// Ported from musl, which is licensed under the MIT license: // https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT // // https://git.musl-libc.org/cgit/musl/tree/src/math/log1pf.c // https://git.musl-libc.org/cgit/musl/tree/src/math/log1p.c const builtin = @import("builtin"); const std = @import("../std.zig"); const math = std.math; const expect = std.testing.expect; /// Returns the natural logarithm of 1 + x with greater accuracy when x is near zero. /// /// Special Cases: /// - log1p(+inf) = +inf /// - log1p(+-0) = +-0 /// - log1p(-1) = -inf /// - log1p(x) = nan if x < -1 /// - log1p(nan) = nan pub fn log1p(x: var) @typeOf(x) { const T = @typeOf(x); return switch (T) { f32 => log1p_32(x), f64 => log1p_64(x), else => @compileError("log1p not implemented for " ++ @typeName(T)), }; } fn log1p_32(x: f32) f32 { const ln2_hi = 6.9313812256e-01; const ln2_lo = 9.0580006145e-06; const Lg1: f32 = 0xaaaaaa.0p-24; const Lg2: f32 = 0xccce13.0p-25; const Lg3: f32 = 0x91e9ee.0p-25; const Lg4: f32 = 0xf89e26.0p-26; const u = @bitCast(u32, x); var ix = u; var k: i32 = 1; var f: f32 = undefined; var c: f32 = undefined; // 1 + x < sqrt(2)+ if (ix < 0x3ED413D0 or ix >> 31 != 0) { // x <= -1.0 if (ix >= 0xBF800000) { // log1p(-1) = -inf if (x == -1.0) { return -math.inf(f32); } // log1p(x < -1) = nan else { return math.nan(f32); } } // |x| < 2^(-24) if ((ix << 1) < (0x33800000 << 1)) { // underflow if subnormal if (ix & 0x7F800000 == 0) { math.forceEval(x * x); } return x; } // sqrt(2) / 2- <= 1 + x < sqrt(2)+ if (ix <= 0xBE95F619) { k = 0; c = 0; f = x; } } else if (ix >= 0x7F800000) { return x; } if (k != 0) { const uf = 1 + x; var iu = @bitCast(u32, uf); iu += 0x3F800000 - 0x3F3504F3; k = @intCast(i32, iu >> 23) - 0x7F; // correction to avoid underflow in c / u if (k < 25) { c = if (k >= 2) 1 - (uf - x) else x - (uf - 1); c /= uf; } else { c = 0; } // u into [sqrt(2)/2, sqrt(2)] iu = (iu & 0x007FFFFF) + 0x3F3504F3; f = @bitCast(f32, iu) - 1; } const s = f / (2.0 + f); const z = s * s; const w = z * z; const t1 = w * (Lg2 + w * Lg4); const t2 = z * (Lg1 + w * Lg3); const R = t2 + t1; const hfsq = 0.5 * f * f; const dk = @intToFloat(f32, k); return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi; } fn log1p_64(x: f64) f64 { const ln2_hi: f64 = 6.93147180369123816490e-01; const ln2_lo: f64 = 1.90821492927058770002e-10; const Lg1: f64 = 6.666666666666735130e-01; const Lg2: f64 = 3.999999999940941908e-01; const Lg3: f64 = 2.857142874366239149e-01; const Lg4: f64 = 2.222219843214978396e-01; const Lg5: f64 = 1.818357216161805012e-01; const Lg6: f64 = 1.531383769920937332e-01; const Lg7: f64 = 1.479819860511658591e-01; var ix = @bitCast(u64, x); var hx = @intCast(u32, ix >> 32); var k: i32 = 1; var c: f64 = undefined; var f: f64 = undefined; // 1 + x < sqrt(2) if (hx < 0x3FDA827A or hx >> 31 != 0) { // x <= -1.0 if (hx >= 0xBFF00000) { // log1p(-1) = -inf if (x == -1.0) { return -math.inf(f64); } // log1p(x < -1) = nan else { return math.nan(f64); } } // |x| < 2^(-53) if ((hx << 1) < (0x3CA00000 << 1)) { if ((hx & 0x7FF00000) == 0) { math.raiseUnderflow(); } return x; } // sqrt(2) / 2- <= 1 + x < sqrt(2)+ if (hx <= 0xBFD2BEC4) { k = 0; c = 0; f = x; } } else if (hx >= 0x7FF00000) { return x; } if (k != 0) { const uf = 1 + x; const hu = @bitCast(u64, uf); var iu = @intCast(u32, hu >> 32); iu += 0x3FF00000 - 0x3FE6A09E; k = @intCast(i32, iu >> 20) - 0x3FF; // correction to avoid underflow in c / u if (k < 54) { c = if (k >= 2) 1 - (uf - x) else x - (uf - 1); c /= uf; } else { c = 0; } // u into [sqrt(2)/2, sqrt(2)] iu = (iu & 0x000FFFFF) + 0x3FE6A09E; const iq = (@as(u64, iu) << 32) | (hu & 0xFFFFFFFF); f = @bitCast(f64, iq) - 1; } const hfsq = 0.5 * f * f; const s = f / (2.0 + f); const z = s * s; const w = z * z; const t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); const R = t2 + t1; const dk = @intToFloat(f64, k); return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi; } test "math.log1p" { expect(log1p(@as(f32, 0.0)) == log1p_32(0.0)); expect(log1p(@as(f64, 0.0)) == log1p_64(0.0)); } test "math.log1p_32" { const epsilon = 0.000001; expect(math.approxEq(f32, log1p_32(0.0), 0.0, epsilon)); expect(math.approxEq(f32, log1p_32(0.2), 0.182322, epsilon)); expect(math.approxEq(f32, log1p_32(0.8923), 0.637793, epsilon)); expect(math.approxEq(f32, log1p_32(1.5), 0.916291, epsilon)); expect(math.approxEq(f32, log1p_32(37.45), 3.649359, epsilon)); expect(math.approxEq(f32, log1p_32(89.123), 4.501175, epsilon)); expect(math.approxEq(f32, log1p_32(123123.234375), 11.720949, epsilon)); } test "math.log1p_64" { const epsilon = 0.000001; expect(math.approxEq(f64, log1p_64(0.0), 0.0, epsilon)); expect(math.approxEq(f64, log1p_64(0.2), 0.182322, epsilon)); expect(math.approxEq(f64, log1p_64(0.8923), 0.637793, epsilon)); expect(math.approxEq(f64, log1p_64(1.5), 0.916291, epsilon)); expect(math.approxEq(f64, log1p_64(37.45), 3.649359, epsilon)); expect(math.approxEq(f64, log1p_64(89.123), 4.501175, epsilon)); expect(math.approxEq(f64, log1p_64(123123.234375), 11.720949, epsilon)); } test "math.log1p_32.special" { expect(math.isPositiveInf(log1p_32(math.inf(f32)))); expect(log1p_32(0.0) == 0.0); expect(log1p_32(-0.0) == -0.0); expect(math.isNegativeInf(log1p_32(-1.0))); expect(math.isNan(log1p_32(-2.0))); expect(math.isNan(log1p_32(math.nan(f32)))); } test "math.log1p_64.special" { expect(math.isPositiveInf(log1p_64(math.inf(f64)))); expect(log1p_64(0.0) == 0.0); expect(log1p_64(-0.0) == -0.0); expect(math.isNegativeInf(log1p_64(-1.0))); expect(math.isNan(log1p_64(-2.0))); expect(math.isNan(log1p_64(math.nan(f64)))); }