/** * This file has no copyright assigned and is placed in the Public Domain. * This file is part of the mingw-w64 runtime package. * No warranty is given; refer to the file DISCLAIMER.PD within this package. */ long double fmal(long double x, long double y, long double z); #if defined(_ARM_) || defined(__arm__) || defined(_ARM64_) || defined(__aarch64__) double fma(double x, double y, double z); /* On ARM `long double` is 64 bits. And ARM has hardware FMA. */ long double fmal(long double x, long double y, long double z){ return fma(x, y, z); } #elif defined(_AMD64_) || defined(__x86_64__) || defined(_X86_) || defined(__i386__) /** * x87-specific software-emulated FMA by LH_Mouse (lh_mouse at 126 dot com). * This file is donated to the mingw-w64 project. * Note: This file requires C99 support to compile. */ #include #include #include #include /* https://en.wikipedia.org/wiki/Extended_precision#x86_extended_precision_format */ typedef union x87reg_ { struct __attribute__((__packed__)) { union { uint64_t f64; struct { uint32_t flo; uint32_t fhi; }; }; uint16_t exp : 15; uint16_t sgn : 1; }; long double f; } x87reg; static inline void break_down(x87reg *restrict lo, x87reg *restrict hi, long double x){ hi->f = x; const uint32_t flo = hi->flo; const long exp = hi->exp; const bool sgn = hi->sgn; /* Erase low-order significant bits. `hi->f` now has only 32 significant bits. */ hi->flo = 0; if(flo == 0){ /* If the low-order significant bits are all zeroes, return zero in `lo->f`. */ lo->f64 = 0; lo->exp = 0; } else { /* How many bits should we shift to normalize the floating point value? */ const long shn = __builtin_clzl(flo) - (sizeof(long) - sizeof(uint32_t)) * CHAR_BIT + 32; #if 0 /* Naive implementation */ if(shn < exp){ /* `x` can be normalized, normalize it. */ lo->f64 = (uint64_t)flo << shn; lo->exp = (exp - shn) & 0x7FFF; } else { /* Otherwise, go with a denormal number. */ if(exp > 0){ /* Denormalize the source normal number. */ lo->f64 = (uint64_t)flo << (exp - 1); } else { /* Leave the source denormal number as is. */ lo->f64 = flo; } lo->exp = 0; } #else /* Optimal implementation */ const long mask = (shn - exp) >> 31; /* mask = (shn < exp) ? -1 : 0 */ long expm1 = exp - 1; expm1 &= ~(expm1 >> 31); /* expm1 = (exp - 1 >= 0) ? (exp - 1) : 0 */ lo->f64 = (uint64_t)flo << (((shn ^ expm1) & mask) ^ expm1); /* f64 = flo << ((shn < exp) ? shn : expm1) */ lo->exp = (exp - shn) & mask; /* exp = (shn < exp) ? (exp - shn) : 0 */ #endif } lo->sgn = sgn; } static inline long double fpu_fma(long double x, long double y, long double z){ /* POSIX-2013: 1. If x or y are NaN, a NaN shall be returned. 2. If x multiplied by y is an exact infinity and z is also an infinity but with the opposite sign, a domain error shall occur, and either a NaN (if supported), or an implementation-defined value shall be returned. 3. If one of x and y is infinite, the other is zero, and z is not a NaN, a domain error shall occur, and either a NaN (if supported), or an implementation-defined value shall be returned. 4. If one of x and y is infinite, the other is zero, and z is a NaN, a NaN shall be returned and a domain error may occur. 5. If x* y is not 0*Inf nor Inf*0 and z is a NaN, a NaN shall be returned. */ if(__fpclassifyl(x) == FP_NAN){ return x; /* Handle case 1. */ } if(__fpclassifyl(y) == FP_NAN){ return y; /* Handle case 1. */ } /* Handle case 2, 3 and 4 universally. Thanks to x87 a NaN is generated if an INF is multiplied with zero, saving us a huge amount of work. */ const long double xy = x * y; if(__fpclassifyl(xy) == FP_NAN){ return xy; /* Handle case 2, 3 and 4. */ } if(__fpclassifyl(z) == FP_NAN){ return z; /* Handle case 5. */ } /* Check whether the result is finite. */ const long double xyz = xy + z; const int cxyz = __fpclassifyl(xyz); if((cxyz == FP_NAN) || (cxyz == FP_INFINITE)){ return xyz; /* If this naive check doesn't yield a finite value, the FMA isn't likely to return one either. Forward the value as is. */ } long double ret; x87reg xlo, xhi, ylo, yhi; break_down(&xlo, &xhi, x); break_down(&ylo, &yhi, y); /* The order of these four statements is essential. Don't move them around. */ ret = z; ret += xhi.f * yhi.f; /* The most significant item comes first. */ ret += xhi.f * ylo.f + xlo.f * yhi.f; /* They are equally significant. */ ret += xlo.f * ylo.f; /* The least significant item comes last. */ return ret; } long double fmal(long double x, long double y, long double z){ return fpu_fma(x, y, z); } #else #error Please add FMA implementation for this platform. #endif