// The engines provided here should be initialized from an external source. For now, getRandomBytes // from the os package is the most suitable. Be sure to use a CSPRNG when required, otherwise using // a normal PRNG will be faster and use substantially less stack space. // // ``` // var buf: [8]u8 = undefined; // try std.os.getRandomBytes(buf[0..]); // const seed = mem.readInt(buf[0..8], u64, builtin.Endian.Little); // // var r = DefaultPrng.init(seed); // // const s = r.random.scalar(u64); // ``` // // TODO(tiehuis): Benchmark these against other reference implementations. const std = @import("../index.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const mem = std.mem; const math = std.math; // When you need fast unbiased random numbers pub const DefaultPrng = Xoroshiro128; // When you need cryptographically secure random numbers pub const DefaultCsprng = Isaac64; pub const Random = struct { fillFn: fn(r: &Random, buf: []u8) void, /// Read random bytes into the specified buffer until fill. pub fn bytes(r: &Random, buf: []u8) void { r.fillFn(r, buf); } /// Return a random integer/boolean type. pub fn scalar(r: &Random, comptime T: type) T { var rand_bytes: [@sizeOf(T)]u8 = undefined; r.bytes(rand_bytes[0..]); if (T == bool) { return rand_bytes[0] & 0b1 == 0; } else { // NOTE: Cannot @bitCast array to integer type. return mem.readInt(rand_bytes, T, builtin.Endian.Little); } } /// Get a random unsigned integer with even distribution between `start` /// inclusive and `end` exclusive. pub fn range(r: &Random, comptime T: type, start: T, end: T) T { assert(start <= end); if (T.is_signed) { const uint = @IntType(false, T.bit_count); if (start >= 0 and end >= 0) { return T(r.range(uint, uint(start), uint(end))); } else if (start < 0 and end < 0) { // Can't overflow because the range is over signed ints return math.negateCast(r.range(uint, math.absCast(end), math.absCast(start)) + 1) catch unreachable; } else if (start < 0 and end >= 0) { const end_uint = uint(end); const total_range = math.absCast(start) + end_uint; const value = r.range(uint, 0, total_range); const result = if (value < end_uint) x: { break :x T(value); } else if (value == end_uint) x: { break :x start; } else x: { // Can't overflow because the range is over signed ints break :x math.negateCast(value - end_uint) catch unreachable; }; return result; } else { unreachable; } } else { const total_range = end - start; const leftover = @maxValue(T) % total_range; const upper_bound = @maxValue(T) - leftover; var rand_val_array: [@sizeOf(T)]u8 = undefined; while (true) { r.bytes(rand_val_array[0..]); const rand_val = mem.readInt(rand_val_array, T, builtin.Endian.Little); if (rand_val < upper_bound) { return start + (rand_val % total_range); } } } } /// Return a floating point value evenly distributed in the range [0, 1). pub fn float(r: &Random, comptime T: type) T { // Generate a uniform value between [1, 2) and scale down to [0, 1). // Note: The lowest mantissa bit is always set to 0 so we only use half the available range. switch (T) { f32 => { const s = r.scalar(u32); const repr = (0x7f << 23) | (s >> 9); return @bitCast(f32, repr) - 1.0; }, f64 => { const s = r.scalar(u64); const repr = (0x3ff << 52) | (s >> 12); return @bitCast(f64, repr) - 1.0; }, else => @compileError("unknown floating point type"), } } /// Return a floating point value normally distributed in the range [0, 1]. pub fn floatNorm(r: &Random, comptime T: type) T { // TODO(tiehuis): See https://www.doornik.com/research/ziggurat.pdf @compileError("floatNorm is unimplemented"); } /// Return a exponentially distributed float between (0, @maxValue(f64)) pub fn floatExp(r: &Random, comptime T: type) T { @compileError("floatExp is unimplemented"); } /// Shuffle a slice into a random order. pub fn shuffle(r: &Random, comptime T: type, buf: []T) void { if (buf.len < 2) { return; } var i: usize = 0; while (i < buf.len - 1) : (i += 1) { const j = r.range(usize, i, buf.len); mem.swap(T, &buf[i], &buf[j]); } } }; // Generator to extend 64-bit seed values into longer sequences. // // The number of cycles is thus limited to 64-bits regardless of the engine, but this // is still plenty for practical purposes. const SplitMix64 = struct { s: u64, pub fn init(seed: u64) SplitMix64 { return SplitMix64 { .s = seed }; } pub fn next(self: &SplitMix64) u64 { self.s +%= 0x9e3779b97f4a7c15; var z = self.s; z = (z ^ (z >> 30)) *% 0xbf58476d1ce4e5b9; z = (z ^ (z >> 27)) *% 0x94d049bb133111eb; return z ^ (z >> 31); } }; test "splitmix64 sequence" { var r = SplitMix64.init(0xaeecf86f7878dd75); const seq = []const u64 { 0x5dbd39db0178eb44, 0xa9900fb66b397da3, 0x5c1a28b1aeebcf5c, 0x64a963238f776912, 0xc6d4177b21d1c0ab, 0xb2cbdbdb5ea35394, }; for (seq) |s| { std.debug.assert(s == r.next()); } } // PCG32 - http://www.pcg-random.org/ // // PRNG pub const Pcg = struct { const default_multiplier = 6364136223846793005; random: Random, s: u64, i: u64, pub fn init(init_s: u64) Pcg { var pcg = Pcg { .random = Random { .fillFn = fill }, .s = undefined, .i = undefined, }; pcg.seed(init_s); return pcg; } fn next(self: &Pcg) u32 { const l = self.s; self.s = l *% default_multiplier +% (self.i | 1); const xor_s = @truncate(u32, ((l >> 18) ^ l) >> 27); const rot = u32(l >> 59); return (xor_s >> u5(rot)) | (xor_s << u5((0 -% rot) & 31)); } fn seed(self: &Pcg, init_s: u64) void { // Pcg requires 128-bits of seed. var gen = SplitMix64.init(init_s); self.seedTwo(gen.next(), gen.next()); } fn seedTwo(self: &Pcg, init_s: u64, init_i: u64) void { self.s = 0; self.i = (init_s << 1) | 1; self.s = self.s *% default_multiplier +% self.i; self.s +%= init_i; self.s = self.s *% default_multiplier +% self.i; } fn fill(r: &Random, buf: []u8) void { const self = @fieldParentPtr(Pcg, "random", r); var i: usize = 0; const aligned_len = buf.len - (buf.len & 7); // Complete 4 byte segments. while (i < aligned_len) : (i += 4) { var n = self.next(); comptime var j: usize = 0; inline while (j < 4) : (j += 1) { buf[i + j] = @truncate(u8, n); n >>= 8; } } // Remaining. (cuts the stream) if (i != buf.len) { var n = self.next(); while (i < buf.len) : (i += 1) { buf[i] = @truncate(u8, n); n >>= 4; } } } }; test "pcg sequence" { var r = Pcg.init(0); const s0: u64 = 0x9394bf54ce5d79de; const s1: u64 = 0x84e9c579ef59bbf7; r.seedTwo(s0, s1); const seq = []const u32 { 2881561918, 3063928540, 1199791034, 2487695858, 1479648952, 3247963454, }; for (seq) |s| { std.debug.assert(s == r.next()); } } // Xoroshiro128+ - http://xoroshiro.di.unimi.it/ // // PRNG pub const Xoroshiro128 = struct { random: Random, s: [2]u64, pub fn init(init_s: u64) Xoroshiro128 { var x = Xoroshiro128 { .random = Random { .fillFn = fill }, .s = undefined, }; x.seed(init_s); return x; } fn next(self: &Xoroshiro128) u64 { const s0 = self.s[0]; var s1 = self.s[1]; const r = s0 +% s1; s1 ^= s0; self.s[0] = math.rotl(u64, s0, u8(55)) ^ s1 ^ (s1 << 14); self.s[1] = math.rotl(u64, s1, u8(36)); return r; } // Skip 2^64 places ahead in the sequence fn jump(self: &Xoroshiro128) void { var s0: u64 = 0; var s1: u64 = 0; const table = []const u64 { 0xbeac0467eba5facb, 0xd86b048b86aa9922 }; inline for (table) |entry| { var b: usize = 0; while (b < 64) : (b += 1) { if ((entry & (u64(1) << u6(b))) != 0) { s0 ^= self.s[0]; s1 ^= self.s[1]; } _ = self.next(); } } self.s[0] = s0; self.s[1] = s1; } fn seed(self: &Xoroshiro128, init_s: u64) void { // Xoroshiro requires 128-bits of seed. var gen = SplitMix64.init(init_s); self.s[0] = gen.next(); self.s[1] = gen.next(); } fn fill(r: &Random, buf: []u8) void { const self = @fieldParentPtr(Xoroshiro128, "random", r); var i: usize = 0; const aligned_len = buf.len - (buf.len & 7); // Complete 8 byte segments. while (i < aligned_len) : (i += 8) { var n = self.next(); comptime var j: usize = 0; inline while (j < 8) : (j += 1) { buf[i + j] = @truncate(u8, n); n >>= 8; } } // Remaining. (cuts the stream) if (i != buf.len) { var n = self.next(); while (i < buf.len) : (i += 1) { buf[i] = @truncate(u8, n); n >>= 8; } } } }; test "xoroshiro sequence" { var r = Xoroshiro128.init(0); r.s[0] = 0xaeecf86f7878dd75; r.s[1] = 0x01cd153642e72622; const seq1 = []const u64 { 0xb0ba0da5bb600397, 0x18a08afde614dccc, 0xa2635b956a31b929, 0xabe633c971efa045, 0x9ac19f9706ca3cac, 0xf62b426578c1e3fb, }; for (seq1) |s| { std.debug.assert(s == r.next()); } r.jump(); const seq2 = []const u64 { 0x95344a13556d3e22, 0xb4fb32dafa4d00df, 0xb2011d9ccdcfe2dd, 0x05679a9b2119b908, 0xa860a1da7c9cd8a0, 0x658a96efe3f86550, }; for (seq2) |s| { std.debug.assert(s == r.next()); } } // ISAAC64 - http://www.burtleburtle.net/bob/rand/isaacafa.html // // CSPRNG // // Follows the general idea of the implementation from here with a few shortcuts. // https://doc.rust-lang.org/rand/src/rand/prng/isaac64.rs.html pub const Isaac64 = struct { random: Random, r: [256]u64, m: [256]u64, a: u64, b: u64, c: u64, i: usize, pub fn init(init_s: u64) Isaac64 { var isaac = Isaac64 { .random = Random { .fillFn = fill }, .r = undefined, .m = undefined, .a = undefined, .b = undefined, .c = undefined, .i = undefined, }; // seed == 0 => same result as the unseeded reference implementation isaac.seed(init_s, 1); return isaac; } fn step(self: &Isaac64, mix: u64, base: usize, comptime m1: usize, comptime m2: usize) void { const x = self.m[base + m1]; self.a = mix +% self.m[base + m2]; const y = self.a +% self.b +% self.m[(x >> 3) % self.m.len]; self.m[base + m1] = y; self.b = x +% self.m[(y >> 11) % self.m.len]; self.r[self.r.len - 1 - base - m1] = self.b; } fn refill(self: &Isaac64) void { const midpoint = self.r.len / 2; self.c +%= 1; self.b +%= self.c; { var i: usize = 0; while (i < midpoint) : (i += 4) { self.step( ~(self.a ^ (self.a << 21)), i + 0, 0, midpoint); self.step( self.a ^ (self.a >> 5) , i + 1, 0, midpoint); self.step( self.a ^ (self.a << 12) , i + 2, 0, midpoint); self.step( self.a ^ (self.a >> 33) , i + 3, 0, midpoint); } } { var i: usize = 0; while (i < midpoint) : (i += 4) { self.step( ~(self.a ^ (self.a << 21)), i + 0, midpoint, 0); self.step( self.a ^ (self.a >> 5) , i + 1, midpoint, 0); self.step( self.a ^ (self.a << 12) , i + 2, midpoint, 0); self.step( self.a ^ (self.a >> 33) , i + 3, midpoint, 0); } } self.i = 0; } fn next(self: &Isaac64) u64 { if (self.i >= self.r.len) { self.refill(); } const value = self.r[self.i]; self.i += 1; return value; } fn seed(self: &Isaac64, init_s: u64, comptime rounds: usize) void { // We ignore the multi-pass requirement since we don't currently expose full access to // seeding the self.m array completely. mem.set(u64, self.m[0..], 0); self.m[0] = init_s; // prescrambled golden ratio constants var a = []const u64 { 0x647c4677a2884b7c, 0xb9f8b322c73ac862, 0x8c0ea5053d4712a0, 0xb29b2e824a595524, 0x82f053db8355e0ce, 0x48fe4a0fa5a09315, 0xae985bf2cbfc89ed, 0x98f5704f6c44c0ab, }; comptime var i: usize = 0; inline while (i < rounds) : (i += 1) { var j: usize = 0; while (j < self.m.len) : (j += 8) { comptime var x1: usize = 0; inline while (x1 < 8) : (x1 += 1) { a[x1] +%= self.m[j + x1]; } a[0] -%= a[4]; a[5] ^= a[7] >> 9; a[7] +%= a[0]; a[1] -%= a[5]; a[6] ^= a[0] << 9; a[0] +%= a[1]; a[2] -%= a[6]; a[7] ^= a[1] >> 23; a[1] +%= a[2]; a[3] -%= a[7]; a[0] ^= a[2] << 15; a[2] +%= a[3]; a[4] -%= a[0]; a[1] ^= a[3] >> 14; a[3] +%= a[4]; a[5] -%= a[1]; a[2] ^= a[4] << 20; a[4] +%= a[5]; a[6] -%= a[2]; a[3] ^= a[5] >> 17; a[5] +%= a[6]; a[7] -%= a[3]; a[4] ^= a[6] << 14; a[6] +%= a[7]; comptime var x2: usize = 0; inline while (x2 < 8) : (x2 += 1) { self.m[j + x2] = a[x2]; } } } mem.set(u64, self.r[0..], 0); self.a = 0; self.b = 0; self.c = 0; self.i = self.r.len; // trigger refill on first value } fn fill(r: &Random, buf: []u8) void { const self = @fieldParentPtr(Isaac64, "random", r); var i: usize = 0; const aligned_len = buf.len - (buf.len & 7); // Fill complete 64-byte segments while (i < aligned_len) : (i += 8) { var n = self.next(); comptime var j: usize = 0; inline while (j < 8) : (j += 1) { buf[i + j] = @truncate(u8, n); n >>= 8; } } // Fill trailing, ignoring excess (cut the stream). if (i != buf.len) { var n = self.next(); while (i < buf.len) : (i += 1) { buf[i] = @truncate(u8, n); n >>= 8; } } } }; test "isaac64 sequence" { var r = Isaac64.init(0); // from reference implementation const seq = []const u64 { 0xf67dfba498e4937c, 0x84a5066a9204f380, 0xfee34bd5f5514dbb, 0x4d1664739b8f80d6, 0x8607459ab52a14aa, 0x0e78bc5a98529e49, 0xfe5332822ad13777, 0x556c27525e33d01a, 0x08643ca615f3149f, 0xd0771faf3cb04714, 0x30e86f68a37b008d, 0x3074ebc0488a3adf, 0x270645ea7a2790bc, 0x5601a0a8d3763c6a, 0x2f83071f53f325dd, 0xb9090f3d42d2d2ea, }; for (seq) |s| { std.debug.assert(s == r.next()); } } // Actual Random helper function tests, pcg engine is assumed correct. test "Random float" { var prng = DefaultPrng.init(0); var i: usize = 0; while (i < 1000) : (i += 1) { const val1 = prng.random.float(f32); std.debug.assert(val1 >= 0.0); std.debug.assert(val1 < 1.0); const val2 = prng.random.float(f64); std.debug.assert(val2 >= 0.0); std.debug.assert(val2 < 1.0); } } test "Random scalar" { var prng = DefaultPrng.init(0); const s = prng .random.scalar(u64); } test "Random bytes" { var prng = DefaultPrng.init(0); var buf: [2048]u8 = undefined; prng.random.bytes(buf[0..]); } test "Random shuffle" { var prng = DefaultPrng.init(0); var seq = []const u8 { 0, 1, 2, 3, 4 }; var seen = []bool {false} ** 5; var i: usize = 0; while (i < 1000) : (i += 1) { prng.random.shuffle(u8, seq[0..]); seen[seq[0]] = true; std.debug.assert(sumArray(seq[0..]) == 10); } // we should see every entry at the head at least once for (seen) |e| { std.debug.assert(e == true); } } fn sumArray(s: []const u8) u32 { var r: u32 = 0; for (s) |e| r += e; return r; } test "Random range" { var prng = DefaultPrng.init(0); testRange(&prng.random, -4, 3); testRange(&prng.random, -4, -1); testRange(&prng.random, 10, 14); } fn testRange(r: &Random, start: i32, end: i32) void { const count = usize(end - start); var values_buffer = []bool{false} ** 20; const values = values_buffer[0..count]; var i: usize = 0; while (i < count) { const value = r.range(i32, start, end); const index = usize(value - start); if (!values[index]) { i += 1; values[index] = true; } } }