(mapped_mem, debug_ranges.offset, debug_ranges.size) else null, }; try DW.openDwarfDebugInfo(&di, self.allocator()); // Add the debug info to the cache try self.ofiles.putNoClobber(o_file_path, di); return di; } fn getSymbolAtAddress(self: *@This(), address: usize) !SymbolInfo { nosuspend { // Translate the VA into an address into this object const relocated_address = address - self.base_address; assert(relocated_address >= 0x100000000); // Find the .o file where this symbol is defined const symbol = machoSearchSymbols(self.symbols, relocated_address) orelse return SymbolInfo{}; // Take the symbol name from the N_FUN STAB entry, we're going to // use it if we fail to find the DWARF infos const stab_symbol = mem.spanZ(self.strings[symbol.nlist.n_strx..]); if (symbol.ofile == null) return SymbolInfo{ .symbol_name = stab_symbol }; const o_file_path = mem.spanZ(self.strings[symbol.ofile.?.n_strx..]); // Check if its debug infos are already in the cache var o_file_di = self.ofiles.getValue(o_file_path) orelse (self.loadOFile(o_file_path) catch |err| switch (err) { error.FileNotFound, error.MissingDebugInfo, error.InvalidDebugInfo, => { return SymbolInfo{ .symbol_name = stab_symbol }; }, else => return err, }); // Translate again the address, this time into an address inside the // .o file const relocated_address_o = relocated_address - symbol.reloc; if (o_file_di.findCompileUnit(relocated_address_o)) |compile_unit| { return SymbolInfo{ .symbol_name = o_file_di.getSymbolName(relocated_address_o) orelse "???", .compile_unit_name = compile_unit.die.getAttrString(&o_file_di, DW.AT_name) catch |err| switch (err) { error.MissingDebugInfo, error.InvalidDebugInfo => "???", else => return err, }, .line_info = o_file_di.getLineNumberInfo(compile_unit.*, relocated_address_o) catch |err| switch (err) { error.MissingDebugInfo, error.InvalidDebugInfo => null, else => return err, }, }; } else |err| switch (err) { error.MissingDebugInfo, error.InvalidDebugInfo => { return SymbolInfo{ .symbol_name = stab_symbol }; }, else => return err, } unreachable; } } }, .uefi, .windows => struct { base_address: usize, pdb: pdb.Pdb, coff: *coff.Coff, sect_contribs: []pdb.SectionContribEntry, modules: []Module, pub fn allocator(self: @This()) *mem.Allocator { return self.coff.allocator; } fn getSymbolAtAddress(self: *@This(), address: usize) !SymbolInfo { // Translate the VA into an address into this object const relocated_address = address - self.base_address; var coff_section: *coff.Section = undefined; const mod_index = for (self.sect_contribs) |sect_contrib| { if (sect_contrib.Section > self.coff.sections.items.len) continue; // Remember that SectionContribEntry.Section is 1-based. coff_section = &self.coff.sections.span()[sect_contrib.Section - 1]; const vaddr_start = coff_section.header.virtual_address + sect_contrib.Offset; const vaddr_end = vaddr_start + sect_contrib.Size; if (relocated_address >= vaddr_start and relocated_address < vaddr_end) { break sect_contrib.ModuleIndex; } } else { // we have no information to add to the address return SymbolInfo{}; }; const mod = &self.modules[mod_index]; try populateModule(self, mod); const obj_basename = fs.path.basename(mod.obj_file_name); var symbol_i: usize = 0; const symbol_name = if (!mod.populated) "???" else while (symbol_i != mod.symbols.len) { const prefix = @ptrCast(*pdb.RecordPrefix, &mod.symbols[symbol_i]); if (prefix.RecordLen < 2) return error.InvalidDebugInfo; switch (prefix.RecordKind) { .S_LPROC32, .S_GPROC32 => { const proc_sym = @ptrCast(*pdb.ProcSym, &mod.symbols[symbol_i + @sizeOf(pdb.RecordPrefix)]); const vaddr_start = coff_section.header.virtual_address + proc_sym.CodeOffset; const vaddr_end = vaddr_start + proc_sym.CodeSize; if (relocated_address >= vaddr_start and relocated_address < vaddr_end) { break mem.spanZ(@ptrCast([*:0]u8, proc_sym) + @sizeOf(pdb.ProcSym)); } }, else => {}, } symbol_i += prefix.RecordLen + @sizeOf(u16); if (symbol_i > mod.symbols.len) return error.InvalidDebugInfo; } else "???"; const subsect_info = mod.subsect_info; var sect_offset: usize = 0; var skip_len: usize = undefined; const opt_line_info = subsections: { const checksum_offset = mod.checksum_offset orelse break :subsections null; while (sect_offset != subsect_info.len) : (sect_offset += skip_len) { const subsect_hdr = @ptrCast(*pdb.DebugSubsectionHeader, &subsect_info[sect_offset]); skip_len = subsect_hdr.Length; sect_offset += @sizeOf(pdb.DebugSubsectionHeader); switch (subsect_hdr.Kind) { .Lines => { var line_index = sect_offset; const line_hdr = @ptrCast(*pdb.LineFragmentHeader, &subsect_info[line_index]); if (line_hdr.RelocSegment == 0) return error.MissingDebugInfo; line_index += @sizeOf(pdb.LineFragmentHeader); const frag_vaddr_start = coff_section.header.virtual_address + line_hdr.RelocOffset; const frag_vaddr_end = frag_vaddr_start + line_hdr.CodeSize; if (relocated_address >= frag_vaddr_start and relocated_address < frag_vaddr_end) { // There is an unknown number of LineBlockFragmentHeaders (and their accompanying line and column records) // from now on. We will iterate through them, and eventually find a LineInfo that we're interested in, // breaking out to :subsections. If not, we will make sure to not read anything outside of this subsection. const subsection_end_index = sect_offset + subsect_hdr.Length; while (line_index < subsection_end_index) { const block_hdr = @ptrCast(*pdb.LineBlockFragmentHeader, &subsect_info[line_index]); line_index += @sizeOf(pdb.LineBlockFragmentHeader); const start_line_index = line_index; const has_column = line_hdr.Flags.LF_HaveColumns; // All line entries are stored inside their line block by ascending start address. // Heuristic: we want to find the last line entry // that has a vaddr_start <= relocated_address. // This is done with a simple linear search. var line_i: u32 = 0; while (line_i < block_hdr.NumLines) : (line_i += 1) { const line_num_entry = @ptrCast(*pdb.LineNumberEntry, &subsect_info[line_index]); line_index += @sizeOf(pdb.LineNumberEntry); const vaddr_start = frag_vaddr_start + line_num_entry.Offset; if (relocated_address < vaddr_start) { break; } } // line_i == 0 would mean that no matching LineNumberEntry was found. if (line_i > 0) { const subsect_index = checksum_offset + block_hdr.NameIndex; const chksum_hdr = @ptrCast(*pdb.FileChecksumEntryHeader, &mod.subsect_info[subsect_index]); const strtab_offset = @sizeOf(pdb.PDBStringTableHeader) + chksum_hdr.FileNameOffset; try self.pdb.string_table.seekTo(strtab_offset); const source_file_name = try self.pdb.string_table.readNullTermString(self.allocator()); const line_entry_idx = line_i - 1; const column = if (has_column) blk: { const start_col_index = start_line_index + @sizeOf(pdb.LineNumberEntry) * block_hdr.NumLines; const col_index = start_col_index + @sizeOf(pdb.ColumnNumberEntry) * line_entry_idx; const col_num_entry = @ptrCast(*pdb.ColumnNumberEntry, &subsect_info[col_index]); break :blk col_num_entry.StartColumn; } else 0; const found_line_index = start_line_index + line_entry_idx * @sizeOf(pdb.LineNumberEntry); const line_num_entry = @ptrCast(*pdb.LineNumberEntry, &subsect_info[found_line_index]); const flags = @ptrCast(*pdb.LineNumberEntry.Flags, &line_num_entry.Flags); break :subsections LineInfo{ .allocator = self.allocator(), .file_name = source_file_name, .line = flags.Start, .column = column, }; } } // Checking that we are not reading garbage after the (possibly) multiple block fragments. if (line_index != subsection_end_index) { return error.InvalidDebugInfo; } } }, else => {}, } if (sect_offset > subsect_info.len) return error.InvalidDebugInfo; } else { break :subsections null; } }; return SymbolInfo{ .symbol_name = symbol_name, .compile_unit_name = obj_basename, .line_info = opt_line_info, }; } }, .linux, .netbsd, .freebsd, .dragonfly => struct { base_address: usize, dwarf: DW.DwarfInfo, mapped_memory: []const u8, fn getSymbolAtAddress(self: *@This(), address: usize) !SymbolInfo { // Translate the VA into an address into this object const relocated_address = address - self.base_address; if (nosuspend self.dwarf.findCompileUnit(relocated_address)) |compile_unit| { return SymbolInfo{ .symbol_name = nosuspend self.dwarf.getSymbolName(relocated_address) orelse "???", .compile_unit_name = compile_unit.die.getAttrString(&self.dwarf, DW.AT_name) catch |err| switch (err) { error.MissingDebugInfo, error.InvalidDebugInfo => "???", else => return err, }, .line_info = nosuspend self.dwarf.getLineNumberInfo(compile_unit.*, relocated_address) catch |err| switch (err) { error.MissingDebugInfo, error.InvalidDebugInfo => null, else => return err, }, }; } else |err| switch (err) { error.MissingDebugInfo, error.InvalidDebugInfo => { return SymbolInfo{}; }, else => return err, } unreachable; } }, else => DW.DwarfInfo, }; /// TODO multithreaded awareness var debug_info_allocator: ?*mem.Allocator = null; var debug_info_arena_allocator: std.heap.ArenaAllocator = undefined; fn getDebugInfoAllocator() *mem.Allocator { if (debug_info_allocator) |a| return a; debug_info_arena_allocator = std.heap.ArenaAllocator.init(std.heap.page_allocator); debug_info_allocator = &debug_info_arena_allocator.allocator; return &debug_info_arena_allocator.allocator; } /// Whether or not the current target can print useful debug information when a segfault occurs. pub const have_segfault_handling_support = switch (builtin.os.tag) { .linux, .netbsd => true, .windows => true, else => false, }; pub const enable_segfault_handler: bool = if (@hasDecl(root, "enable_segfault_handler")) root.enable_segfault_handler else runtime_safety and have_segfault_handling_support; pub fn maybeEnableSegfaultHandler() void { if (enable_segfault_handler) { std.debug.attachSegfaultHandler(); } } var windows_segfault_handle: ?windows.HANDLE = null; /// Attaches a global SIGSEGV handler which calls @panic("segmentation fault"); pub fn attachSegfaultHandler() void { if (!have_segfault_handling_support) { @compileError("segfault handler not supported for this target"); } if (builtin.os.tag == .windows) { windows_segfault_handle = windows.kernel32.AddVectoredExceptionHandler(0, handleSegfaultWindows); return; } var act = os.Sigaction{ .sigaction = handleSegfaultLinux, .mask = os.empty_sigset, .flags = (os.SA_SIGINFO | os.SA_RESTART | os.SA_RESETHAND), }; os.sigaction(os.SIGSEGV, &act, null); os.sigaction(os.SIGILL, &act, null); os.sigaction(os.SIGBUS, &act, null); } fn resetSegfaultHandler() void { if (builtin.os.tag == .windows) { if (windows_segfault_handle) |handle| { assert(windows.kernel32.RemoveVectoredExceptionHandler(handle) != 0); windows_segfault_handle = null; } return; } var act = os.Sigaction{ .sigaction = os.SIG_DFL, .mask = os.empty_sigset, .flags = 0, }; os.sigaction(os.SIGSEGV, &act, null); os.sigaction(os.SIGILL, &act, null); os.sigaction(os.SIGBUS, &act, null); } fn handleSegfaultLinux(sig: i32, info: *const os.siginfo_t, ctx_ptr: ?*const c_void) callconv(.C) noreturn { // Reset to the default handler so that if a segfault happens in this handler it will crash // the process. Also when this handler returns, the original instruction will be repeated // and the resulting segfault will crash the process rather than continually dump stack traces. resetSegfaultHandler(); const addr = switch (builtin.os.tag) { .linux => @ptrToInt(info.fields.sigfault.addr), .netbsd => @ptrToInt(info.info.reason.fault.addr), else => unreachable, }; switch (sig) { os.SIGSEGV => std.debug.warn("Segmentation fault at address 0x{x}\n", .{addr}), os.SIGILL => std.debug.warn("Illegal instruction at address 0x{x}\n", .{addr}), os.SIGBUS => std.debug.warn("Bus error at address 0x{x}\n", .{addr}), else => unreachable, } switch (builtin.arch) { .i386 => { const ctx = @ptrCast(*const os.ucontext_t, @alignCast(@alignOf(os.ucontext_t), ctx_ptr)); const ip = @intCast(usize, ctx.mcontext.gregs[os.REG_EIP]); const bp = @intCast(usize, ctx.mcontext.gregs[os.REG_EBP]); dumpStackTraceFromBase(bp, ip); }, .x86_64 => { const ctx = @ptrCast(*const os.ucontext_t, @alignCast(@alignOf(os.ucontext_t), ctx_ptr)); const ip = @intCast(usize, ctx.mcontext.gregs[os.REG_RIP]); const bp = @intCast(usize, ctx.mcontext.gregs[os.REG_RBP]); dumpStackTraceFromBase(bp, ip); }, .arm => { const ctx = @ptrCast(*const os.ucontext_t, @alignCast(@alignOf(os.ucontext_t), ctx_ptr)); const ip = @intCast(usize, ctx.mcontext.arm_pc); const bp = @intCast(usize, ctx.mcontext.arm_fp); dumpStackTraceFromBase(bp, ip); }, .aarch64 => { const ctx = @ptrCast(*const os.ucontext_t, @alignCast(@alignOf(os.ucontext_t), ctx_ptr)); const ip = @intCast(usize, ctx.mcontext.pc); // x29 is the ABI-designated frame pointer const bp = @intCast(usize, ctx.mcontext.regs[29]); dumpStackTraceFromBase(bp, ip); }, else => {}, } // We cannot allow the signal handler to return because when it runs the original instruction // again, the memory may be mapped and undefined behavior would occur rather than repeating // the segfault. So we simply abort here. os.abort(); } fn handleSegfaultWindows(info: *windows.EXCEPTION_POINTERS) callconv(.Stdcall) c_long { switch (info.ExceptionRecord.ExceptionCode) { windows.EXCEPTION_DATATYPE_MISALIGNMENT => handleSegfaultWindowsExtra(info, 0, "Unaligned Memory Access"), windows.EXCEPTION_ACCESS_VIOLATION => handleSegfaultWindowsExtra(info, 1, null), windows.EXCEPTION_ILLEGAL_INSTRUCTION => handleSegfaultWindowsExtra(info, 2, null), windows.EXCEPTION_STACK_OVERFLOW => handleSegfaultWindowsExtra(info, 0, "Stack Overflow"), else => return windows.EXCEPTION_CONTINUE_SEARCH, } } // zig won't let me use an anon enum here https://github.com/ziglang/zig/issues/3707 fn handleSegfaultWindowsExtra(info: *windows.EXCEPTION_POINTERS, comptime msg: u8, comptime format: ?[]const u8) noreturn { const exception_address = @ptrToInt(info.ExceptionRecord.ExceptionAddress); if (@hasDecl(windows, "CONTEXT")) { const regs = info.ContextRecord.getRegs(); switch (msg) { 0 => std.debug.warn("{}\n", .{format.?}), 1 => std.debug.warn("Segmentation fault at address 0x{x}\n", .{info.ExceptionRecord.ExceptionInformation[1]}), 2 => std.debug.warn("Illegal instruction at address 0x{x}\n", .{regs.ip}), else => unreachable, } dumpStackTraceFromBase(regs.bp, regs.ip); os.abort(); } else { switch (msg) { 0 => panicExtra(null, exception_address, format.?, .{}), 1 => panicExtra(null, exception_address, "Segmentation fault at address 0x{x}", .{info.ExceptionRecord.ExceptionInformation[1]}), 2 => panicExtra(null, exception_address, "Illegal Instruction", .{}), else => unreachable, } } } pub fn dumpStackPointerAddr(prefix: []const u8) void { const sp = asm ("" : [argc] "={rsp}" (-> usize) ); std.debug.warn("{} sp = 0x{x}\n", .{ prefix, sp }); } // Reference everything so it gets tested. test "" { _ = leb; }