const std = @import("../index.zig"); const builtin = @import("builtin"); const Os = builtin.Os; const debug = std.debug; const windows = std.os.windows; const darwin = std.os.darwin; const posix = std.os.posix; pub const epoch = @import("epoch.zig"); /// Sleep for the specified duration pub fn sleep(seconds: usize, nanoseconds: usize) void { switch(builtin.os) { Os.linux, Os.macosx, Os.ios => { posixSleep(u63(seconds), u63(nanoseconds)); }, Os.windows => { const milliseconds = seconds * ms_per_s + nanoseconds / (ns_per_s / ms_per_s); windows.Sleep(windows.DWORD(milliseconds)); }, else => @compileError("Unsupported OS"), } } const u63 = @IntType(false, 63); pub fn posixSleep(seconds: u63, nanoseconds: u63) void { var req = posix.timespec { .tv_sec = seconds, .tv_nsec = nanoseconds, }; var rem: posix.timespec = undefined; while (true) { const ret_val = posix.nanosleep(&req, &rem); const err = posix.getErrno(ret_val); if (err == 0) return; switch (err) { posix.EFAULT => unreachable, posix.EINVAL => { // Sometimes Darwin returns EINVAL for no reason. // We treat it as a spurious wakeup. return; }, posix.EINTR => { req = rem; continue; }, else => return, } } } /// Get the posix timestamp, UTC, in seconds pub fn timestamp() u64 { return @divFloor(miliTimestamp(), ms_per_s); } /// Get the posix timestamp, UTC, in nanoseconds pub const miliTimestamp = switch(builtin.os) { Os.windows => miliTimestampWindows, Os.linux => miliTimestampPosix, Os.macosx, Os.ios => miliTimestampDarwin, else => @compileError("Unsupported OS"), }; fn miliTimestampWindows() u64 { //FileTime has a granularity of 100 nanoseconds // and uses the NTFS/Windows epoch var ft: i64 = undefined; windows.GetSystemTimeAsFileTime(&ft); const hns_per_ms = (ns_per_s / 100) / ms_per_s; const epoch_adj = epoch.windows * ms_per_s; return u64(@divFloor(ft, hns_per_ms) + epoch_adj); } fn miliTimestampDarwin() u64 { //Sources suggest MacOS 10.12 has support for // posix clock_gettime. var tv: darwin.timeval = undefined; var err = darwin.gettimeofday(&tv, null); debug.assert(err == 0); return tv.tv_sec * ms_per_s + ts.tv_usec * (us_per_s / ms_per_s); } fn miliTimestampPosix() u64 { //From what I can tell there's no reason clock_gettime // should ever fail for us with CLOCK_REALTIME var ts: posix.timespec = undefined; const err = posix.clock_gettime(posix.CLOCK_REALTIME, &ts); debug.assert(err == 0); const sec_ms = ts.tv_sec * ms_per_s; const nsec_ms = @divFloor(ts.tv_nsec, ns_per_s / ms_per_s); return u64(sec_ms) + u64(nsec_ms); } /// Divisions of a second pub const ns_per_s = 1000000000; pub const us_per_s = 1000000; pub const ms_per_s = 1000; pub const cs_per_s = 100; /// Common time divisions pub const s_per_min = 60; pub const s_per_hour = s_per_min * 60; pub const s_per_day = s_per_hour * 24; pub const s_per_week = s_per_day * 7; /// A monotonic high-performance timer. /// Timer.start() must be called to initialize the struct, which captures /// the counter frequency on windows and darwin, records the resolution, /// and gives the user an oportunity to check for the existnece of /// monotonic clocks without forcing them to check for error on each read. /// .resolution is in nanoseconds on all platforms but .start_time's meaning /// depends on the OS. On Windows and Darwin it is a hardware counter /// value that requires calculation to convert to a meaninful unit. pub const Timer = struct { //if we used resolution's value when performing the // performance counter calc on windows, it would be // less precise frequency: switch(builtin.os) { Os.windows => u64, Os.macosx, Os.ios => darwin.mach_timebase_info_data, else => void, }, resolution: u64, start_time: u64, //Initialize the timer structure. //This gives us an oportunity to grab the counter frequency in windows. //On Windows: QueryPerformanceCounter will succeed on anything > XP. //On Posix: CLOCK_MONOTONIC will only fail if the monotonic counter is not // supported, or if the timespec pointer is out of bounds, which should be // impossible here barring cosmic rays or other such occurances of // incredibly bad luck. //On Darwin: This cannot fail, as far as I am able to tell. pub fn start() !Timer { var self: Timer = undefined; switch(builtin.os) { Os.windows => { var freq: i64 = undefined; var err = windows.QueryPerformanceFrequency(&freq); if(err == 0) return error.TimerUnsupported; self.frequency = u64(freq); self.resolution = @divFloor(ns_per_s, self.frequency); var start_time: i64 = undefined; _ = windows.QueryPerformanceCounter(&start_time); self.start_time = u64(start_time); }, Os.linux => { var ts: posix.timespec = undefined; var result = posix.clock_getres(posix.CLOCK_MONOTONIC, &ts); switch(posix.getErrno(result)) { 0 => {}, posix.EINVAL => return error.TimerUnsupported, else => unreachable, } self.resolution = u64(ts.tv_sec * ns_per_s + ts.tv_nsec); _ = posix.clock_gettime(posix.CLOCK_MONOTONIC, &ts); self.start_time = u64(ts.tv_sec * ns_per_s + ts.tv_nsec); }, Os.macosx, Os.ios => { darwin.c.mach_timebase_info(&self.frequency); self.resolution = @divFloor(self.frequency.numer, self.denom); self.start_time = darwin.c.mach_absolute_time(); }, else => @compileError("Unsupported OS"), } return self; } /// Reads the timer value since start or the last reset in nanoseconds pub fn read(self: &Timer) u64 { var clock = clockNative() - self.start_time; return switch(builtin.os) { Os.windows => @divFloor(clock * ns_per_s, self.frequency), Os.linux => clock, Os.macosx, Os.ios => @divFloor(clock * self.frequency.numer, self.frequency.denom), else => @compileError("Unsupported OS"), }; } /// Resets the timer value to 0/now. pub fn reset(self: &Timer) void { self.start_time = clockNative(); } /// Returns the current value of the timer in nanoseconds, then resets it pub fn lap(self: &Timer) u64 { var now = clockNative(); var lap_time = self.read(); self.start_time = now; return lap_time; } const clockNative = switch(builtin.os) { Os.windows => clockWindows, Os.linux => clockLinux, Os.macosx, Os.ios => clockDarwin, else => @compileError("Unsupported OS"), }; fn clockWindows() u64 { var result: i64 = undefined; var err = windows.QueryPerformanceCounter(&result); debug.assert(err != 0); return u64(result); } fn clockDarwin() u64 { var result: u64 = undefined; darwin.c.mach_absolute_time(&result); return result; } fn clockLinux() u64 { var ts: posix.timespec = undefined; var result = posix.clock_gettime(posix.CLOCK_MONOTONIC, &ts); debug.assert(posix.getErrno(result) == 0); return u64(ts.tv_sec * ns_per_s + ts.tv_nsec); } }; test "os.time.sleep" { sleep(0, 1); } test "os.time.timestamp" { const ns_per_ms = (ns_per_s / ms_per_s); const margin = 50; const time_0 = miliTimestamp(); sleep(0, ns_per_ms); const time_1 = miliTimestamp(); const interval = time_1 - time_0; debug.assert(interval > 0 and interval < margin); } test "os.time.Timer" { const ns_per_ms = (ns_per_s / ms_per_s); const margin = ns_per_ms * 50; var timer = try Timer.start(); sleep(0, 10 * ns_per_ms); const time_0 = timer.read(); debug.assert(time_0 > 0 and time_0 < margin); const time_1 = timer.lap(); debug.assert(time_1 > time_0); timer.reset(); debug.assert(timer.read() < time_1); }