const std = @import("../index.zig"); const builtin = @import("builtin"); const Os = builtin.Os; const debug = std.debug; const windows = std.os.windows; const linux = std.os.linux; const darwin = std.os.darwin; const posix = std.os.posix; pub const epoch = @import("epoch.zig"); /// Sleep for the specified duration pub fn sleep(seconds: usize, nanoseconds: usize) void { switch (builtin.os) { Os.linux, Os.macosx, Os.ios => { posixSleep(@intCast(u63, seconds), @intCast(u63, nanoseconds)); }, Os.windows => { const ns_per_ms = ns_per_s / ms_per_s; const milliseconds = seconds * ms_per_s + nanoseconds / ns_per_ms; windows.Sleep(@intCast(windows.DWORD, milliseconds)); }, else => @compileError("Unsupported OS"), } } pub fn posixSleep(seconds: u63, nanoseconds: u63) void { var req = posix.timespec{ .tv_sec = seconds, .tv_nsec = nanoseconds, }; var rem: posix.timespec = undefined; while (true) { const ret_val = posix.nanosleep(&req, &rem); const err = posix.getErrno(ret_val); if (err == 0) return; switch (err) { posix.EFAULT => unreachable, posix.EINVAL => { // Sometimes Darwin returns EINVAL for no reason. // We treat it as a spurious wakeup. return; }, posix.EINTR => { req = rem; continue; }, else => return, } } } /// Get the posix timestamp, UTC, in seconds pub fn timestamp() u64 { return @divFloor(milliTimestamp(), ms_per_s); } /// Get the posix timestamp, UTC, in milliseconds pub const milliTimestamp = switch (builtin.os) { Os.windows => milliTimestampWindows, Os.linux => milliTimestampPosix, Os.macosx, Os.ios => milliTimestampDarwin, else => @compileError("Unsupported OS"), }; fn milliTimestampWindows() u64 { //FileTime has a granularity of 100 nanoseconds // and uses the NTFS/Windows epoch var ft: windows.FILETIME = undefined; windows.GetSystemTimeAsFileTime(&ft); const hns_per_ms = (ns_per_s / 100) / ms_per_s; const epoch_adj = epoch.windows * ms_per_s; const ft64 = (u64(ft.dwHighDateTime) << 32) | ft.dwLowDateTime; return @divFloor(ft64, hns_per_ms) - -epoch_adj; } fn milliTimestampDarwin() u64 { //Sources suggest MacOS 10.12 has support for // posix clock_gettime. var tv: darwin.timeval = undefined; var err = darwin.gettimeofday(&tv, null); debug.assert(err == 0); const sec_ms = @intCast(u64, tv.tv_sec) * ms_per_s; const usec_ms = @divFloor(@intCast(u64, tv.tv_usec), us_per_s / ms_per_s); return u64(sec_ms) + u64(usec_ms); } fn milliTimestampPosix() u64 { //From what I can tell there's no reason clock_gettime // should ever fail for us with CLOCK_REALTIME, // seccomp aside. var ts: posix.timespec = undefined; const err = posix.clock_gettime(posix.CLOCK_REALTIME, &ts); debug.assert(err == 0); const sec_ms = @intCast(u64, ts.tv_sec) * ms_per_s; const nsec_ms = @divFloor(@intCast(u64, ts.tv_nsec), ns_per_s / ms_per_s); return sec_ms + nsec_ms; } /// Divisions of a second pub const ns_per_s = 1000000000; pub const us_per_s = 1000000; pub const ms_per_s = 1000; pub const cs_per_s = 100; /// Common time divisions pub const s_per_min = 60; pub const s_per_hour = s_per_min * 60; pub const s_per_day = s_per_hour * 24; pub const s_per_week = s_per_day * 7; /// A monotonic high-performance timer. /// Timer.start() must be called to initialize the struct, which captures /// the counter frequency on windows and darwin, records the resolution, /// and gives the user an oportunity to check for the existnece of /// monotonic clocks without forcing them to check for error on each read. /// .resolution is in nanoseconds on all platforms but .start_time's meaning /// depends on the OS. On Windows and Darwin it is a hardware counter /// value that requires calculation to convert to a meaninful unit. pub const Timer = struct { //if we used resolution's value when performing the // performance counter calc on windows/darwin, it would // be less precise frequency: switch (builtin.os) { Os.windows => u64, Os.macosx, Os.ios => darwin.mach_timebase_info_data, else => void, }, resolution: u64, start_time: u64, //At some point we may change our minds on RAW, but for now we're // sticking with posix standard MONOTONIC. For more information, see: // https://github.com/ziglang/zig/pull/933 // //const monotonic_clock_id = switch(builtin.os) { // Os.linux => linux.CLOCK_MONOTONIC_RAW, // else => posix.CLOCK_MONOTONIC, //}; const monotonic_clock_id = posix.CLOCK_MONOTONIC; /// Initialize the timer structure. //This gives us an oportunity to grab the counter frequency in windows. //On Windows: QueryPerformanceCounter will succeed on anything >= XP/2000. //On Posix: CLOCK_MONOTONIC will only fail if the monotonic counter is not // supported, or if the timespec pointer is out of bounds, which should be // impossible here barring cosmic rays or other such occurances of // incredibly bad luck. //On Darwin: This cannot fail, as far as I am able to tell. const TimerError = error{ TimerUnsupported, Unexpected, }; pub fn start() TimerError!Timer { var self: Timer = undefined; switch (builtin.os) { Os.windows => { var freq: i64 = undefined; var err = windows.QueryPerformanceFrequency(&freq); if (err == windows.FALSE) return error.TimerUnsupported; self.frequency = @intCast(u64, freq); self.resolution = @divFloor(ns_per_s, self.frequency); var start_time: i64 = undefined; err = windows.QueryPerformanceCounter(&start_time); debug.assert(err != windows.FALSE); self.start_time = @intCast(u64, start_time); }, Os.linux => { //On Linux, seccomp can do arbitrary things to our ability to call // syscalls, including return any errno value it wants and // inconsistently throwing errors. Since we can't account for // abuses of seccomp in a reasonable way, we'll assume that if // seccomp is going to block us it will at least do so consistently var ts: posix.timespec = undefined; var result = posix.clock_getres(monotonic_clock_id, &ts); var errno = posix.getErrno(result); switch (errno) { 0 => {}, posix.EINVAL => return error.TimerUnsupported, else => return std.os.unexpectedErrorPosix(errno), } self.resolution = @intCast(u64, ts.tv_sec) * u64(ns_per_s) + @intCast(u64, ts.tv_nsec); result = posix.clock_gettime(monotonic_clock_id, &ts); errno = posix.getErrno(result); if (errno != 0) return std.os.unexpectedErrorPosix(errno); self.start_time = @intCast(u64, ts.tv_sec) * u64(ns_per_s) + @intCast(u64, ts.tv_nsec); }, Os.macosx, Os.ios => { darwin.mach_timebase_info(&self.frequency); self.resolution = @divFloor(self.frequency.numer, self.frequency.denom); self.start_time = darwin.mach_absolute_time(); }, else => @compileError("Unsupported OS"), } return self; } /// Reads the timer value since start or the last reset in nanoseconds pub fn read(self: *Timer) u64 { var clock = clockNative() - self.start_time; return switch (builtin.os) { Os.windows => @divFloor(clock * ns_per_s, self.frequency), Os.linux => clock, Os.macosx, Os.ios => @divFloor(clock * self.frequency.numer, self.frequency.denom), else => @compileError("Unsupported OS"), }; } /// Resets the timer value to 0/now. pub fn reset(self: *Timer) void { self.start_time = clockNative(); } /// Returns the current value of the timer in nanoseconds, then resets it pub fn lap(self: *Timer) u64 { var now = clockNative(); var lap_time = self.read(); self.start_time = now; return lap_time; } const clockNative = switch (builtin.os) { Os.windows => clockWindows, Os.linux => clockLinux, Os.macosx, Os.ios => clockDarwin, else => @compileError("Unsupported OS"), }; fn clockWindows() u64 { var result: i64 = undefined; var err = windows.QueryPerformanceCounter(&result); debug.assert(err != windows.FALSE); return @intCast(u64, result); } fn clockDarwin() u64 { return darwin.mach_absolute_time(); } fn clockLinux() u64 { var ts: posix.timespec = undefined; var result = posix.clock_gettime(monotonic_clock_id, &ts); debug.assert(posix.getErrno(result) == 0); return @intCast(u64, ts.tv_sec) * u64(ns_per_s) + @intCast(u64, ts.tv_nsec); } }; test "os.time.sleep" { sleep(0, 1); } test "os.time.timestamp" { const ns_per_ms = (ns_per_s / ms_per_s); const margin = 50; const time_0 = milliTimestamp(); sleep(0, ns_per_ms); const time_1 = milliTimestamp(); const interval = time_1 - time_0; debug.assert(interval > 0 and interval < margin); } test "os.time.Timer" { const ns_per_ms = (ns_per_s / ms_per_s); const margin = ns_per_ms * 150; var timer = try Timer.start(); sleep(0, 10 * ns_per_ms); const time_0 = timer.read(); debug.assert(time_0 > 0 and time_0 < margin); const time_1 = timer.lap(); debug.assert(time_1 >= time_0); timer.reset(); debug.assert(timer.read() < time_1); }