const std = @import("std"); const mem = std.mem; const Allocator = std.mem.Allocator; const ArrayListUnmanaged = std.ArrayListUnmanaged; const Value = @import("value.zig").Value; const Type = @import("type.zig").Type; const TypedValue = @import("TypedValue.zig"); const assert = std.debug.assert; const BigIntConst = std.math.big.int.Const; const BigIntMutable = std.math.big.int.Mutable; const Target = std.Target; const Package = @import("Package.zig"); const link = @import("link.zig"); const ir = @import("ir.zig"); const zir = @import("zir.zig"); const Module = @This(); const Inst = ir.Inst; const Body = ir.Body; const ast = std.zig.ast; const trace = @import("tracy.zig").trace; const liveness = @import("liveness.zig"); const astgen = @import("astgen.zig"); /// General-purpose allocator. Used for both temporary and long-term storage. gpa: *Allocator, /// Pointer to externally managed resource. root_pkg: *Package, /// Module owns this resource. /// The `Scope` is either a `Scope.ZIRModule` or `Scope.File`. root_scope: *Scope, bin_file: *link.File, bin_file_dir: std.fs.Dir, bin_file_path: []const u8, /// It's rare for a decl to be exported, so we save memory by having a sparse map of /// Decl pointers to details about them being exported. /// The Export memory is owned by the `export_owners` table; the slice itself is owned by this table. decl_exports: std.AutoHashMapUnmanaged(*Decl, []*Export) = .{}, /// We track which export is associated with the given symbol name for quick /// detection of symbol collisions. symbol_exports: std.StringHashMapUnmanaged(*Export) = .{}, /// This models the Decls that perform exports, so that `decl_exports` can be updated when a Decl /// is modified. Note that the key of this table is not the Decl being exported, but the Decl that /// is performing the export of another Decl. /// This table owns the Export memory. export_owners: std.AutoHashMapUnmanaged(*Decl, []*Export) = .{}, /// Maps fully qualified namespaced names to the Decl struct for them. decl_table: std.HashMapUnmanaged(Scope.NameHash, *Decl, Scope.name_hash_hash, Scope.name_hash_eql, false) = .{}, optimize_mode: std.builtin.Mode, link_error_flags: link.File.ErrorFlags = .{}, work_queue: std.fifo.LinearFifo(WorkItem, .Dynamic), /// We optimize memory usage for a compilation with no compile errors by storing the /// error messages and mapping outside of `Decl`. /// The ErrorMsg memory is owned by the decl, using Module's allocator. /// Note that a Decl can succeed but the Fn it represents can fail. In this case, /// a Decl can have a failed_decls entry but have analysis status of success. failed_decls: std.AutoHashMapUnmanaged(*Decl, *ErrorMsg) = .{}, /// Using a map here for consistency with the other fields here. /// The ErrorMsg memory is owned by the `Scope`, using Module's allocator. failed_files: std.AutoHashMapUnmanaged(*Scope, *ErrorMsg) = .{}, /// Using a map here for consistency with the other fields here. /// The ErrorMsg memory is owned by the `Export`, using Module's allocator. failed_exports: std.AutoHashMapUnmanaged(*Export, *ErrorMsg) = .{}, /// Incrementing integer used to compare against the corresponding Decl /// field to determine whether a Decl's status applies to an ongoing update, or a /// previous analysis. generation: u32 = 0, next_anon_name_index: usize = 0, /// Candidates for deletion. After a semantic analysis update completes, this list /// contains Decls that need to be deleted if they end up having no references to them. deletion_set: std.ArrayListUnmanaged(*Decl) = .{}, keep_source_files_loaded: bool, pub const InnerError = error{ OutOfMemory, AnalysisFail }; const WorkItem = union(enum) { /// Write the machine code for a Decl to the output file. codegen_decl: *Decl, /// The Decl needs to be analyzed and possibly export itself. /// It may have already be analyzed, or it may have been determined /// to be outdated; in this case perform semantic analysis again. analyze_decl: *Decl, }; pub const Export = struct { options: std.builtin.ExportOptions, /// Byte offset into the file that contains the export directive. src: usize, /// Represents the position of the export, if any, in the output file. link: link.File.Elf.Export, /// The Decl that performs the export. Note that this is *not* the Decl being exported. owner_decl: *Decl, /// The Decl being exported. Note this is *not* the Decl performing the export. exported_decl: *Decl, status: enum { in_progress, failed, /// Indicates that the failure was due to a temporary issue, such as an I/O error /// when writing to the output file. Retrying the export may succeed. failed_retryable, complete, }, }; pub const Decl = struct { /// This name is relative to the containing namespace of the decl. It uses a null-termination /// to save bytes, since there can be a lot of decls in a compilation. The null byte is not allowed /// in symbol names, because executable file formats use null-terminated strings for symbol names. /// All Decls have names, even values that are not bound to a zig namespace. This is necessary for /// mapping them to an address in the output file. /// Memory owned by this decl, using Module's allocator. name: [*:0]const u8, /// The direct parent container of the Decl. This is either a `Scope.File` or `Scope.ZIRModule`. /// Reference to externally owned memory. scope: *Scope, /// The AST Node decl index or ZIR Inst index that contains this declaration. /// Must be recomputed when the corresponding source file is modified. src_index: usize, /// The most recent value of the Decl after a successful semantic analysis. typed_value: union(enum) { never_succeeded: void, most_recent: TypedValue.Managed, }, /// Represents the "shallow" analysis status. For example, for decls that are functions, /// the function type is analyzed with this set to `in_progress`, however, the semantic /// analysis of the function body is performed with this value set to `success`. Functions /// have their own analysis status field. analysis: enum { /// This Decl corresponds to an AST Node that has not been referenced yet, and therefore /// because of Zig's lazy declaration analysis, it will remain unanalyzed until referenced. unreferenced, /// Semantic analysis for this Decl is running right now. This state detects dependency loops. in_progress, /// This Decl might be OK but it depends on another one which did not successfully complete /// semantic analysis. dependency_failure, /// Semantic analysis failure. /// There will be a corresponding ErrorMsg in Module.failed_decls. sema_failure, /// There will be a corresponding ErrorMsg in Module.failed_decls. /// This indicates the failure was something like running out of disk space, /// and attempting semantic analysis again may succeed. sema_failure_retryable, /// There will be a corresponding ErrorMsg in Module.failed_decls. codegen_failure, /// There will be a corresponding ErrorMsg in Module.failed_decls. /// This indicates the failure was something like running out of disk space, /// and attempting codegen again may succeed. codegen_failure_retryable, /// Everything is done. During an update, this Decl may be out of date, depending /// on its dependencies. The `generation` field can be used to determine if this /// completion status occurred before or after a given update. complete, /// A Module update is in progress, and this Decl has been flagged as being known /// to require re-analysis. outdated, }, /// This flag is set when this Decl is added to a check_for_deletion set, and cleared /// when removed. deletion_flag: bool, /// An integer that can be checked against the corresponding incrementing /// generation field of Module. This is used to determine whether `complete` status /// represents pre- or post- re-analysis. generation: u32, /// Represents the position of the code in the output file. /// This is populated regardless of semantic analysis and code generation. link: link.File.Elf.TextBlock = link.File.Elf.TextBlock.empty, contents_hash: std.zig.SrcHash, /// The shallow set of other decls whose typed_value could possibly change if this Decl's /// typed_value is modified. dependants: DepsTable = .{}, /// The shallow set of other decls whose typed_value changing indicates that this Decl's /// typed_value may need to be regenerated. dependencies: DepsTable = .{}, /// The reason this is not `std.AutoHashMapUnmanaged` is a workaround for /// stage1 compiler giving me: `error: struct 'Module.Decl' depends on itself` pub const DepsTable = std.HashMapUnmanaged(*Decl, void, std.hash_map.getAutoHashFn(*Decl), std.hash_map.getAutoEqlFn(*Decl), false); pub fn destroy(self: *Decl, gpa: *Allocator) void { gpa.free(mem.spanZ(self.name)); if (self.typedValueManaged()) |tvm| { tvm.deinit(gpa); } self.dependants.deinit(gpa); self.dependencies.deinit(gpa); gpa.destroy(self); } pub fn src(self: Decl) usize { switch (self.scope.tag) { .file => { const file = @fieldParentPtr(Scope.File, "base", self.scope); const tree = file.contents.tree; const decl_node = tree.root_node.decls()[self.src_index]; return tree.token_locs[decl_node.firstToken()].start; }, .zir_module => { const zir_module = @fieldParentPtr(Scope.ZIRModule, "base", self.scope); const module = zir_module.contents.module; const src_decl = module.decls[self.src_index]; return src_decl.inst.src; }, .block => unreachable, .gen_zir => unreachable, .local_var => unreachable, .decl => unreachable, } } pub fn fullyQualifiedNameHash(self: Decl) Scope.NameHash { return self.scope.fullyQualifiedNameHash(mem.spanZ(self.name)); } pub fn typedValue(self: *Decl) error{AnalysisFail}!TypedValue { const tvm = self.typedValueManaged() orelse return error.AnalysisFail; return tvm.typed_value; } pub fn value(self: *Decl) error{AnalysisFail}!Value { return (try self.typedValue()).val; } pub fn dump(self: *Decl) void { const loc = std.zig.findLineColumn(self.scope.source.bytes, self.src); std.debug.warn("{}:{}:{} name={} status={}", .{ self.scope.sub_file_path, loc.line + 1, loc.column + 1, mem.spanZ(self.name), @tagName(self.analysis), }); if (self.typedValueManaged()) |tvm| { std.debug.warn(" ty={} val={}", .{ tvm.typed_value.ty, tvm.typed_value.val }); } std.debug.warn("\n", .{}); } fn typedValueManaged(self: *Decl) ?*TypedValue.Managed { switch (self.typed_value) { .most_recent => |*x| return x, .never_succeeded => return null, } } fn removeDependant(self: *Decl, other: *Decl) void { self.dependants.removeAssertDiscard(other); } fn removeDependency(self: *Decl, other: *Decl) void { self.dependencies.removeAssertDiscard(other); } }; /// Fn struct memory is owned by the Decl's TypedValue.Managed arena allocator. pub const Fn = struct { /// This memory owned by the Decl's TypedValue.Managed arena allocator. analysis: union(enum) { queued: *ZIR, in_progress, /// There will be a corresponding ErrorMsg in Module.failed_decls sema_failure, /// This Fn might be OK but it depends on another Decl which did not successfully complete /// semantic analysis. dependency_failure, success: Body, }, owner_decl: *Decl, /// This memory is temporary and points to stack memory for the duration /// of Fn analysis. pub const Analysis = struct { inner_block: Scope.Block, }; /// Contains un-analyzed ZIR instructions generated from Zig source AST. pub const ZIR = struct { body: zir.Module.Body, arena: std.heap.ArenaAllocator.State, }; }; pub const Scope = struct { tag: Tag, pub const NameHash = [16]u8; pub fn cast(base: *Scope, comptime T: type) ?*T { if (base.tag != T.base_tag) return null; return @fieldParentPtr(T, "base", base); } /// Asserts the scope has a parent which is a DeclAnalysis and /// returns the arena Allocator. pub fn arena(self: *Scope) *Allocator { switch (self.tag) { .block => return self.cast(Block).?.arena, .decl => return &self.cast(DeclAnalysis).?.arena.allocator, .gen_zir => return self.cast(GenZIR).?.arena, .local_var => return self.cast(LocalVar).?.gen_zir.arena, .zir_module => return &self.cast(ZIRModule).?.contents.module.arena.allocator, .file => unreachable, } } /// If the scope has a parent which is a `DeclAnalysis`, /// returns the `Decl`, otherwise returns `null`. pub fn decl(self: *Scope) ?*Decl { return switch (self.tag) { .block => self.cast(Block).?.decl, .gen_zir => self.cast(GenZIR).?.decl, .local_var => return self.cast(LocalVar).?.gen_zir.decl, .decl => self.cast(DeclAnalysis).?.decl, .zir_module => null, .file => null, }; } /// Asserts the scope has a parent which is a ZIRModule or File and /// returns it. pub fn namespace(self: *Scope) *Scope { switch (self.tag) { .block => return self.cast(Block).?.decl.scope, .gen_zir => return self.cast(GenZIR).?.decl.scope, .local_var => return self.cast(LocalVar).?.gen_zir.decl.scope, .decl => return self.cast(DeclAnalysis).?.decl.scope, .zir_module, .file => return self, } } /// Must generate unique bytes with no collisions with other decls. /// The point of hashing here is only to limit the number of bytes of /// the unique identifier to a fixed size (16 bytes). pub fn fullyQualifiedNameHash(self: *Scope, name: []const u8) NameHash { switch (self.tag) { .block => unreachable, .gen_zir => unreachable, .local_var => unreachable, .decl => unreachable, .zir_module => return self.cast(ZIRModule).?.fullyQualifiedNameHash(name), .file => return self.cast(File).?.fullyQualifiedNameHash(name), } } /// Asserts the scope is a child of a File and has an AST tree and returns the tree. pub fn tree(self: *Scope) *ast.Tree { switch (self.tag) { .file => return self.cast(File).?.contents.tree, .zir_module => unreachable, .decl => return self.cast(DeclAnalysis).?.decl.scope.cast(File).?.contents.tree, .block => return self.cast(Block).?.decl.scope.cast(File).?.contents.tree, .gen_zir => return self.cast(GenZIR).?.decl.scope.cast(File).?.contents.tree, .local_var => return self.cast(LocalVar).?.gen_zir.decl.scope.cast(File).?.contents.tree, } } /// Asserts the scope is a child of a `GenZIR` and returns it. pub fn getGenZIR(self: *Scope) *GenZIR { return switch (self.tag) { .block => unreachable, .gen_zir => self.cast(GenZIR).?, .local_var => return self.cast(LocalVar).?.gen_zir, .decl => unreachable, .zir_module => unreachable, .file => unreachable, }; } pub fn dumpInst(self: *Scope, inst: *Inst) void { const zir_module = self.namespace(); const loc = std.zig.findLineColumn(zir_module.source.bytes, inst.src); std.debug.warn("{}:{}:{}: {}: ty={}\n", .{ zir_module.sub_file_path, loc.line + 1, loc.column + 1, @tagName(inst.tag), inst.ty, }); } /// Asserts the scope has a parent which is a ZIRModule or File and /// returns the sub_file_path field. pub fn subFilePath(base: *Scope) []const u8 { switch (base.tag) { .file => return @fieldParentPtr(File, "base", base).sub_file_path, .zir_module => return @fieldParentPtr(ZIRModule, "base", base).sub_file_path, .block => unreachable, .gen_zir => unreachable, .local_var => unreachable, .decl => unreachable, } } pub fn unload(base: *Scope, gpa: *Allocator) void { switch (base.tag) { .file => return @fieldParentPtr(File, "base", base).unload(gpa), .zir_module => return @fieldParentPtr(ZIRModule, "base", base).unload(gpa), .block => unreachable, .gen_zir => unreachable, .local_var => unreachable, .decl => unreachable, } } pub fn getSource(base: *Scope, module: *Module) ![:0]const u8 { switch (base.tag) { .file => return @fieldParentPtr(File, "base", base).getSource(module), .zir_module => return @fieldParentPtr(ZIRModule, "base", base).getSource(module), .gen_zir => unreachable, .local_var => unreachable, .block => unreachable, .decl => unreachable, } } /// Asserts the scope is a namespace Scope and removes the Decl from the namespace. pub fn removeDecl(base: *Scope, child: *Decl) void { switch (base.tag) { .file => return @fieldParentPtr(File, "base", base).removeDecl(child), .zir_module => return @fieldParentPtr(ZIRModule, "base", base).removeDecl(child), .block => unreachable, .gen_zir => unreachable, .local_var => unreachable, .decl => unreachable, } } /// Asserts the scope is a File or ZIRModule and deinitializes it, then deallocates it. pub fn destroy(base: *Scope, gpa: *Allocator) void { switch (base.tag) { .file => { const scope_file = @fieldParentPtr(File, "base", base); scope_file.deinit(gpa); gpa.destroy(scope_file); }, .zir_module => { const scope_zir_module = @fieldParentPtr(ZIRModule, "base", base); scope_zir_module.deinit(gpa); gpa.destroy(scope_zir_module); }, .block => unreachable, .gen_zir => unreachable, .local_var => unreachable, .decl => unreachable, } } fn name_hash_hash(x: NameHash) u32 { return @truncate(u32, @bitCast(u128, x)); } fn name_hash_eql(a: NameHash, b: NameHash) bool { return @bitCast(u128, a) == @bitCast(u128, b); } pub const Tag = enum { /// .zir source code. zir_module, /// .zig source code. file, block, decl, gen_zir, local_var, }; pub const File = struct { pub const base_tag: Tag = .file; base: Scope = Scope{ .tag = base_tag }, /// Relative to the owning package's root_src_dir. /// Reference to external memory, not owned by File. sub_file_path: []const u8, source: union(enum) { unloaded: void, bytes: [:0]const u8, }, contents: union { not_available: void, tree: *ast.Tree, }, status: enum { never_loaded, unloaded_success, unloaded_parse_failure, loaded_success, }, /// Direct children of the file. decls: ArrayListUnmanaged(*Decl), pub fn unload(self: *File, gpa: *Allocator) void { switch (self.status) { .never_loaded, .unloaded_parse_failure, .unloaded_success, => {}, .loaded_success => { self.contents.tree.deinit(); self.status = .unloaded_success; }, } switch (self.source) { .bytes => |bytes| { gpa.free(bytes); self.source = .{ .unloaded = {} }; }, .unloaded => {}, } } pub fn deinit(self: *File, gpa: *Allocator) void { self.decls.deinit(gpa); self.unload(gpa); self.* = undefined; } pub fn removeDecl(self: *File, child: *Decl) void { for (self.decls.items) |item, i| { if (item == child) { _ = self.decls.swapRemove(i); return; } } } pub fn dumpSrc(self: *File, src: usize) void { const loc = std.zig.findLineColumn(self.source.bytes, src); std.debug.warn("{}:{}:{}\n", .{ self.sub_file_path, loc.line + 1, loc.column + 1 }); } pub fn getSource(self: *File, module: *Module) ![:0]const u8 { switch (self.source) { .unloaded => { const source = try module.root_pkg.root_src_dir.readFileAllocOptions( module.gpa, self.sub_file_path, std.math.maxInt(u32), 1, 0, ); self.source = .{ .bytes = source }; return source; }, .bytes => |bytes| return bytes, } } pub fn fullyQualifiedNameHash(self: *File, name: []const u8) NameHash { // We don't have struct scopes yet so this is currently just a simple name hash. return std.zig.hashSrc(name); } }; pub const ZIRModule = struct { pub const base_tag: Tag = .zir_module; base: Scope = Scope{ .tag = base_tag }, /// Relative to the owning package's root_src_dir. /// Reference to external memory, not owned by ZIRModule. sub_file_path: []const u8, source: union(enum) { unloaded: void, bytes: [:0]const u8, }, contents: union { not_available: void, module: *zir.Module, }, status: enum { never_loaded, unloaded_success, unloaded_parse_failure, unloaded_sema_failure, loaded_sema_failure, loaded_success, }, /// Even though .zir files only have 1 module, this set is still needed /// because of anonymous Decls, which can exist in the global set, but /// not this one. decls: ArrayListUnmanaged(*Decl), pub fn unload(self: *ZIRModule, gpa: *Allocator) void { switch (self.status) { .never_loaded, .unloaded_parse_failure, .unloaded_sema_failure, .unloaded_success, => {}, .loaded_success => { self.contents.module.deinit(gpa); gpa.destroy(self.contents.module); self.contents = .{ .not_available = {} }; self.status = .unloaded_success; }, .loaded_sema_failure => { self.contents.module.deinit(gpa); gpa.destroy(self.contents.module); self.contents = .{ .not_available = {} }; self.status = .unloaded_sema_failure; }, } switch (self.source) { .bytes => |bytes| { gpa.free(bytes); self.source = .{ .unloaded = {} }; }, .unloaded => {}, } } pub fn deinit(self: *ZIRModule, gpa: *Allocator) void { self.decls.deinit(gpa); self.unload(gpa); self.* = undefined; } pub fn removeDecl(self: *ZIRModule, child: *Decl) void { for (self.decls.items) |item, i| { if (item == child) { _ = self.decls.swapRemove(i); return; } } } pub fn dumpSrc(self: *ZIRModule, src: usize) void { const loc = std.zig.findLineColumn(self.source.bytes, src); std.debug.warn("{}:{}:{}\n", .{ self.sub_file_path, loc.line + 1, loc.column + 1 }); } pub fn getSource(self: *ZIRModule, module: *Module) ![:0]const u8 { switch (self.source) { .unloaded => { const source = try module.root_pkg.root_src_dir.readFileAllocOptions( module.gpa, self.sub_file_path, std.math.maxInt(u32), 1, 0, ); self.source = .{ .bytes = source }; return source; }, .bytes => |bytes| return bytes, } } pub fn fullyQualifiedNameHash(self: *ZIRModule, name: []const u8) NameHash { // ZIR modules only have 1 file with all decls global in the same namespace. return std.zig.hashSrc(name); } }; /// This is a temporary structure, references to it are valid only /// during semantic analysis of the block. pub const Block = struct { pub const base_tag: Tag = .block; base: Scope = Scope{ .tag = base_tag }, parent: ?*Block, func: ?*Fn, decl: *Decl, instructions: ArrayListUnmanaged(*Inst), /// Points to the arena allocator of DeclAnalysis arena: *Allocator, label: ?Label = null, pub const Label = struct { zir_block: *zir.Inst.Block, results: ArrayListUnmanaged(*Inst), block_inst: *Inst.Block, }; }; /// This is a temporary structure, references to it are valid only /// during semantic analysis of the decl. pub const DeclAnalysis = struct { pub const base_tag: Tag = .decl; base: Scope = Scope{ .tag = base_tag }, decl: *Decl, arena: std.heap.ArenaAllocator, }; /// This is a temporary structure, references to it are valid only /// during semantic analysis of the decl. pub const GenZIR = struct { pub const base_tag: Tag = .gen_zir; base: Scope = Scope{ .tag = base_tag }, /// Parents can be: `GenZIR`, `ZIRModule`, `File` parent: *Scope, decl: *Decl, arena: *Allocator, /// The first N instructions in a function body ZIR are arg instructions. instructions: std.ArrayListUnmanaged(*zir.Inst) = .{}, }; /// This structure lives as long as the AST generation of the Block /// node that contains the variable. pub const LocalVar = struct { pub const base_tag: Tag = .local_var; base: Scope = Scope{ .tag = base_tag }, /// Parents can be: `LocalVar`, `GenZIR`. parent: *Scope, gen_zir: *GenZIR, name: []const u8, inst: *zir.Inst, }; }; pub const AllErrors = struct { arena: std.heap.ArenaAllocator.State, list: []const Message, pub const Message = struct { src_path: []const u8, line: usize, column: usize, byte_offset: usize, msg: []const u8, }; pub fn deinit(self: *AllErrors, gpa: *Allocator) void { self.arena.promote(gpa).deinit(); } fn add( arena: *std.heap.ArenaAllocator, errors: *std.ArrayList(Message), sub_file_path: []const u8, source: []const u8, simple_err_msg: ErrorMsg, ) !void { const loc = std.zig.findLineColumn(source, simple_err_msg.byte_offset); try errors.append(.{ .src_path = try arena.allocator.dupe(u8, sub_file_path), .msg = try arena.allocator.dupe(u8, simple_err_msg.msg), .byte_offset = simple_err_msg.byte_offset, .line = loc.line, .column = loc.column, }); } }; pub const InitOptions = struct { target: std.Target, root_pkg: *Package, output_mode: std.builtin.OutputMode, bin_file_dir: ?std.fs.Dir = null, bin_file_path: []const u8, link_mode: ?std.builtin.LinkMode = null, object_format: ?std.builtin.ObjectFormat = null, optimize_mode: std.builtin.Mode = .Debug, keep_source_files_loaded: bool = false, }; pub fn init(gpa: *Allocator, options: InitOptions) !Module { const bin_file_dir = options.bin_file_dir orelse std.fs.cwd(); const bin_file = try link.openBinFilePath(gpa, bin_file_dir, options.bin_file_path, .{ .target = options.target, .output_mode = options.output_mode, .link_mode = options.link_mode orelse .Static, .object_format = options.object_format orelse options.target.getObjectFormat(), }); errdefer bin_file.destroy(); const root_scope = blk: { if (mem.endsWith(u8, options.root_pkg.root_src_path, ".zig")) { const root_scope = try gpa.create(Scope.File); root_scope.* = .{ .sub_file_path = options.root_pkg.root_src_path, .source = .{ .unloaded = {} }, .contents = .{ .not_available = {} }, .status = .never_loaded, .decls = .{}, }; break :blk &root_scope.base; } else if (mem.endsWith(u8, options.root_pkg.root_src_path, ".zir")) { const root_scope = try gpa.create(Scope.ZIRModule); root_scope.* = .{ .sub_file_path = options.root_pkg.root_src_path, .source = .{ .unloaded = {} }, .contents = .{ .not_available = {} }, .status = .never_loaded, .decls = .{}, }; break :blk &root_scope.base; } else { unreachable; } }; return Module{ .gpa = gpa, .root_pkg = options.root_pkg, .root_scope = root_scope, .bin_file_dir = bin_file_dir, .bin_file_path = options.bin_file_path, .bin_file = bin_file, .optimize_mode = options.optimize_mode, .work_queue = std.fifo.LinearFifo(WorkItem, .Dynamic).init(gpa), .keep_source_files_loaded = options.keep_source_files_loaded, }; } pub fn deinit(self: *Module) void { self.bin_file.destroy(); const gpa = self.gpa; self.deletion_set.deinit(gpa); self.work_queue.deinit(); for (self.decl_table.items()) |entry| { entry.value.destroy(gpa); } self.decl_table.deinit(gpa); for (self.failed_decls.items()) |entry| { entry.value.destroy(gpa); } self.failed_decls.deinit(gpa); for (self.failed_files.items()) |entry| { entry.value.destroy(gpa); } self.failed_files.deinit(gpa); for (self.failed_exports.items()) |entry| { entry.value.destroy(gpa); } self.failed_exports.deinit(gpa); for (self.decl_exports.items()) |entry| { const export_list = entry.value; gpa.free(export_list); } self.decl_exports.deinit(gpa); for (self.export_owners.items()) |entry| { freeExportList(gpa, entry.value); } self.export_owners.deinit(gpa); self.symbol_exports.deinit(gpa); self.root_scope.destroy(gpa); self.* = undefined; } fn freeExportList(gpa: *Allocator, export_list: []*Export) void { for (export_list) |exp| { gpa.destroy(exp); } gpa.free(export_list); } pub fn target(self: Module) std.Target { return self.bin_file.options().target; } /// Detect changes to source files, perform semantic analysis, and update the output files. pub fn update(self: *Module) !void { const tracy = trace(@src()); defer tracy.end(); self.generation += 1; // TODO Use the cache hash file system to detect which source files changed. // Until then we simulate a full cache miss. Source files could have been loaded for any reason; // to force a refresh we unload now. if (self.root_scope.cast(Scope.File)) |zig_file| { zig_file.unload(self.gpa); self.analyzeRootSrcFile(zig_file) catch |err| switch (err) { error.AnalysisFail => { assert(self.totalErrorCount() != 0); }, else => |e| return e, }; } else if (self.root_scope.cast(Scope.ZIRModule)) |zir_module| { zir_module.unload(self.gpa); self.analyzeRootZIRModule(zir_module) catch |err| switch (err) { error.AnalysisFail => { assert(self.totalErrorCount() != 0); }, else => |e| return e, }; } try self.performAllTheWork(); // Process the deletion set. while (self.deletion_set.popOrNull()) |decl| { if (decl.dependants.items().len != 0) { decl.deletion_flag = false; continue; } try self.deleteDecl(decl); } if (self.totalErrorCount() == 0) { // This is needed before reading the error flags. try self.bin_file.flush(); } self.link_error_flags = self.bin_file.errorFlags(); std.log.debug(.module, "link_error_flags: {}\n", .{self.link_error_flags}); // If there are any errors, we anticipate the source files being loaded // to report error messages. Otherwise we unload all source files to save memory. if (self.totalErrorCount() == 0 and !self.keep_source_files_loaded) { self.root_scope.unload(self.gpa); } } /// Having the file open for writing is problematic as far as executing the /// binary is concerned. This will remove the write flag, or close the file, /// or whatever is needed so that it can be executed. /// After this, one must call` makeFileWritable` before calling `update`. pub fn makeBinFileExecutable(self: *Module) !void { return self.bin_file.makeExecutable(); } pub fn makeBinFileWritable(self: *Module) !void { return self.bin_file.makeWritable(self.bin_file_dir, self.bin_file_path); } pub fn totalErrorCount(self: *Module) usize { const total = self.failed_decls.items().len + self.failed_files.items().len + self.failed_exports.items().len; return if (total == 0) @boolToInt(self.link_error_flags.no_entry_point_found) else total; } pub fn getAllErrorsAlloc(self: *Module) !AllErrors { var arena = std.heap.ArenaAllocator.init(self.gpa); errdefer arena.deinit(); var errors = std.ArrayList(AllErrors.Message).init(self.gpa); defer errors.deinit(); for (self.failed_files.items()) |entry| { const scope = entry.key; const err_msg = entry.value; const source = try scope.getSource(self); try AllErrors.add(&arena, &errors, scope.subFilePath(), source, err_msg.*); } for (self.failed_decls.items()) |entry| { const decl = entry.key; const err_msg = entry.value; const source = try decl.scope.getSource(self); try AllErrors.add(&arena, &errors, decl.scope.subFilePath(), source, err_msg.*); } for (self.failed_exports.items()) |entry| { const decl = entry.key.owner_decl; const err_msg = entry.value; const source = try decl.scope.getSource(self); try AllErrors.add(&arena, &errors, decl.scope.subFilePath(), source, err_msg.*); } if (errors.items.len == 0 and self.link_error_flags.no_entry_point_found) { try errors.append(.{ .src_path = self.root_pkg.root_src_path, .line = 0, .column = 0, .byte_offset = 0, .msg = try std.fmt.allocPrint(&arena.allocator, "no entry point found", .{}), }); } assert(errors.items.len == self.totalErrorCount()); return AllErrors{ .list = try arena.allocator.dupe(AllErrors.Message, errors.items), .arena = arena.state, }; } pub fn performAllTheWork(self: *Module) error{OutOfMemory}!void { while (self.work_queue.readItem()) |work_item| switch (work_item) { .codegen_decl => |decl| switch (decl.analysis) { .unreferenced => unreachable, .in_progress => unreachable, .outdated => unreachable, .sema_failure, .codegen_failure, .dependency_failure, .sema_failure_retryable, => continue, .complete, .codegen_failure_retryable => { if (decl.typed_value.most_recent.typed_value.val.cast(Value.Payload.Function)) |payload| { switch (payload.func.analysis) { .queued => self.analyzeFnBody(decl, payload.func) catch |err| switch (err) { error.AnalysisFail => { assert(payload.func.analysis != .in_progress); continue; }, error.OutOfMemory => return error.OutOfMemory, }, .in_progress => unreachable, .sema_failure, .dependency_failure => continue, .success => {}, } // Here we tack on additional allocations to the Decl's arena. The allocations are // lifetime annotations in the ZIR. var decl_arena = decl.typed_value.most_recent.arena.?.promote(self.gpa); defer decl.typed_value.most_recent.arena.?.* = decl_arena.state; std.log.debug(.module, "analyze liveness of {}\n", .{decl.name}); try liveness.analyze(self.gpa, &decl_arena.allocator, payload.func.analysis.success); } assert(decl.typed_value.most_recent.typed_value.ty.hasCodeGenBits()); self.bin_file.updateDecl(self, decl) catch |err| switch (err) { error.OutOfMemory => return error.OutOfMemory, error.AnalysisFail => { decl.analysis = .dependency_failure; }, error.CGenFailure => { // Error is handled by CBE, don't try adding it again }, else => { try self.failed_decls.ensureCapacity(self.gpa, self.failed_decls.items().len + 1); const result = self.failed_decls.getOrPutAssumeCapacity(decl); if (result.found_existing) { std.debug.panic("Internal error: attempted to override error '{}' with 'unable to codegen: {}'", .{ result.entry.value.msg, @errorName(err) }); } else { result.entry.value = try ErrorMsg.create( self.gpa, decl.src(), "unable to codegen: {}", .{@errorName(err)}, ); } decl.analysis = .codegen_failure_retryable; }, }; }, }, .analyze_decl => |decl| { self.ensureDeclAnalyzed(decl) catch |err| switch (err) { error.OutOfMemory => return error.OutOfMemory, error.AnalysisFail => continue, }; }, }; } fn ensureDeclAnalyzed(self: *Module, decl: *Decl) InnerError!void { const tracy = trace(@src()); defer tracy.end(); const subsequent_analysis = switch (decl.analysis) { .in_progress => unreachable, .sema_failure, .sema_failure_retryable, .codegen_failure, .dependency_failure, .codegen_failure_retryable, => return error.AnalysisFail, .complete, .outdated => blk: { if (decl.generation == self.generation) { assert(decl.analysis == .complete); return; } //std.debug.warn("re-analyzing {}\n", .{decl.name}); // The exports this Decl performs will be re-discovered, so we remove them here // prior to re-analysis. self.deleteDeclExports(decl); // Dependencies will be re-discovered, so we remove them here prior to re-analysis. for (decl.dependencies.items()) |entry| { const dep = entry.key; dep.removeDependant(decl); if (dep.dependants.items().len == 0 and !dep.deletion_flag) { // We don't perform a deletion here, because this Decl or another one // may end up referencing it before the update is complete. dep.deletion_flag = true; try self.deletion_set.append(self.gpa, dep); } } decl.dependencies.clearRetainingCapacity(); break :blk true; }, .unreferenced => false, }; const type_changed = if (self.root_scope.cast(Scope.ZIRModule)) |zir_module| try self.analyzeZirDecl(decl, zir_module.contents.module.decls[decl.src_index]) else self.astGenAndAnalyzeDecl(decl) catch |err| switch (err) { error.OutOfMemory => return error.OutOfMemory, error.AnalysisFail => return error.AnalysisFail, else => { try self.failed_decls.ensureCapacity(self.gpa, self.failed_decls.items().len + 1); self.failed_decls.putAssumeCapacityNoClobber(decl, try ErrorMsg.create( self.gpa, decl.src(), "unable to analyze: {}", .{@errorName(err)}, )); decl.analysis = .sema_failure_retryable; return error.AnalysisFail; }, }; if (subsequent_analysis) { // We may need to chase the dependants and re-analyze them. // However, if the decl is a function, and the type is the same, we do not need to. if (type_changed or decl.typed_value.most_recent.typed_value.val.tag() != .function) { for (decl.dependants.items()) |entry| { const dep = entry.key; switch (dep.analysis) { .unreferenced => unreachable, .in_progress => unreachable, .outdated => continue, // already queued for update .dependency_failure, .sema_failure, .sema_failure_retryable, .codegen_failure, .codegen_failure_retryable, .complete, => if (dep.generation != self.generation) { try self.markOutdatedDecl(dep); }, } } } } } fn astGenAndAnalyzeDecl(self: *Module, decl: *Decl) !bool { const tracy = trace(@src()); defer tracy.end(); const file_scope = decl.scope.cast(Scope.File).?; const tree = try self.getAstTree(file_scope); const ast_node = tree.root_node.decls()[decl.src_index]; switch (ast_node.tag) { .FnProto => { const fn_proto = @fieldParentPtr(ast.Node.FnProto, "base", ast_node); decl.analysis = .in_progress; // This arena allocator's memory is discarded at the end of this function. It is used // to determine the type of the function, and hence the type of the decl, which is needed // to complete the Decl analysis. var fn_type_scope_arena = std.heap.ArenaAllocator.init(self.gpa); defer fn_type_scope_arena.deinit(); var fn_type_scope: Scope.GenZIR = .{ .decl = decl, .arena = &fn_type_scope_arena.allocator, .parent = decl.scope, }; defer fn_type_scope.instructions.deinit(self.gpa); const body_node = fn_proto.getTrailer("body_node") orelse return self.failTok(&fn_type_scope.base, fn_proto.fn_token, "TODO implement extern functions", .{}); const param_decls = fn_proto.params(); const param_types = try fn_type_scope.arena.alloc(*zir.Inst, param_decls.len); for (param_decls) |param_decl, i| { const param_type_node = switch (param_decl.param_type) { .any_type => |node| return self.failNode(&fn_type_scope.base, node, "TODO implement anytype parameter", .{}), .type_expr => |node| node, }; param_types[i] = try astgen.expr(self, &fn_type_scope.base, param_type_node); } if (fn_proto.getTrailer("var_args_token")) |var_args_token| { return self.failTok(&fn_type_scope.base, var_args_token, "TODO implement var args", .{}); } if (fn_proto.getTrailer("lib_name")) |lib_name| { return self.failNode(&fn_type_scope.base, lib_name, "TODO implement function library name", .{}); } if (fn_proto.getTrailer("align_expr")) |align_expr| { return self.failNode(&fn_type_scope.base, align_expr, "TODO implement function align expression", .{}); } if (fn_proto.getTrailer("section_expr")) |sect_expr| { return self.failNode(&fn_type_scope.base, sect_expr, "TODO implement function section expression", .{}); } if (fn_proto.getTrailer("callconv_expr")) |callconv_expr| { return self.failNode( &fn_type_scope.base, callconv_expr, "TODO implement function calling convention expression", .{}, ); } const return_type_expr = switch (fn_proto.return_type) { .Explicit => |node| node, .InferErrorSet => |node| return self.failNode(&fn_type_scope.base, node, "TODO implement inferred error sets", .{}), .Invalid => |tok| return self.failTok(&fn_type_scope.base, tok, "unable to parse return type", .{}), }; const return_type_inst = try astgen.expr(self, &fn_type_scope.base, return_type_expr); const fn_src = tree.token_locs[fn_proto.fn_token].start; const fn_type_inst = try self.addZIRInst(&fn_type_scope.base, fn_src, zir.Inst.FnType, .{ .return_type = return_type_inst, .param_types = param_types, }, .{}); _ = try self.addZIRUnOp(&fn_type_scope.base, fn_src, .@"return", fn_type_inst); // We need the memory for the Type to go into the arena for the Decl var decl_arena = std.heap.ArenaAllocator.init(self.gpa); errdefer decl_arena.deinit(); const decl_arena_state = try decl_arena.allocator.create(std.heap.ArenaAllocator.State); var block_scope: Scope.Block = .{ .parent = null, .func = null, .decl = decl, .instructions = .{}, .arena = &decl_arena.allocator, }; defer block_scope.instructions.deinit(self.gpa); const fn_type = try self.analyzeBodyValueAsType(&block_scope, .{ .instructions = fn_type_scope.instructions.items, }); const new_func = try decl_arena.allocator.create(Fn); const fn_payload = try decl_arena.allocator.create(Value.Payload.Function); const fn_zir = blk: { // This scope's arena memory is discarded after the ZIR generation // pass completes, and semantic analysis of it completes. var gen_scope_arena = std.heap.ArenaAllocator.init(self.gpa); errdefer gen_scope_arena.deinit(); var gen_scope: Scope.GenZIR = .{ .decl = decl, .arena = &gen_scope_arena.allocator, .parent = decl.scope, }; defer gen_scope.instructions.deinit(self.gpa); // We need an instruction for each parameter, and they must be first in the body. try gen_scope.instructions.resize(self.gpa, fn_proto.params_len); var params_scope = &gen_scope.base; for (fn_proto.params()) |param, i| { const name_token = param.name_token.?; const src = tree.token_locs[name_token].start; const param_name = tree.tokenSlice(name_token); const arg = try gen_scope_arena.allocator.create(zir.Inst.NoOp); arg.* = .{ .base = .{ .tag = .arg, .src = src, }, .positionals = .{}, .kw_args = .{}, }; gen_scope.instructions.items[i] = &arg.base; const sub_scope = try gen_scope_arena.allocator.create(Scope.LocalVar); sub_scope.* = .{ .parent = params_scope, .gen_zir = &gen_scope, .name = param_name, .inst = &arg.base, }; params_scope = &sub_scope.base; } const body_block = body_node.cast(ast.Node.Block).?; try astgen.blockExpr(self, params_scope, body_block); if (!fn_type.fnReturnType().isNoReturn() and (gen_scope.instructions.items.len == 0 or !gen_scope.instructions.items[gen_scope.instructions.items.len - 1].tag.isNoReturn())) { const src = tree.token_locs[body_block.rbrace].start; _ = try self.addZIRNoOp(&gen_scope.base, src, .returnvoid); } const fn_zir = try gen_scope_arena.allocator.create(Fn.ZIR); fn_zir.* = .{ .body = .{ .instructions = try gen_scope.arena.dupe(*zir.Inst, gen_scope.instructions.items), }, .arena = gen_scope_arena.state, }; break :blk fn_zir; }; new_func.* = .{ .analysis = .{ .queued = fn_zir }, .owner_decl = decl, }; fn_payload.* = .{ .func = new_func }; var prev_type_has_bits = false; var type_changed = true; if (decl.typedValueManaged()) |tvm| { prev_type_has_bits = tvm.typed_value.ty.hasCodeGenBits(); type_changed = !tvm.typed_value.ty.eql(fn_type); tvm.deinit(self.gpa); } decl_arena_state.* = decl_arena.state; decl.typed_value = .{ .most_recent = .{ .typed_value = .{ .ty = fn_type, .val = Value.initPayload(&fn_payload.base), }, .arena = decl_arena_state, }, }; decl.analysis = .complete; decl.generation = self.generation; if (fn_type.hasCodeGenBits()) { // We don't fully codegen the decl until later, but we do need to reserve a global // offset table index for it. This allows us to codegen decls out of dependency order, // increasing how many computations can be done in parallel. try self.bin_file.allocateDeclIndexes(decl); try self.work_queue.writeItem(.{ .codegen_decl = decl }); } else if (prev_type_has_bits) { self.bin_file.freeDecl(decl); } if (fn_proto.getTrailer("extern_export_inline_token")) |maybe_export_token| { if (tree.token_ids[maybe_export_token] == .Keyword_export) { const export_src = tree.token_locs[maybe_export_token].start; const name_loc = tree.token_locs[fn_proto.getTrailer("name_token").?]; const name = tree.tokenSliceLoc(name_loc); // The scope needs to have the decl in it. try self.analyzeExport(&block_scope.base, export_src, name, decl); } } return type_changed; }, .VarDecl => @panic("TODO var decl"), .Comptime => @panic("TODO comptime decl"), .Use => @panic("TODO usingnamespace decl"), else => unreachable, } } fn analyzeBodyValueAsType(self: *Module, block_scope: *Scope.Block, body: zir.Module.Body) !Type { try self.analyzeBody(&block_scope.base, body); for (block_scope.instructions.items) |inst| { if (inst.castTag(.ret)) |ret| { const val = try self.resolveConstValue(&block_scope.base, ret.operand); return val.toType(); } else { return self.fail(&block_scope.base, inst.src, "unable to resolve comptime value", .{}); } } unreachable; } fn declareDeclDependency(self: *Module, depender: *Decl, dependee: *Decl) !void { try depender.dependencies.ensureCapacity(self.gpa, depender.dependencies.items().len + 1); try dependee.dependants.ensureCapacity(self.gpa, dependee.dependants.items().len + 1); depender.dependencies.putAssumeCapacity(dependee, {}); dependee.dependants.putAssumeCapacity(depender, {}); } fn getSrcModule(self: *Module, root_scope: *Scope.ZIRModule) !*zir.Module { switch (root_scope.status) { .never_loaded, .unloaded_success => { try self.failed_files.ensureCapacity(self.gpa, self.failed_files.items().len + 1); const source = try root_scope.getSource(self); var keep_zir_module = false; const zir_module = try self.gpa.create(zir.Module); defer if (!keep_zir_module) self.gpa.destroy(zir_module); zir_module.* = try zir.parse(self.gpa, source); defer if (!keep_zir_module) zir_module.deinit(self.gpa); if (zir_module.error_msg) |src_err_msg| { self.failed_files.putAssumeCapacityNoClobber( &root_scope.base, try ErrorMsg.create(self.gpa, src_err_msg.byte_offset, "{}", .{src_err_msg.msg}), ); root_scope.status = .unloaded_parse_failure; return error.AnalysisFail; } root_scope.status = .loaded_success; root_scope.contents = .{ .module = zir_module }; keep_zir_module = true; return zir_module; }, .unloaded_parse_failure, .unloaded_sema_failure, => return error.AnalysisFail, .loaded_success, .loaded_sema_failure => return root_scope.contents.module, } } fn getAstTree(self: *Module, root_scope: *Scope.File) !*ast.Tree { const tracy = trace(@src()); defer tracy.end(); switch (root_scope.status) { .never_loaded, .unloaded_success => { try self.failed_files.ensureCapacity(self.gpa, self.failed_files.items().len + 1); const source = try root_scope.getSource(self); var keep_tree = false; const tree = try std.zig.parse(self.gpa, source); defer if (!keep_tree) tree.deinit(); if (tree.errors.len != 0) { const parse_err = tree.errors[0]; var msg = std.ArrayList(u8).init(self.gpa); defer msg.deinit(); try parse_err.render(tree.token_ids, msg.outStream()); const err_msg = try self.gpa.create(ErrorMsg); err_msg.* = .{ .msg = msg.toOwnedSlice(), .byte_offset = tree.token_locs[parse_err.loc()].start, }; self.failed_files.putAssumeCapacityNoClobber(&root_scope.base, err_msg); root_scope.status = .unloaded_parse_failure; return error.AnalysisFail; } root_scope.status = .loaded_success; root_scope.contents = .{ .tree = tree }; keep_tree = true; return tree; }, .unloaded_parse_failure => return error.AnalysisFail, .loaded_success => return root_scope.contents.tree, } } fn analyzeRootSrcFile(self: *Module, root_scope: *Scope.File) !void { // We may be analyzing it for the first time, or this may be // an incremental update. This code handles both cases. const tree = try self.getAstTree(root_scope); const decls = tree.root_node.decls(); try self.work_queue.ensureUnusedCapacity(decls.len); try root_scope.decls.ensureCapacity(self.gpa, decls.len); // Keep track of the decls that we expect to see in this file so that // we know which ones have been deleted. var deleted_decls = std.AutoHashMap(*Decl, void).init(self.gpa); defer deleted_decls.deinit(); try deleted_decls.ensureCapacity(root_scope.decls.items.len); for (root_scope.decls.items) |file_decl| { deleted_decls.putAssumeCapacityNoClobber(file_decl, {}); } for (decls) |src_decl, decl_i| { if (src_decl.cast(ast.Node.FnProto)) |fn_proto| { // We will create a Decl for it regardless of analysis status. const name_tok = fn_proto.getTrailer("name_token") orelse { @panic("TODO missing function name"); }; const name_loc = tree.token_locs[name_tok]; const name = tree.tokenSliceLoc(name_loc); const name_hash = root_scope.fullyQualifiedNameHash(name); const contents_hash = std.zig.hashSrc(tree.getNodeSource(src_decl)); if (self.decl_table.get(name_hash)) |decl| { // Update the AST Node index of the decl, even if its contents are unchanged, it may // have been re-ordered. decl.src_index = decl_i; if (deleted_decls.remove(decl) == null) { decl.analysis = .sema_failure; const err_msg = try ErrorMsg.create(self.gpa, tree.token_locs[name_tok].start, "redefinition of '{}'", .{decl.name}); errdefer err_msg.destroy(self.gpa); try self.failed_decls.putNoClobber(self.gpa, decl, err_msg); } else { if (!srcHashEql(decl.contents_hash, contents_hash)) { try self.markOutdatedDecl(decl); decl.contents_hash = contents_hash; } } } else { const new_decl = try self.createNewDecl(&root_scope.base, name, decl_i, name_hash, contents_hash); root_scope.decls.appendAssumeCapacity(new_decl); if (fn_proto.getTrailer("extern_export_inline_token")) |maybe_export_token| { if (tree.token_ids[maybe_export_token] == .Keyword_export) { self.work_queue.writeItemAssumeCapacity(.{ .analyze_decl = new_decl }); } } } } // TODO also look for global variable declarations // TODO also look for comptime blocks and exported globals } // Handle explicitly deleted decls from the source code. Not to be confused // with when we delete decls because they are no longer referenced. for (deleted_decls.items()) |entry| { //std.debug.warn("noticed '{}' deleted from source\n", .{entry.key.name}); try self.deleteDecl(entry.key); } } fn analyzeRootZIRModule(self: *Module, root_scope: *Scope.ZIRModule) !void { // We may be analyzing it for the first time, or this may be // an incremental update. This code handles both cases. const src_module = try self.getSrcModule(root_scope); try self.work_queue.ensureUnusedCapacity(src_module.decls.len); try root_scope.decls.ensureCapacity(self.gpa, src_module.decls.len); var exports_to_resolve = std.ArrayList(*zir.Decl).init(self.gpa); defer exports_to_resolve.deinit(); // Keep track of the decls that we expect to see in this file so that // we know which ones have been deleted. var deleted_decls = std.AutoHashMap(*Decl, void).init(self.gpa); defer deleted_decls.deinit(); try deleted_decls.ensureCapacity(self.decl_table.items().len); for (self.decl_table.items()) |entry| { deleted_decls.putAssumeCapacityNoClobber(entry.value, {}); } for (src_module.decls) |src_decl, decl_i| { const name_hash = root_scope.fullyQualifiedNameHash(src_decl.name); if (self.decl_table.get(name_hash)) |decl| { deleted_decls.removeAssertDiscard(decl); //std.debug.warn("'{}' contents: '{}'\n", .{ src_decl.name, src_decl.contents }); if (!srcHashEql(src_decl.contents_hash, decl.contents_hash)) { try self.markOutdatedDecl(decl); decl.contents_hash = src_decl.contents_hash; } } else { const new_decl = try self.createNewDecl( &root_scope.base, src_decl.name, decl_i, name_hash, src_decl.contents_hash, ); root_scope.decls.appendAssumeCapacity(new_decl); if (src_decl.inst.cast(zir.Inst.Export)) |export_inst| { try exports_to_resolve.append(src_decl); } } } for (exports_to_resolve.items) |export_decl| { _ = try self.resolveZirDecl(&root_scope.base, export_decl); } // Handle explicitly deleted decls from the source code. Not to be confused // with when we delete decls because they are no longer referenced. for (deleted_decls.items()) |entry| { //std.debug.warn("noticed '{}' deleted from source\n", .{entry.key.name}); try self.deleteDecl(entry.key); } } fn deleteDecl(self: *Module, decl: *Decl) !void { try self.deletion_set.ensureCapacity(self.gpa, self.deletion_set.items.len + decl.dependencies.items().len); // Remove from the namespace it resides in. In the case of an anonymous Decl it will // not be present in the set, and this does nothing. decl.scope.removeDecl(decl); //std.debug.warn("deleting decl '{}'\n", .{decl.name}); const name_hash = decl.fullyQualifiedNameHash(); self.decl_table.removeAssertDiscard(name_hash); // Remove itself from its dependencies, because we are about to destroy the decl pointer. for (decl.dependencies.items()) |entry| { const dep = entry.key; dep.removeDependant(decl); if (dep.dependants.items().len == 0 and !dep.deletion_flag) { // We don't recursively perform a deletion here, because during the update, // another reference to it may turn up. dep.deletion_flag = true; self.deletion_set.appendAssumeCapacity(dep); } } // Anything that depends on this deleted decl certainly needs to be re-analyzed. for (decl.dependants.items()) |entry| { const dep = entry.key; dep.removeDependency(decl); if (dep.analysis != .outdated) { // TODO Move this failure possibility to the top of the function. try self.markOutdatedDecl(dep); } } if (self.failed_decls.remove(decl)) |entry| { entry.value.destroy(self.gpa); } self.deleteDeclExports(decl); self.bin_file.freeDecl(decl); decl.destroy(self.gpa); } /// Delete all the Export objects that are caused by this Decl. Re-analysis of /// this Decl will cause them to be re-created (or not). fn deleteDeclExports(self: *Module, decl: *Decl) void { const kv = self.export_owners.remove(decl) orelse return; for (kv.value) |exp| { if (self.decl_exports.getEntry(exp.exported_decl)) |decl_exports_kv| { // Remove exports with owner_decl matching the regenerating decl. const list = decl_exports_kv.value; var i: usize = 0; var new_len = list.len; while (i < new_len) { if (list[i].owner_decl == decl) { mem.copyBackwards(*Export, list[i..], list[i + 1 .. new_len]); new_len -= 1; } else { i += 1; } } decl_exports_kv.value = self.gpa.shrink(list, new_len); if (new_len == 0) { self.decl_exports.removeAssertDiscard(exp.exported_decl); } } if (self.bin_file.cast(link.File.Elf)) |elf| { elf.deleteExport(exp.link); } if (self.failed_exports.remove(exp)) |entry| { entry.value.destroy(self.gpa); } _ = self.symbol_exports.remove(exp.options.name); self.gpa.destroy(exp); } self.gpa.free(kv.value); } fn analyzeFnBody(self: *Module, decl: *Decl, func: *Fn) !void { const tracy = trace(@src()); defer tracy.end(); // Use the Decl's arena for function memory. var arena = decl.typed_value.most_recent.arena.?.promote(self.gpa); defer decl.typed_value.most_recent.arena.?.* = arena.state; var inner_block: Scope.Block = .{ .parent = null, .func = func, .decl = decl, .instructions = .{}, .arena = &arena.allocator, }; defer inner_block.instructions.deinit(self.gpa); const fn_zir = func.analysis.queued; defer fn_zir.arena.promote(self.gpa).deinit(); func.analysis = .{ .in_progress = {} }; //std.debug.warn("set {} to in_progress\n", .{decl.name}); try self.analyzeBody(&inner_block.base, fn_zir.body); const instructions = try arena.allocator.dupe(*Inst, inner_block.instructions.items); func.analysis = .{ .success = .{ .instructions = instructions } }; //std.debug.warn("set {} to success\n", .{decl.name}); } fn markOutdatedDecl(self: *Module, decl: *Decl) !void { //std.debug.warn("mark {} outdated\n", .{decl.name}); try self.work_queue.writeItem(.{ .analyze_decl = decl }); if (self.failed_decls.remove(decl)) |entry| { entry.value.destroy(self.gpa); } decl.analysis = .outdated; } fn allocateNewDecl( self: *Module, scope: *Scope, src_index: usize, contents_hash: std.zig.SrcHash, ) !*Decl { const new_decl = try self.gpa.create(Decl); new_decl.* = .{ .name = "", .scope = scope.namespace(), .src_index = src_index, .typed_value = .{ .never_succeeded = {} }, .analysis = .unreferenced, .deletion_flag = false, .contents_hash = contents_hash, .link = link.File.Elf.TextBlock.empty, .generation = 0, }; return new_decl; } fn createNewDecl( self: *Module, scope: *Scope, decl_name: []const u8, src_index: usize, name_hash: Scope.NameHash, contents_hash: std.zig.SrcHash, ) !*Decl { try self.decl_table.ensureCapacity(self.gpa, self.decl_table.items().len + 1); const new_decl = try self.allocateNewDecl(scope, src_index, contents_hash); errdefer self.gpa.destroy(new_decl); new_decl.name = try mem.dupeZ(self.gpa, u8, decl_name); self.decl_table.putAssumeCapacityNoClobber(name_hash, new_decl); return new_decl; } fn analyzeZirDecl(self: *Module, decl: *Decl, src_decl: *zir.Decl) InnerError!bool { var decl_scope: Scope.DeclAnalysis = .{ .decl = decl, .arena = std.heap.ArenaAllocator.init(self.gpa), }; errdefer decl_scope.arena.deinit(); decl.analysis = .in_progress; const typed_value = try self.analyzeConstInst(&decl_scope.base, src_decl.inst); const arena_state = try decl_scope.arena.allocator.create(std.heap.ArenaAllocator.State); var prev_type_has_bits = false; var type_changed = true; if (decl.typedValueManaged()) |tvm| { prev_type_has_bits = tvm.typed_value.ty.hasCodeGenBits(); type_changed = !tvm.typed_value.ty.eql(typed_value.ty); tvm.deinit(self.gpa); } arena_state.* = decl_scope.arena.state; decl.typed_value = .{ .most_recent = .{ .typed_value = typed_value, .arena = arena_state, }, }; decl.analysis = .complete; decl.generation = self.generation; if (typed_value.ty.hasCodeGenBits()) { // We don't fully codegen the decl until later, but we do need to reserve a global // offset table index for it. This allows us to codegen decls out of dependency order, // increasing how many computations can be done in parallel. try self.bin_file.allocateDeclIndexes(decl); try self.work_queue.writeItem(.{ .codegen_decl = decl }); } else if (prev_type_has_bits) { self.bin_file.freeDecl(decl); } return type_changed; } fn resolveZirDecl(self: *Module, scope: *Scope, src_decl: *zir.Decl) InnerError!*Decl { const zir_module = self.root_scope.cast(Scope.ZIRModule).?; const entry = zir_module.contents.module.findDecl(src_decl.name).?; return self.resolveZirDeclHavingIndex(scope, src_decl, entry.index); } fn resolveZirDeclHavingIndex(self: *Module, scope: *Scope, src_decl: *zir.Decl, src_index: usize) InnerError!*Decl { const name_hash = scope.namespace().fullyQualifiedNameHash(src_decl.name); const decl = self.decl_table.get(name_hash).?; decl.src_index = src_index; try self.ensureDeclAnalyzed(decl); return decl; } /// Declares a dependency on the decl. fn resolveCompleteZirDecl(self: *Module, scope: *Scope, src_decl: *zir.Decl) InnerError!*Decl { const decl = try self.resolveZirDecl(scope, src_decl); switch (decl.analysis) { .unreferenced => unreachable, .in_progress => unreachable, .outdated => unreachable, .dependency_failure, .sema_failure, .sema_failure_retryable, .codegen_failure, .codegen_failure_retryable, => return error.AnalysisFail, .complete => {}, } return decl; } /// TODO Look into removing this function. The body is only needed for .zir files, not .zig files. fn resolveInst(self: *Module, scope: *Scope, old_inst: *zir.Inst) InnerError!*Inst { if (old_inst.analyzed_inst) |inst| return inst; // If this assert trips, the instruction that was referenced did not get properly // analyzed before it was referenced. const zir_module = scope.namespace().cast(Scope.ZIRModule).?; const entry = if (old_inst.cast(zir.Inst.DeclVal)) |declval| blk: { const decl_name = declval.positionals.name; const entry = zir_module.contents.module.findDecl(decl_name) orelse return self.fail(scope, old_inst.src, "decl '{}' not found", .{decl_name}); break :blk entry; } else blk: { // If this assert trips, the instruction that was referenced did not get // properly analyzed by a previous instruction analysis before it was // referenced by the current one. break :blk zir_module.contents.module.findInstDecl(old_inst).?; }; const decl = try self.resolveCompleteZirDecl(scope, entry.decl); const decl_ref = try self.analyzeDeclRef(scope, old_inst.src, decl); // Note: it would be tempting here to store the result into old_inst.analyzed_inst field, // but this would prevent the analyzeDeclRef from happening, which is needed to properly // detect Decl dependencies and dependency failures on updates. return self.analyzeDeref(scope, old_inst.src, decl_ref, old_inst.src); } fn requireRuntimeBlock(self: *Module, scope: *Scope, src: usize) !*Scope.Block { return scope.cast(Scope.Block) orelse return self.fail(scope, src, "instruction illegal outside function body", .{}); } fn resolveInstConst(self: *Module, scope: *Scope, old_inst: *zir.Inst) InnerError!TypedValue { const new_inst = try self.resolveInst(scope, old_inst); const val = try self.resolveConstValue(scope, new_inst); return TypedValue{ .ty = new_inst.ty, .val = val, }; } fn resolveConstValue(self: *Module, scope: *Scope, base: *Inst) !Value { return (try self.resolveDefinedValue(scope, base)) orelse return self.fail(scope, base.src, "unable to resolve comptime value", .{}); } fn resolveDefinedValue(self: *Module, scope: *Scope, base: *Inst) !?Value { if (base.value()) |val| { if (val.isUndef()) { return self.fail(scope, base.src, "use of undefined value here causes undefined behavior", .{}); } return val; } return null; } fn resolveConstString(self: *Module, scope: *Scope, old_inst: *zir.Inst) ![]u8 { const new_inst = try self.resolveInst(scope, old_inst); const wanted_type = Type.initTag(.const_slice_u8); const coerced_inst = try self.coerce(scope, wanted_type, new_inst); const val = try self.resolveConstValue(scope, coerced_inst); return val.toAllocatedBytes(scope.arena()); } fn resolveType(self: *Module, scope: *Scope, old_inst: *zir.Inst) !Type { const new_inst = try self.resolveInst(scope, old_inst); const wanted_type = Type.initTag(.@"type"); const coerced_inst = try self.coerce(scope, wanted_type, new_inst); const val = try self.resolveConstValue(scope, coerced_inst); return val.toType(); } fn analyzeExport(self: *Module, scope: *Scope, src: usize, symbol_name: []const u8, exported_decl: *Decl) !void { try self.ensureDeclAnalyzed(exported_decl); const typed_value = exported_decl.typed_value.most_recent.typed_value; switch (typed_value.ty.zigTypeTag()) { .Fn => {}, else => return self.fail(scope, src, "unable to export type '{}'", .{typed_value.ty}), } try self.decl_exports.ensureCapacity(self.gpa, self.decl_exports.items().len + 1); try self.export_owners.ensureCapacity(self.gpa, self.export_owners.items().len + 1); const new_export = try self.gpa.create(Export); errdefer self.gpa.destroy(new_export); const owner_decl = scope.decl().?; new_export.* = .{ .options = .{ .name = symbol_name }, .src = src, .link = .{}, .owner_decl = owner_decl, .exported_decl = exported_decl, .status = .in_progress, }; // Add to export_owners table. const eo_gop = self.export_owners.getOrPut(self.gpa, owner_decl) catch unreachable; if (!eo_gop.found_existing) { eo_gop.entry.value = &[0]*Export{}; } eo_gop.entry.value = try self.gpa.realloc(eo_gop.entry.value, eo_gop.entry.value.len + 1); eo_gop.entry.value[eo_gop.entry.value.len - 1] = new_export; errdefer eo_gop.entry.value = self.gpa.shrink(eo_gop.entry.value, eo_gop.entry.value.len - 1); // Add to exported_decl table. const de_gop = self.decl_exports.getOrPut(self.gpa, exported_decl) catch unreachable; if (!de_gop.found_existing) { de_gop.entry.value = &[0]*Export{}; } de_gop.entry.value = try self.gpa.realloc(de_gop.entry.value, de_gop.entry.value.len + 1); de_gop.entry.value[de_gop.entry.value.len - 1] = new_export; errdefer de_gop.entry.value = self.gpa.shrink(de_gop.entry.value, de_gop.entry.value.len - 1); if (self.symbol_exports.get(symbol_name)) |_| { try self.failed_exports.ensureCapacity(self.gpa, self.failed_exports.items().len + 1); self.failed_exports.putAssumeCapacityNoClobber(new_export, try ErrorMsg.create( self.gpa, src, "exported symbol collision: {}", .{symbol_name}, )); // TODO: add a note new_export.status = .failed; return; } try self.symbol_exports.putNoClobber(self.gpa, symbol_name, new_export); self.bin_file.updateDeclExports(self, exported_decl, de_gop.entry.value) catch |err| switch (err) { error.OutOfMemory => return error.OutOfMemory, else => { try self.failed_exports.ensureCapacity(self.gpa, self.failed_exports.items().len + 1); self.failed_exports.putAssumeCapacityNoClobber(new_export, try ErrorMsg.create( self.gpa, src, "unable to export: {}", .{@errorName(err)}, )); new_export.status = .failed_retryable; }, }; } fn addNoOp( self: *Module, block: *Scope.Block, src: usize, ty: Type, comptime tag: Inst.Tag, ) !*Inst { const inst = try block.arena.create(tag.Type()); inst.* = .{ .base = .{ .tag = tag, .ty = ty, .src = src, }, }; try block.instructions.append(self.gpa, &inst.base); return &inst.base; } fn addUnOp( self: *Module, block: *Scope.Block, src: usize, ty: Type, tag: Inst.Tag, operand: *Inst, ) !*Inst { const inst = try block.arena.create(Inst.UnOp); inst.* = .{ .base = .{ .tag = tag, .ty = ty, .src = src, }, .operand = operand, }; try block.instructions.append(self.gpa, &inst.base); return &inst.base; } fn addBinOp( self: *Module, block: *Scope.Block, src: usize, ty: Type, tag: Inst.Tag, lhs: *Inst, rhs: *Inst, ) !*Inst { const inst = try block.arena.create(Inst.BinOp); inst.* = .{ .base = .{ .tag = tag, .ty = ty, .src = src, }, .lhs = lhs, .rhs = rhs, }; try block.instructions.append(self.gpa, &inst.base); return &inst.base; } fn addBr( self: *Module, scope_block: *Scope.Block, src: usize, target_block: *Inst.Block, operand: *Inst, ) !*Inst { const inst = try scope_block.arena.create(Inst.Br); inst.* = .{ .base = .{ .tag = .br, .ty = Type.initTag(.noreturn), .src = src, }, .operand = operand, .block = target_block, }; try scope_block.instructions.append(self.gpa, &inst.base); return &inst.base; } fn addCondBr( self: *Module, block: *Scope.Block, src: usize, condition: *Inst, then_body: ir.Body, else_body: ir.Body, ) !*Inst { const inst = try block.arena.create(Inst.CondBr); inst.* = .{ .base = .{ .tag = .condbr, .ty = Type.initTag(.noreturn), .src = src, }, .condition = condition, .then_body = then_body, .else_body = else_body, }; try block.instructions.append(self.gpa, &inst.base); return &inst.base; } fn addCall( self: *Module, block: *Scope.Block, src: usize, ty: Type, func: *Inst, args: []const *Inst, ) !*Inst { const inst = try block.arena.create(Inst.Call); inst.* = .{ .base = .{ .tag = .call, .ty = ty, .src = src, }, .func = func, .args = args, }; try block.instructions.append(self.gpa, &inst.base); return &inst.base; } pub fn addZIRInstSpecial( self: *Module, scope: *Scope, src: usize, comptime T: type, positionals: std.meta.fieldInfo(T, "positionals").field_type, kw_args: std.meta.fieldInfo(T, "kw_args").field_type, ) !*T { const gen_zir = scope.getGenZIR(); try gen_zir.instructions.ensureCapacity(self.gpa, gen_zir.instructions.items.len + 1); const inst = try gen_zir.arena.create(T); inst.* = .{ .base = .{ .tag = T.base_tag, .src = src, }, .positionals = positionals, .kw_args = kw_args, }; gen_zir.instructions.appendAssumeCapacity(&inst.base); return inst; } pub fn addZIRNoOp( self: *Module, scope: *Scope, src: usize, tag: zir.Inst.Tag, ) !*zir.Inst { const gen_zir = scope.getGenZIR(); try gen_zir.instructions.ensureCapacity(self.gpa, gen_zir.instructions.items.len + 1); const inst = try gen_zir.arena.create(zir.Inst.NoOp); inst.* = .{ .base = .{ .tag = tag, .src = src, }, .positionals = .{}, .kw_args = .{}, }; gen_zir.instructions.appendAssumeCapacity(&inst.base); return &inst.base; } pub fn addZIRUnOp( self: *Module, scope: *Scope, src: usize, tag: zir.Inst.Tag, operand: *zir.Inst, ) !*zir.Inst { const gen_zir = scope.getGenZIR(); try gen_zir.instructions.ensureCapacity(self.gpa, gen_zir.instructions.items.len + 1); const inst = try gen_zir.arena.create(zir.Inst.UnOp); inst.* = .{ .base = .{ .tag = tag, .src = src, }, .positionals = .{ .operand = operand, }, .kw_args = .{}, }; gen_zir.instructions.appendAssumeCapacity(&inst.base); return &inst.base; } pub fn addZIRBinOp( self: *Module, scope: *Scope, src: usize, tag: zir.Inst.Tag, lhs: *zir.Inst, rhs: *zir.Inst, ) !*zir.Inst { const gen_zir = scope.getGenZIR(); try gen_zir.instructions.ensureCapacity(self.gpa, gen_zir.instructions.items.len + 1); const inst = try gen_zir.arena.create(zir.Inst.BinOp); inst.* = .{ .base = .{ .tag = tag, .src = src, }, .positionals = .{ .lhs = lhs, .rhs = rhs, }, .kw_args = .{}, }; gen_zir.instructions.appendAssumeCapacity(&inst.base); return &inst.base; } pub fn addZIRInst( self: *Module, scope: *Scope, src: usize, comptime T: type, positionals: std.meta.fieldInfo(T, "positionals").field_type, kw_args: std.meta.fieldInfo(T, "kw_args").field_type, ) !*zir.Inst { const inst_special = try self.addZIRInstSpecial(scope, src, T, positionals, kw_args); return &inst_special.base; } /// TODO The existence of this function is a workaround for a bug in stage1. pub fn addZIRInstConst(self: *Module, scope: *Scope, src: usize, typed_value: TypedValue) !*zir.Inst { const P = std.meta.fieldInfo(zir.Inst.Const, "positionals").field_type; return self.addZIRInst(scope, src, zir.Inst.Const, P{ .typed_value = typed_value }, .{}); } /// TODO The existence of this function is a workaround for a bug in stage1. pub fn addZIRInstBlock(self: *Module, scope: *Scope, src: usize, body: zir.Module.Body) !*zir.Inst.Block { const P = std.meta.fieldInfo(zir.Inst.Block, "positionals").field_type; return self.addZIRInstSpecial(scope, src, zir.Inst.Block, P{ .body = body }, .{}); } fn addNewInst(self: *Module, block: *Scope.Block, src: usize, ty: Type, comptime T: type) !*T { const inst = try block.arena.create(T); inst.* = .{ .base = .{ .tag = T.base_tag, .ty = ty, .src = src, }, }; try block.instructions.append(self.gpa, &inst.base); return inst; } fn constInst(self: *Module, scope: *Scope, src: usize, typed_value: TypedValue) !*Inst { const const_inst = try scope.arena().create(Inst.Constant); const_inst.* = .{ .base = .{ .tag = Inst.Constant.base_tag, .ty = typed_value.ty, .src = src, }, .val = typed_value.val, }; return &const_inst.base; } fn constType(self: *Module, scope: *Scope, src: usize, ty: Type) !*Inst { return self.constInst(scope, src, .{ .ty = Type.initTag(.type), .val = try ty.toValue(scope.arena()), }); } fn constVoid(self: *Module, scope: *Scope, src: usize) !*Inst { return self.constInst(scope, src, .{ .ty = Type.initTag(.void), .val = Value.initTag(.the_one_possible_value), }); } fn constNoReturn(self: *Module, scope: *Scope, src: usize) !*Inst { return self.constInst(scope, src, .{ .ty = Type.initTag(.noreturn), .val = Value.initTag(.the_one_possible_value), }); } fn constUndef(self: *Module, scope: *Scope, src: usize, ty: Type) !*Inst { return self.constInst(scope, src, .{ .ty = ty, .val = Value.initTag(.undef), }); } fn constBool(self: *Module, scope: *Scope, src: usize, v: bool) !*Inst { return self.constInst(scope, src, .{ .ty = Type.initTag(.bool), .val = ([2]Value{ Value.initTag(.bool_false), Value.initTag(.bool_true) })[@boolToInt(v)], }); } fn constIntUnsigned(self: *Module, scope: *Scope, src: usize, ty: Type, int: u64) !*Inst { const int_payload = try scope.arena().create(Value.Payload.Int_u64); int_payload.* = .{ .int = int }; return self.constInst(scope, src, .{ .ty = ty, .val = Value.initPayload(&int_payload.base), }); } fn constIntSigned(self: *Module, scope: *Scope, src: usize, ty: Type, int: i64) !*Inst { const int_payload = try scope.arena().create(Value.Payload.Int_i64); int_payload.* = .{ .int = int }; return self.constInst(scope, src, .{ .ty = ty, .val = Value.initPayload(&int_payload.base), }); } fn constIntBig(self: *Module, scope: *Scope, src: usize, ty: Type, big_int: BigIntConst) !*Inst { const val_payload = if (big_int.positive) blk: { if (big_int.to(u64)) |x| { return self.constIntUnsigned(scope, src, ty, x); } else |err| switch (err) { error.NegativeIntoUnsigned => unreachable, error.TargetTooSmall => {}, // handled below } const big_int_payload = try scope.arena().create(Value.Payload.IntBigPositive); big_int_payload.* = .{ .limbs = big_int.limbs }; break :blk &big_int_payload.base; } else blk: { if (big_int.to(i64)) |x| { return self.constIntSigned(scope, src, ty, x); } else |err| switch (err) { error.NegativeIntoUnsigned => unreachable, error.TargetTooSmall => {}, // handled below } const big_int_payload = try scope.arena().create(Value.Payload.IntBigNegative); big_int_payload.* = .{ .limbs = big_int.limbs }; break :blk &big_int_payload.base; }; return self.constInst(scope, src, .{ .ty = ty, .val = Value.initPayload(val_payload), }); } fn analyzeConstInst(self: *Module, scope: *Scope, old_inst: *zir.Inst) InnerError!TypedValue { const new_inst = try self.analyzeInst(scope, old_inst); return TypedValue{ .ty = new_inst.ty, .val = try self.resolveConstValue(scope, new_inst), }; } fn analyzeInstConst(self: *Module, scope: *Scope, const_inst: *zir.Inst.Const) InnerError!*Inst { // Move the TypedValue from old memory to new memory. This allows freeing the ZIR instructions // after analysis. const typed_value_copy = try const_inst.positionals.typed_value.copy(scope.arena()); return self.constInst(scope, const_inst.base.src, typed_value_copy); } fn analyzeInst(self: *Module, scope: *Scope, old_inst: *zir.Inst) InnerError!*Inst { switch (old_inst.tag) { .arg => return self.analyzeInstArg(scope, old_inst.castTag(.arg).?), .block => return self.analyzeInstBlock(scope, old_inst.castTag(.block).?), .@"break" => return self.analyzeInstBreak(scope, old_inst.castTag(.@"break").?), .breakpoint => return self.analyzeInstBreakpoint(scope, old_inst.castTag(.breakpoint).?), .breakvoid => return self.analyzeInstBreakVoid(scope, old_inst.castTag(.breakvoid).?), .call => return self.analyzeInstCall(scope, old_inst.castTag(.call).?), .compileerror => return self.analyzeInstCompileError(scope, old_inst.castTag(.compileerror).?), .@"const" => return self.analyzeInstConst(scope, old_inst.castTag(.@"const").?), .declref => return self.analyzeInstDeclRef(scope, old_inst.castTag(.declref).?), .declref_str => return self.analyzeInstDeclRefStr(scope, old_inst.castTag(.declref_str).?), .declval => return self.analyzeInstDeclVal(scope, old_inst.castTag(.declval).?), .declval_in_module => return self.analyzeInstDeclValInModule(scope, old_inst.castTag(.declval_in_module).?), .str => return self.analyzeInstStr(scope, old_inst.castTag(.str).?), .int => { const big_int = old_inst.castTag(.int).?.positionals.int; return self.constIntBig(scope, old_inst.src, Type.initTag(.comptime_int), big_int); }, .inttype => return self.analyzeInstIntType(scope, old_inst.castTag(.inttype).?), .ptrtoint => return self.analyzeInstPtrToInt(scope, old_inst.castTag(.ptrtoint).?), .fieldptr => return self.analyzeInstFieldPtr(scope, old_inst.castTag(.fieldptr).?), .deref => return self.analyzeInstDeref(scope, old_inst.castTag(.deref).?), .as => return self.analyzeInstAs(scope, old_inst.castTag(.as).?), .@"asm" => return self.analyzeInstAsm(scope, old_inst.castTag(.@"asm").?), .@"unreachable" => return self.analyzeInstUnreachable(scope, old_inst.castTag(.@"unreachable").?), .@"return" => return self.analyzeInstRet(scope, old_inst.castTag(.@"return").?), .returnvoid => return self.analyzeInstRetVoid(scope, old_inst.castTag(.returnvoid).?), .@"fn" => return self.analyzeInstFn(scope, old_inst.castTag(.@"fn").?), .@"export" => return self.analyzeInstExport(scope, old_inst.castTag(.@"export").?), .primitive => return self.analyzeInstPrimitive(scope, old_inst.castTag(.primitive).?), .fntype => return self.analyzeInstFnType(scope, old_inst.castTag(.fntype).?), .intcast => return self.analyzeInstIntCast(scope, old_inst.castTag(.intcast).?), .bitcast => return self.analyzeInstBitCast(scope, old_inst.castTag(.bitcast).?), .floatcast => return self.analyzeInstFloatCast(scope, old_inst.castTag(.floatcast).?), .elemptr => return self.analyzeInstElemPtr(scope, old_inst.castTag(.elemptr).?), .add => return self.analyzeInstAdd(scope, old_inst.castTag(.add).?), .sub => return self.analyzeInstSub(scope, old_inst.castTag(.sub).?), .cmp_lt => return self.analyzeInstCmp(scope, old_inst.castTag(.cmp_lt).?, .lt), .cmp_lte => return self.analyzeInstCmp(scope, old_inst.castTag(.cmp_lte).?, .lte), .cmp_eq => return self.analyzeInstCmp(scope, old_inst.castTag(.cmp_eq).?, .eq), .cmp_gte => return self.analyzeInstCmp(scope, old_inst.castTag(.cmp_gte).?, .gte), .cmp_gt => return self.analyzeInstCmp(scope, old_inst.castTag(.cmp_gt).?, .gt), .cmp_neq => return self.analyzeInstCmp(scope, old_inst.castTag(.cmp_neq).?, .neq), .condbr => return self.analyzeInstCondBr(scope, old_inst.castTag(.condbr).?), .isnull => return self.analyzeInstIsNonNull(scope, old_inst.castTag(.isnull).?, true), .isnonnull => return self.analyzeInstIsNonNull(scope, old_inst.castTag(.isnonnull).?, false), .boolnot => return self.analyzeInstBoolNot(scope, old_inst.castTag(.boolnot).?), } } fn analyzeInstStr(self: *Module, scope: *Scope, str_inst: *zir.Inst.Str) InnerError!*Inst { // The bytes references memory inside the ZIR module, which can get deallocated // after semantic analysis is complete. We need the memory to be in the new anonymous Decl's arena. var new_decl_arena = std.heap.ArenaAllocator.init(self.gpa); const arena_bytes = try new_decl_arena.allocator.dupe(u8, str_inst.positionals.bytes); const ty_payload = try scope.arena().create(Type.Payload.Array_u8_Sentinel0); ty_payload.* = .{ .len = arena_bytes.len }; const bytes_payload = try scope.arena().create(Value.Payload.Bytes); bytes_payload.* = .{ .data = arena_bytes }; const new_decl = try self.createAnonymousDecl(scope, &new_decl_arena, .{ .ty = Type.initPayload(&ty_payload.base), .val = Value.initPayload(&bytes_payload.base), }); return self.analyzeDeclRef(scope, str_inst.base.src, new_decl); } fn createAnonymousDecl( self: *Module, scope: *Scope, decl_arena: *std.heap.ArenaAllocator, typed_value: TypedValue, ) !*Decl { const name_index = self.getNextAnonNameIndex(); const scope_decl = scope.decl().?; const name = try std.fmt.allocPrint(self.gpa, "{}__anon_{}", .{ scope_decl.name, name_index }); defer self.gpa.free(name); const name_hash = scope.namespace().fullyQualifiedNameHash(name); const src_hash: std.zig.SrcHash = undefined; const new_decl = try self.createNewDecl(scope, name, scope_decl.src_index, name_hash, src_hash); const decl_arena_state = try decl_arena.allocator.create(std.heap.ArenaAllocator.State); decl_arena_state.* = decl_arena.state; new_decl.typed_value = .{ .most_recent = .{ .typed_value = typed_value, .arena = decl_arena_state, }, }; new_decl.analysis = .complete; new_decl.generation = self.generation; // TODO: This generates the Decl into the machine code file if it is of a type that is non-zero size. // We should be able to further improve the compiler to not omit Decls which are only referenced at // compile-time and not runtime. if (typed_value.ty.hasCodeGenBits()) { try self.bin_file.allocateDeclIndexes(new_decl); try self.work_queue.writeItem(.{ .codegen_decl = new_decl }); } return new_decl; } fn getNextAnonNameIndex(self: *Module) usize { return @atomicRmw(usize, &self.next_anon_name_index, .Add, 1, .Monotonic); } pub fn lookupDeclName(self: *Module, scope: *Scope, ident_name: []const u8) ?*Decl { const namespace = scope.namespace(); const name_hash = namespace.fullyQualifiedNameHash(ident_name); return self.decl_table.get(name_hash); } fn analyzeInstExport(self: *Module, scope: *Scope, export_inst: *zir.Inst.Export) InnerError!*Inst { const symbol_name = try self.resolveConstString(scope, export_inst.positionals.symbol_name); const exported_decl = self.lookupDeclName(scope, export_inst.positionals.decl_name) orelse return self.fail(scope, export_inst.base.src, "decl '{}' not found", .{export_inst.positionals.decl_name}); try self.analyzeExport(scope, export_inst.base.src, symbol_name, exported_decl); return self.constVoid(scope, export_inst.base.src); } fn analyzeInstCompileError(self: *Module, scope: *Scope, inst: *zir.Inst.CompileError) InnerError!*Inst { return self.fail(scope, inst.base.src, "{}", .{inst.positionals.msg}); } fn analyzeInstArg(self: *Module, scope: *Scope, inst: *zir.Inst.NoOp) InnerError!*Inst { const b = try self.requireRuntimeBlock(scope, inst.base.src); const fn_ty = b.func.?.owner_decl.typed_value.most_recent.typed_value.ty; const param_index = b.instructions.items.len; const param_count = fn_ty.fnParamLen(); if (param_index >= param_count) { return self.fail(scope, inst.base.src, "parameter index {} outside list of length {}", .{ param_index, param_count, }); } const param_type = fn_ty.fnParamType(param_index); return self.addNoOp(b, inst.base.src, param_type, .arg); } fn analyzeInstBlock(self: *Module, scope: *Scope, inst: *zir.Inst.Block) InnerError!*Inst { const parent_block = scope.cast(Scope.Block).?; // Reserve space for a Block instruction so that generated Break instructions can // point to it, even if it doesn't end up getting used because the code ends up being // comptime evaluated. const block_inst = try parent_block.arena.create(Inst.Block); block_inst.* = .{ .base = .{ .tag = Inst.Block.base_tag, .ty = undefined, // Set after analysis. .src = inst.base.src, }, .body = undefined, }; var child_block: Scope.Block = .{ .parent = parent_block, .func = parent_block.func, .decl = parent_block.decl, .instructions = .{}, .arena = parent_block.arena, // TODO @as here is working around a miscompilation compiler bug :( .label = @as(?Scope.Block.Label, Scope.Block.Label{ .zir_block = inst, .results = .{}, .block_inst = block_inst, }), }; const label = &child_block.label.?; defer child_block.instructions.deinit(self.gpa); defer label.results.deinit(self.gpa); try self.analyzeBody(&child_block.base, inst.positionals.body); // Blocks must terminate with noreturn instruction. assert(child_block.instructions.items.len != 0); assert(child_block.instructions.items[child_block.instructions.items.len - 1].ty.isNoReturn()); // Need to set the type and emit the Block instruction. This allows machine code generation // to emit a jump instruction to after the block when it encounters the break. try parent_block.instructions.append(self.gpa, &block_inst.base); block_inst.base.ty = try self.resolvePeerTypes(scope, label.results.items); block_inst.body = .{ .instructions = try parent_block.arena.dupe(*Inst, child_block.instructions.items) }; return &block_inst.base; } fn analyzeInstBreakpoint(self: *Module, scope: *Scope, inst: *zir.Inst.NoOp) InnerError!*Inst { const b = try self.requireRuntimeBlock(scope, inst.base.src); return self.addNoOp(b, inst.base.src, Type.initTag(.void), .breakpoint); } fn analyzeInstBreak(self: *Module, scope: *Scope, inst: *zir.Inst.Break) InnerError!*Inst { const operand = try self.resolveInst(scope, inst.positionals.operand); const block = inst.positionals.block; return self.analyzeBreak(scope, inst.base.src, block, operand); } fn analyzeInstBreakVoid(self: *Module, scope: *Scope, inst: *zir.Inst.BreakVoid) InnerError!*Inst { const block = inst.positionals.block; const void_inst = try self.constVoid(scope, inst.base.src); return self.analyzeBreak(scope, inst.base.src, block, void_inst); } fn analyzeBreak( self: *Module, scope: *Scope, src: usize, zir_block: *zir.Inst.Block, operand: *Inst, ) InnerError!*Inst { var opt_block = scope.cast(Scope.Block); while (opt_block) |block| { if (block.label) |*label| { if (label.zir_block == zir_block) { try label.results.append(self.gpa, operand); const b = try self.requireRuntimeBlock(scope, src); return self.addBr(b, src, label.block_inst, operand); } } opt_block = block.parent; } else unreachable; } fn analyzeInstDeclRefStr(self: *Module, scope: *Scope, inst: *zir.Inst.DeclRefStr) InnerError!*Inst { const decl_name = try self.resolveConstString(scope, inst.positionals.name); return self.analyzeDeclRefByName(scope, inst.base.src, decl_name); } fn analyzeInstDeclRef(self: *Module, scope: *Scope, inst: *zir.Inst.DeclRef) InnerError!*Inst { return self.analyzeDeclRefByName(scope, inst.base.src, inst.positionals.name); } fn analyzeDeclVal(self: *Module, scope: *Scope, inst: *zir.Inst.DeclVal) InnerError!*Decl { const decl_name = inst.positionals.name; const zir_module = scope.namespace().cast(Scope.ZIRModule).?; const src_decl = zir_module.contents.module.findDecl(decl_name) orelse return self.fail(scope, inst.base.src, "use of undeclared identifier '{}'", .{decl_name}); const decl = try self.resolveCompleteZirDecl(scope, src_decl.decl); return decl; } fn analyzeInstDeclVal(self: *Module, scope: *Scope, inst: *zir.Inst.DeclVal) InnerError!*Inst { const decl = try self.analyzeDeclVal(scope, inst); const ptr = try self.analyzeDeclRef(scope, inst.base.src, decl); return self.analyzeDeref(scope, inst.base.src, ptr, inst.base.src); } fn analyzeInstDeclValInModule(self: *Module, scope: *Scope, inst: *zir.Inst.DeclValInModule) InnerError!*Inst { const decl = inst.positionals.decl; const ptr = try self.analyzeDeclRef(scope, inst.base.src, decl); return self.analyzeDeref(scope, inst.base.src, ptr, inst.base.src); } fn analyzeDeclRef(self: *Module, scope: *Scope, src: usize, decl: *Decl) InnerError!*Inst { const scope_decl = scope.decl().?; try self.declareDeclDependency(scope_decl, decl); self.ensureDeclAnalyzed(decl) catch |err| { if (scope.cast(Scope.Block)) |block| { if (block.func) |func| { func.analysis = .dependency_failure; } else { block.decl.analysis = .dependency_failure; } } else { scope_decl.analysis = .dependency_failure; } return err; }; const decl_tv = try decl.typedValue(); const ty_payload = try scope.arena().create(Type.Payload.SingleConstPointer); ty_payload.* = .{ .pointee_type = decl_tv.ty }; const val_payload = try scope.arena().create(Value.Payload.DeclRef); val_payload.* = .{ .decl = decl }; return self.constInst(scope, src, .{ .ty = Type.initPayload(&ty_payload.base), .val = Value.initPayload(&val_payload.base), }); } fn analyzeDeclRefByName(self: *Module, scope: *Scope, src: usize, decl_name: []const u8) InnerError!*Inst { const decl = self.lookupDeclName(scope, decl_name) orelse return self.fail(scope, src, "decl '{}' not found", .{decl_name}); return self.analyzeDeclRef(scope, src, decl); } fn analyzeInstCall(self: *Module, scope: *Scope, inst: *zir.Inst.Call) InnerError!*Inst { const func = try self.resolveInst(scope, inst.positionals.func); if (func.ty.zigTypeTag() != .Fn) return self.fail(scope, inst.positionals.func.src, "type '{}' not a function", .{func.ty}); const cc = func.ty.fnCallingConvention(); if (cc == .Naked) { // TODO add error note: declared here return self.fail( scope, inst.positionals.func.src, "unable to call function with naked calling convention", .{}, ); } const call_params_len = inst.positionals.args.len; const fn_params_len = func.ty.fnParamLen(); if (func.ty.fnIsVarArgs()) { if (call_params_len < fn_params_len) { // TODO add error note: declared here return self.fail( scope, inst.positionals.func.src, "expected at least {} arguments, found {}", .{ fn_params_len, call_params_len }, ); } return self.fail(scope, inst.base.src, "TODO implement support for calling var args functions", .{}); } else if (fn_params_len != call_params_len) { // TODO add error note: declared here return self.fail( scope, inst.positionals.func.src, "expected {} arguments, found {}", .{ fn_params_len, call_params_len }, ); } if (inst.kw_args.modifier == .compile_time) { return self.fail(scope, inst.base.src, "TODO implement comptime function calls", .{}); } if (inst.kw_args.modifier != .auto) { return self.fail(scope, inst.base.src, "TODO implement call with modifier {}", .{inst.kw_args.modifier}); } // TODO handle function calls of generic functions const fn_param_types = try self.gpa.alloc(Type, fn_params_len); defer self.gpa.free(fn_param_types); func.ty.fnParamTypes(fn_param_types); const casted_args = try scope.arena().alloc(*Inst, fn_params_len); for (inst.positionals.args) |src_arg, i| { const uncasted_arg = try self.resolveInst(scope, src_arg); casted_args[i] = try self.coerce(scope, fn_param_types[i], uncasted_arg); } const b = try self.requireRuntimeBlock(scope, inst.base.src); return self.addCall(b, inst.base.src, Type.initTag(.void), func, casted_args); } fn analyzeInstFn(self: *Module, scope: *Scope, fn_inst: *zir.Inst.Fn) InnerError!*Inst { const fn_type = try self.resolveType(scope, fn_inst.positionals.fn_type); const fn_zir = blk: { var fn_arena = std.heap.ArenaAllocator.init(self.gpa); errdefer fn_arena.deinit(); const fn_zir = try scope.arena().create(Fn.ZIR); fn_zir.* = .{ .body = .{ .instructions = fn_inst.positionals.body.instructions, }, .arena = fn_arena.state, }; break :blk fn_zir; }; const new_func = try scope.arena().create(Fn); new_func.* = .{ .analysis = .{ .queued = fn_zir }, .owner_decl = scope.decl().?, }; const fn_payload = try scope.arena().create(Value.Payload.Function); fn_payload.* = .{ .func = new_func }; return self.constInst(scope, fn_inst.base.src, .{ .ty = fn_type, .val = Value.initPayload(&fn_payload.base), }); } fn analyzeInstIntType(self: *Module, scope: *Scope, inttype: *zir.Inst.IntType) InnerError!*Inst { return self.fail(scope, inttype.base.src, "TODO implement inttype", .{}); } fn analyzeInstFnType(self: *Module, scope: *Scope, fntype: *zir.Inst.FnType) InnerError!*Inst { const return_type = try self.resolveType(scope, fntype.positionals.return_type); // Hot path for some common function types. if (fntype.positionals.param_types.len == 0) { if (return_type.zigTypeTag() == .NoReturn and fntype.kw_args.cc == .Unspecified) { return self.constType(scope, fntype.base.src, Type.initTag(.fn_noreturn_no_args)); } if (return_type.zigTypeTag() == .Void and fntype.kw_args.cc == .Unspecified) { return self.constType(scope, fntype.base.src, Type.initTag(.fn_void_no_args)); } if (return_type.zigTypeTag() == .NoReturn and fntype.kw_args.cc == .Naked) { return self.constType(scope, fntype.base.src, Type.initTag(.fn_naked_noreturn_no_args)); } if (return_type.zigTypeTag() == .Void and fntype.kw_args.cc == .C) { return self.constType(scope, fntype.base.src, Type.initTag(.fn_ccc_void_no_args)); } } const arena = scope.arena(); const param_types = try arena.alloc(Type, fntype.positionals.param_types.len); for (fntype.positionals.param_types) |param_type, i| { param_types[i] = try self.resolveType(scope, param_type); } const payload = try arena.create(Type.Payload.Function); payload.* = .{ .cc = fntype.kw_args.cc, .return_type = return_type, .param_types = param_types, }; return self.constType(scope, fntype.base.src, Type.initPayload(&payload.base)); } fn analyzeInstPrimitive(self: *Module, scope: *Scope, primitive: *zir.Inst.Primitive) InnerError!*Inst { return self.constInst(scope, primitive.base.src, primitive.positionals.tag.toTypedValue()); } fn analyzeInstAs(self: *Module, scope: *Scope, as: *zir.Inst.As) InnerError!*Inst { const dest_type = try self.resolveType(scope, as.positionals.dest_type); const new_inst = try self.resolveInst(scope, as.positionals.value); return self.coerce(scope, dest_type, new_inst); } fn analyzeInstPtrToInt(self: *Module, scope: *Scope, ptrtoint: *zir.Inst.PtrToInt) InnerError!*Inst { const ptr = try self.resolveInst(scope, ptrtoint.positionals.operand); if (ptr.ty.zigTypeTag() != .Pointer) { return self.fail(scope, ptrtoint.positionals.operand.src, "expected pointer, found '{}'", .{ptr.ty}); } // TODO handle known-pointer-address const b = try self.requireRuntimeBlock(scope, ptrtoint.base.src); const ty = Type.initTag(.usize); return self.addUnOp(b, ptrtoint.base.src, ty, .ptrtoint, ptr); } fn analyzeInstFieldPtr(self: *Module, scope: *Scope, fieldptr: *zir.Inst.FieldPtr) InnerError!*Inst { const object_ptr = try self.resolveInst(scope, fieldptr.positionals.object_ptr); const field_name = try self.resolveConstString(scope, fieldptr.positionals.field_name); const elem_ty = switch (object_ptr.ty.zigTypeTag()) { .Pointer => object_ptr.ty.elemType(), else => return self.fail(scope, fieldptr.positionals.object_ptr.src, "expected pointer, found '{}'", .{object_ptr.ty}), }; switch (elem_ty.zigTypeTag()) { .Array => { if (mem.eql(u8, field_name, "len")) { const len_payload = try scope.arena().create(Value.Payload.Int_u64); len_payload.* = .{ .int = elem_ty.arrayLen() }; const ref_payload = try scope.arena().create(Value.Payload.RefVal); ref_payload.* = .{ .val = Value.initPayload(&len_payload.base) }; return self.constInst(scope, fieldptr.base.src, .{ .ty = Type.initTag(.single_const_pointer_to_comptime_int), .val = Value.initPayload(&ref_payload.base), }); } else { return self.fail( scope, fieldptr.positionals.field_name.src, "no member named '{}' in '{}'", .{ field_name, elem_ty }, ); } }, else => return self.fail(scope, fieldptr.base.src, "type '{}' does not support field access", .{elem_ty}), } } fn analyzeInstIntCast(self: *Module, scope: *Scope, inst: *zir.Inst.IntCast) InnerError!*Inst { const dest_type = try self.resolveType(scope, inst.positionals.dest_type); const operand = try self.resolveInst(scope, inst.positionals.operand); const dest_is_comptime_int = switch (dest_type.zigTypeTag()) { .ComptimeInt => true, .Int => false, else => return self.fail( scope, inst.positionals.dest_type.src, "expected integer type, found '{}'", .{ dest_type, }, ), }; switch (operand.ty.zigTypeTag()) { .ComptimeInt, .Int => {}, else => return self.fail( scope, inst.positionals.operand.src, "expected integer type, found '{}'", .{operand.ty}, ), } if (operand.value() != null) { return self.coerce(scope, dest_type, operand); } else if (dest_is_comptime_int) { return self.fail(scope, inst.base.src, "unable to cast runtime value to 'comptime_int'", .{}); } return self.fail(scope, inst.base.src, "TODO implement analyze widen or shorten int", .{}); } fn analyzeInstBitCast(self: *Module, scope: *Scope, inst: *zir.Inst.BitCast) InnerError!*Inst { const dest_type = try self.resolveType(scope, inst.positionals.dest_type); const operand = try self.resolveInst(scope, inst.positionals.operand); return self.bitcast(scope, dest_type, operand); } fn analyzeInstFloatCast(self: *Module, scope: *Scope, inst: *zir.Inst.FloatCast) InnerError!*Inst { const dest_type = try self.resolveType(scope, inst.positionals.dest_type); const operand = try self.resolveInst(scope, inst.positionals.operand); const dest_is_comptime_float = switch (dest_type.zigTypeTag()) { .ComptimeFloat => true, .Float => false, else => return self.fail( scope, inst.positionals.dest_type.src, "expected float type, found '{}'", .{ dest_type, }, ), }; switch (operand.ty.zigTypeTag()) { .ComptimeFloat, .Float, .ComptimeInt => {}, else => return self.fail( scope, inst.positionals.operand.src, "expected float type, found '{}'", .{operand.ty}, ), } if (operand.value() != null) { return self.coerce(scope, dest_type, operand); } else if (dest_is_comptime_float) { return self.fail(scope, inst.base.src, "unable to cast runtime value to 'comptime_float'", .{}); } return self.fail(scope, inst.base.src, "TODO implement analyze widen or shorten float", .{}); } fn analyzeInstElemPtr(self: *Module, scope: *Scope, inst: *zir.Inst.ElemPtr) InnerError!*Inst { const array_ptr = try self.resolveInst(scope, inst.positionals.array_ptr); const uncasted_index = try self.resolveInst(scope, inst.positionals.index); const elem_index = try self.coerce(scope, Type.initTag(.usize), uncasted_index); if (array_ptr.ty.isSinglePointer() and array_ptr.ty.elemType().zigTypeTag() == .Array) { if (array_ptr.value()) |array_ptr_val| { if (elem_index.value()) |index_val| { // Both array pointer and index are compile-time known. const index_u64 = index_val.toUnsignedInt(); // @intCast here because it would have been impossible to construct a value that // required a larger index. const elem_ptr = try array_ptr_val.elemPtr(scope.arena(), @intCast(usize, index_u64)); const type_payload = try scope.arena().create(Type.Payload.SingleConstPointer); type_payload.* = .{ .pointee_type = array_ptr.ty.elemType().elemType() }; return self.constInst(scope, inst.base.src, .{ .ty = Type.initPayload(&type_payload.base), .val = elem_ptr, }); } } } return self.fail(scope, inst.base.src, "TODO implement more analyze elemptr", .{}); } fn analyzeInstSub(self: *Module, scope: *Scope, inst: *zir.Inst.BinOp) InnerError!*Inst { return self.fail(scope, inst.base.src, "TODO implement analysis of sub", .{}); } fn analyzeInstAdd(self: *Module, scope: *Scope, inst: *zir.Inst.BinOp) InnerError!*Inst { const tracy = trace(@src()); defer tracy.end(); const lhs = try self.resolveInst(scope, inst.positionals.lhs); const rhs = try self.resolveInst(scope, inst.positionals.rhs); if ((lhs.ty.zigTypeTag() == .Int or lhs.ty.zigTypeTag() == .ComptimeInt) and (rhs.ty.zigTypeTag() == .Int or rhs.ty.zigTypeTag() == .ComptimeInt)) { if (!lhs.ty.eql(rhs.ty)) { return self.fail(scope, inst.base.src, "TODO implement peer type resolution", .{}); } if (lhs.value()) |lhs_val| { if (rhs.value()) |rhs_val| { // TODO is this a performance issue? maybe we should try the operation without // resorting to BigInt first. var lhs_space: Value.BigIntSpace = undefined; var rhs_space: Value.BigIntSpace = undefined; const lhs_bigint = lhs_val.toBigInt(&lhs_space); const rhs_bigint = rhs_val.toBigInt(&rhs_space); const limbs = try scope.arena().alloc( std.math.big.Limb, std.math.max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1, ); var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined }; result_bigint.add(lhs_bigint, rhs_bigint); const result_limbs = result_bigint.limbs[0..result_bigint.len]; const val_payload = if (result_bigint.positive) blk: { const val_payload = try scope.arena().create(Value.Payload.IntBigPositive); val_payload.* = .{ .limbs = result_limbs }; break :blk &val_payload.base; } else blk: { const val_payload = try scope.arena().create(Value.Payload.IntBigNegative); val_payload.* = .{ .limbs = result_limbs }; break :blk &val_payload.base; }; return self.constInst(scope, inst.base.src, .{ .ty = lhs.ty, .val = Value.initPayload(val_payload), }); } } const b = try self.requireRuntimeBlock(scope, inst.base.src); return self.addBinOp(b, inst.base.src, lhs.ty, .add, lhs, rhs); } return self.fail(scope, inst.base.src, "TODO analyze add for {} + {}", .{ lhs.ty.zigTypeTag(), rhs.ty.zigTypeTag() }); } fn analyzeInstDeref(self: *Module, scope: *Scope, deref: *zir.Inst.UnOp) InnerError!*Inst { const ptr = try self.resolveInst(scope, deref.positionals.operand); return self.analyzeDeref(scope, deref.base.src, ptr, deref.positionals.operand.src); } fn analyzeDeref(self: *Module, scope: *Scope, src: usize, ptr: *Inst, ptr_src: usize) InnerError!*Inst { const elem_ty = switch (ptr.ty.zigTypeTag()) { .Pointer => ptr.ty.elemType(), else => return self.fail(scope, ptr_src, "expected pointer, found '{}'", .{ptr.ty}), }; if (ptr.value()) |val| { return self.constInst(scope, src, .{ .ty = elem_ty, .val = try val.pointerDeref(scope.arena()), }); } return self.fail(scope, src, "TODO implement runtime deref", .{}); } fn analyzeInstAsm(self: *Module, scope: *Scope, assembly: *zir.Inst.Asm) InnerError!*Inst { const return_type = try self.resolveType(scope, assembly.positionals.return_type); const asm_source = try self.resolveConstString(scope, assembly.positionals.asm_source); const output = if (assembly.kw_args.output) |o| try self.resolveConstString(scope, o) else null; const inputs = try scope.arena().alloc([]const u8, assembly.kw_args.inputs.len); const clobbers = try scope.arena().alloc([]const u8, assembly.kw_args.clobbers.len); const args = try scope.arena().alloc(*Inst, assembly.kw_args.args.len); for (inputs) |*elem, i| { elem.* = try self.resolveConstString(scope, assembly.kw_args.inputs[i]); } for (clobbers) |*elem, i| { elem.* = try self.resolveConstString(scope, assembly.kw_args.clobbers[i]); } for (args) |*elem, i| { const arg = try self.resolveInst(scope, assembly.kw_args.args[i]); elem.* = try self.coerce(scope, Type.initTag(.usize), arg); } const b = try self.requireRuntimeBlock(scope, assembly.base.src); const inst = try b.arena.create(Inst.Assembly); inst.* = .{ .base = .{ .tag = .assembly, .ty = return_type, .src = assembly.base.src, }, .asm_source = asm_source, .is_volatile = assembly.kw_args.@"volatile", .output = output, .inputs = inputs, .clobbers = clobbers, .args = args, }; try b.instructions.append(self.gpa, &inst.base); return &inst.base; } fn analyzeInstCmp( self: *Module, scope: *Scope, inst: *zir.Inst.BinOp, op: std.math.CompareOperator, ) InnerError!*Inst { const lhs = try self.resolveInst(scope, inst.positionals.lhs); const rhs = try self.resolveInst(scope, inst.positionals.rhs); const is_equality_cmp = switch (op) { .eq, .neq => true, else => false, }; const lhs_ty_tag = lhs.ty.zigTypeTag(); const rhs_ty_tag = rhs.ty.zigTypeTag(); if (is_equality_cmp and lhs_ty_tag == .Null and rhs_ty_tag == .Null) { // null == null, null != null return self.constBool(scope, inst.base.src, op == .eq); } else if (is_equality_cmp and ((lhs_ty_tag == .Null and rhs_ty_tag == .Optional) or rhs_ty_tag == .Null and lhs_ty_tag == .Optional)) { // comparing null with optionals const opt_operand = if (lhs_ty_tag == .Optional) lhs else rhs; if (opt_operand.value()) |opt_val| { const is_null = opt_val.isNull(); return self.constBool(scope, inst.base.src, if (op == .eq) is_null else !is_null); } const b = try self.requireRuntimeBlock(scope, inst.base.src); const inst_tag: Inst.Tag = switch (op) { .eq => .isnull, .neq => .isnonnull, else => unreachable, }; return self.addUnOp(b, inst.base.src, Type.initTag(.bool), inst_tag, opt_operand); } else if (is_equality_cmp and ((lhs_ty_tag == .Null and rhs.ty.isCPtr()) or (rhs_ty_tag == .Null and lhs.ty.isCPtr()))) { return self.fail(scope, inst.base.src, "TODO implement C pointer cmp", .{}); } else if (lhs_ty_tag == .Null or rhs_ty_tag == .Null) { const non_null_type = if (lhs_ty_tag == .Null) rhs.ty else lhs.ty; return self.fail(scope, inst.base.src, "comparison of '{}' with null", .{non_null_type}); } else if (is_equality_cmp and ((lhs_ty_tag == .EnumLiteral and rhs_ty_tag == .Union) or (rhs_ty_tag == .EnumLiteral and lhs_ty_tag == .Union))) { return self.fail(scope, inst.base.src, "TODO implement equality comparison between a union's tag value and an enum literal", .{}); } else if (lhs_ty_tag == .ErrorSet and rhs_ty_tag == .ErrorSet) { if (!is_equality_cmp) { return self.fail(scope, inst.base.src, "{} operator not allowed for errors", .{@tagName(op)}); } return self.fail(scope, inst.base.src, "TODO implement equality comparison between errors", .{}); } else if (lhs.ty.isNumeric() and rhs.ty.isNumeric()) { // This operation allows any combination of integer and float types, regardless of the // signed-ness, comptime-ness, and bit-width. So peer type resolution is incorrect for // numeric types. return self.cmpNumeric(scope, inst.base.src, lhs, rhs, op); } return self.fail(scope, inst.base.src, "TODO implement more cmp analysis", .{}); } fn analyzeInstBoolNot(self: *Module, scope: *Scope, inst: *zir.Inst.UnOp) InnerError!*Inst { const uncasted_operand = try self.resolveInst(scope, inst.positionals.operand); const bool_type = Type.initTag(.bool); const operand = try self.coerce(scope, bool_type, uncasted_operand); if (try self.resolveDefinedValue(scope, operand)) |val| { return self.constBool(scope, inst.base.src, !val.toBool()); } const b = try self.requireRuntimeBlock(scope, inst.base.src); return self.addUnOp(b, inst.base.src, bool_type, .not, operand); } fn analyzeInstIsNonNull(self: *Module, scope: *Scope, inst: *zir.Inst.UnOp, invert_logic: bool) InnerError!*Inst { const operand = try self.resolveInst(scope, inst.positionals.operand); return self.analyzeIsNull(scope, inst.base.src, operand, invert_logic); } fn analyzeInstCondBr(self: *Module, scope: *Scope, inst: *zir.Inst.CondBr) InnerError!*Inst { const uncasted_cond = try self.resolveInst(scope, inst.positionals.condition); const cond = try self.coerce(scope, Type.initTag(.bool), uncasted_cond); if (try self.resolveDefinedValue(scope, cond)) |cond_val| { const body = if (cond_val.toBool()) &inst.positionals.then_body else &inst.positionals.else_body; try self.analyzeBody(scope, body.*); return self.constVoid(scope, inst.base.src); } const parent_block = try self.requireRuntimeBlock(scope, inst.base.src); var true_block: Scope.Block = .{ .parent = parent_block, .func = parent_block.func, .decl = parent_block.decl, .instructions = .{}, .arena = parent_block.arena, }; defer true_block.instructions.deinit(self.gpa); try self.analyzeBody(&true_block.base, inst.positionals.then_body); var false_block: Scope.Block = .{ .parent = parent_block, .func = parent_block.func, .decl = parent_block.decl, .instructions = .{}, .arena = parent_block.arena, }; defer false_block.instructions.deinit(self.gpa); try self.analyzeBody(&false_block.base, inst.positionals.else_body); const then_body: ir.Body = .{ .instructions = try scope.arena().dupe(*Inst, true_block.instructions.items) }; const else_body: ir.Body = .{ .instructions = try scope.arena().dupe(*Inst, false_block.instructions.items) }; return self.addCondBr(parent_block, inst.base.src, cond, then_body, else_body); } fn wantSafety(self: *Module, scope: *Scope) bool { return switch (self.optimize_mode) { .Debug => true, .ReleaseSafe => true, .ReleaseFast => false, .ReleaseSmall => false, }; } fn analyzeInstUnreachable(self: *Module, scope: *Scope, unreach: *zir.Inst.NoOp) InnerError!*Inst { const b = try self.requireRuntimeBlock(scope, unreach.base.src); if (self.wantSafety(scope)) { // TODO Once we have a panic function to call, call it here instead of this. _ = try self.addNoOp(b, unreach.base.src, Type.initTag(.void), .breakpoint); } return self.addNoOp(b, unreach.base.src, Type.initTag(.noreturn), .unreach); } fn analyzeInstRet(self: *Module, scope: *Scope, inst: *zir.Inst.UnOp) InnerError!*Inst { const operand = try self.resolveInst(scope, inst.positionals.operand); const b = try self.requireRuntimeBlock(scope, inst.base.src); return self.addUnOp(b, inst.base.src, Type.initTag(.noreturn), .ret, operand); } fn analyzeInstRetVoid(self: *Module, scope: *Scope, inst: *zir.Inst.NoOp) InnerError!*Inst { const b = try self.requireRuntimeBlock(scope, inst.base.src); return self.addNoOp(b, inst.base.src, Type.initTag(.noreturn), .retvoid); } fn analyzeBody(self: *Module, scope: *Scope, body: zir.Module.Body) !void { for (body.instructions) |src_inst| { src_inst.analyzed_inst = try self.analyzeInst(scope, src_inst); } } fn analyzeIsNull( self: *Module, scope: *Scope, src: usize, operand: *Inst, invert_logic: bool, ) InnerError!*Inst { return self.fail(scope, src, "TODO implement analysis of isnull and isnotnull", .{}); } /// Asserts that lhs and rhs types are both numeric. fn cmpNumeric( self: *Module, scope: *Scope, src: usize, lhs: *Inst, rhs: *Inst, op: std.math.CompareOperator, ) !*Inst { assert(lhs.ty.isNumeric()); assert(rhs.ty.isNumeric()); const lhs_ty_tag = lhs.ty.zigTypeTag(); const rhs_ty_tag = rhs.ty.zigTypeTag(); if (lhs_ty_tag == .Vector and rhs_ty_tag == .Vector) { if (lhs.ty.arrayLen() != rhs.ty.arrayLen()) { return self.fail(scope, src, "vector length mismatch: {} and {}", .{ lhs.ty.arrayLen(), rhs.ty.arrayLen(), }); } return self.fail(scope, src, "TODO implement support for vectors in cmpNumeric", .{}); } else if (lhs_ty_tag == .Vector or rhs_ty_tag == .Vector) { return self.fail(scope, src, "mixed scalar and vector operands to comparison operator: '{}' and '{}'", .{ lhs.ty, rhs.ty, }); } if (lhs.value()) |lhs_val| { if (rhs.value()) |rhs_val| { return self.constBool(scope, src, Value.compare(lhs_val, op, rhs_val)); } } // TODO handle comparisons against lazy zero values // Some values can be compared against zero without being runtime known or without forcing // a full resolution of their value, for example `@sizeOf(@Frame(function))` is known to // always be nonzero, and we benefit from not forcing the full evaluation and stack frame layout // of this function if we don't need to. // It must be a runtime comparison. const b = try self.requireRuntimeBlock(scope, src); // For floats, emit a float comparison instruction. const lhs_is_float = switch (lhs_ty_tag) { .Float, .ComptimeFloat => true, else => false, }; const rhs_is_float = switch (rhs_ty_tag) { .Float, .ComptimeFloat => true, else => false, }; if (lhs_is_float and rhs_is_float) { // Implicit cast the smaller one to the larger one. const dest_type = x: { if (lhs_ty_tag == .ComptimeFloat) { break :x rhs.ty; } else if (rhs_ty_tag == .ComptimeFloat) { break :x lhs.ty; } if (lhs.ty.floatBits(self.target()) >= rhs.ty.floatBits(self.target())) { break :x lhs.ty; } else { break :x rhs.ty; } }; const casted_lhs = try self.coerce(scope, dest_type, lhs); const casted_rhs = try self.coerce(scope, dest_type, rhs); return self.addBinOp(b, src, dest_type, Inst.Tag.fromCmpOp(op), casted_lhs, casted_rhs); } // For mixed unsigned integer sizes, implicit cast both operands to the larger integer. // For mixed signed and unsigned integers, implicit cast both operands to a signed // integer with + 1 bit. // For mixed floats and integers, extract the integer part from the float, cast that to // a signed integer with mantissa bits + 1, and if there was any non-integral part of the float, // add/subtract 1. const lhs_is_signed = if (lhs.value()) |lhs_val| lhs_val.compareWithZero(.lt) else (lhs.ty.isFloat() or lhs.ty.isSignedInt()); const rhs_is_signed = if (rhs.value()) |rhs_val| rhs_val.compareWithZero(.lt) else (rhs.ty.isFloat() or rhs.ty.isSignedInt()); const dest_int_is_signed = lhs_is_signed or rhs_is_signed; var dest_float_type: ?Type = null; var lhs_bits: usize = undefined; if (lhs.value()) |lhs_val| { if (lhs_val.isUndef()) return self.constUndef(scope, src, Type.initTag(.bool)); const is_unsigned = if (lhs_is_float) x: { var bigint_space: Value.BigIntSpace = undefined; var bigint = try lhs_val.toBigInt(&bigint_space).toManaged(self.gpa); defer bigint.deinit(); const zcmp = lhs_val.orderAgainstZero(); if (lhs_val.floatHasFraction()) { switch (op) { .eq => return self.constBool(scope, src, false), .neq => return self.constBool(scope, src, true), else => {}, } if (zcmp == .lt) { try bigint.addScalar(bigint.toConst(), -1); } else { try bigint.addScalar(bigint.toConst(), 1); } } lhs_bits = bigint.toConst().bitCountTwosComp(); break :x (zcmp != .lt); } else x: { lhs_bits = lhs_val.intBitCountTwosComp(); break :x (lhs_val.orderAgainstZero() != .lt); }; lhs_bits += @boolToInt(is_unsigned and dest_int_is_signed); } else if (lhs_is_float) { dest_float_type = lhs.ty; } else { const int_info = lhs.ty.intInfo(self.target()); lhs_bits = int_info.bits + @boolToInt(!int_info.signed and dest_int_is_signed); } var rhs_bits: usize = undefined; if (rhs.value()) |rhs_val| { if (rhs_val.isUndef()) return self.constUndef(scope, src, Type.initTag(.bool)); const is_unsigned = if (rhs_is_float) x: { var bigint_space: Value.BigIntSpace = undefined; var bigint = try rhs_val.toBigInt(&bigint_space).toManaged(self.gpa); defer bigint.deinit(); const zcmp = rhs_val.orderAgainstZero(); if (rhs_val.floatHasFraction()) { switch (op) { .eq => return self.constBool(scope, src, false), .neq => return self.constBool(scope, src, true), else => {}, } if (zcmp == .lt) { try bigint.addScalar(bigint.toConst(), -1); } else { try bigint.addScalar(bigint.toConst(), 1); } } rhs_bits = bigint.toConst().bitCountTwosComp(); break :x (zcmp != .lt); } else x: { rhs_bits = rhs_val.intBitCountTwosComp(); break :x (rhs_val.orderAgainstZero() != .lt); }; rhs_bits += @boolToInt(is_unsigned and dest_int_is_signed); } else if (rhs_is_float) { dest_float_type = rhs.ty; } else { const int_info = rhs.ty.intInfo(self.target()); rhs_bits = int_info.bits + @boolToInt(!int_info.signed and dest_int_is_signed); } const dest_type = if (dest_float_type) |ft| ft else blk: { const max_bits = std.math.max(lhs_bits, rhs_bits); const casted_bits = std.math.cast(u16, max_bits) catch |err| switch (err) { error.Overflow => return self.fail(scope, src, "{} exceeds maximum integer bit count", .{max_bits}), }; break :blk try self.makeIntType(scope, dest_int_is_signed, casted_bits); }; const casted_lhs = try self.coerce(scope, dest_type, lhs); const casted_rhs = try self.coerce(scope, dest_type, rhs); return self.addBinOp(b, src, Type.initTag(.bool), Inst.Tag.fromCmpOp(op), casted_lhs, casted_rhs); } fn makeIntType(self: *Module, scope: *Scope, signed: bool, bits: u16) !Type { if (signed) { const int_payload = try scope.arena().create(Type.Payload.IntSigned); int_payload.* = .{ .bits = bits }; return Type.initPayload(&int_payload.base); } else { const int_payload = try scope.arena().create(Type.Payload.IntUnsigned); int_payload.* = .{ .bits = bits }; return Type.initPayload(&int_payload.base); } } fn resolvePeerTypes(self: *Module, scope: *Scope, instructions: []*Inst) !Type { if (instructions.len == 0) return Type.initTag(.noreturn); if (instructions.len == 1) return instructions[0].ty; var prev_inst = instructions[0]; for (instructions[1..]) |next_inst| { if (next_inst.ty.eql(prev_inst.ty)) continue; if (next_inst.ty.zigTypeTag() == .NoReturn) continue; if (prev_inst.ty.zigTypeTag() == .NoReturn) { prev_inst = next_inst; continue; } // TODO error notes pointing out each type return self.fail(scope, next_inst.src, "incompatible types: '{}' and '{}'", .{ prev_inst.ty, next_inst.ty }); } return prev_inst.ty; } fn coerce(self: *Module, scope: *Scope, dest_type: Type, inst: *Inst) !*Inst { // If the types are the same, we can return the operand. if (dest_type.eql(inst.ty)) return inst; const in_memory_result = coerceInMemoryAllowed(dest_type, inst.ty); if (in_memory_result == .ok) { return self.bitcast(scope, dest_type, inst); } // undefined to anything if (inst.value()) |val| { if (val.isUndef() or inst.ty.zigTypeTag() == .Undefined) { return self.constInst(scope, inst.src, .{ .ty = dest_type, .val = val }); } } assert(inst.ty.zigTypeTag() != .Undefined); // *[N]T to []T if (inst.ty.isSinglePointer() and dest_type.isSlice() and (!inst.ty.pointerIsConst() or dest_type.pointerIsConst())) { const array_type = inst.ty.elemType(); const dst_elem_type = dest_type.elemType(); if (array_type.zigTypeTag() == .Array and coerceInMemoryAllowed(dst_elem_type, array_type.elemType()) == .ok) { return self.coerceArrayPtrToSlice(scope, dest_type, inst); } } // comptime known number to other number if (inst.value()) |val| { const src_zig_tag = inst.ty.zigTypeTag(); const dst_zig_tag = dest_type.zigTypeTag(); if (dst_zig_tag == .ComptimeInt or dst_zig_tag == .Int) { if (src_zig_tag == .Float or src_zig_tag == .ComptimeFloat) { if (val.floatHasFraction()) { return self.fail(scope, inst.src, "fractional component prevents float value {} from being casted to type '{}'", .{ val, inst.ty }); } return self.fail(scope, inst.src, "TODO float to int", .{}); } else if (src_zig_tag == .Int or src_zig_tag == .ComptimeInt) { if (!val.intFitsInType(dest_type, self.target())) { return self.fail(scope, inst.src, "type {} cannot represent integer value {}", .{ inst.ty, val }); } return self.constInst(scope, inst.src, .{ .ty = dest_type, .val = val }); } } else if (dst_zig_tag == .ComptimeFloat or dst_zig_tag == .Float) { if (src_zig_tag == .Float or src_zig_tag == .ComptimeFloat) { return self.fail(scope, inst.src, "TODO float cast", .{}); } else if (src_zig_tag == .Int or src_zig_tag == .ComptimeInt) { return self.fail(scope, inst.src, "TODO int to float", .{}); } } } // integer widening if (inst.ty.zigTypeTag() == .Int and dest_type.zigTypeTag() == .Int) { assert(inst.value() == null); // handled above const src_info = inst.ty.intInfo(self.target()); const dst_info = dest_type.intInfo(self.target()); if ((src_info.signed == dst_info.signed and dst_info.bits >= src_info.bits) or // small enough unsigned ints can get casted to large enough signed ints (src_info.signed and !dst_info.signed and dst_info.bits > src_info.bits)) { const b = try self.requireRuntimeBlock(scope, inst.src); return self.addUnOp(b, inst.src, dest_type, .intcast, inst); } } // float widening if (inst.ty.zigTypeTag() == .Float and dest_type.zigTypeTag() == .Float) { assert(inst.value() == null); // handled above const src_bits = inst.ty.floatBits(self.target()); const dst_bits = dest_type.floatBits(self.target()); if (dst_bits >= src_bits) { const b = try self.requireRuntimeBlock(scope, inst.src); return self.addUnOp(b, inst.src, dest_type, .floatcast, inst); } } return self.fail(scope, inst.src, "TODO implement type coercion from {} to {}", .{ inst.ty, dest_type }); } fn bitcast(self: *Module, scope: *Scope, dest_type: Type, inst: *Inst) !*Inst { if (inst.value()) |val| { // Keep the comptime Value representation; take the new type. return self.constInst(scope, inst.src, .{ .ty = dest_type, .val = val }); } // TODO validate the type size and other compile errors const b = try self.requireRuntimeBlock(scope, inst.src); return self.addUnOp(b, inst.src, dest_type, .bitcast, inst); } fn coerceArrayPtrToSlice(self: *Module, scope: *Scope, dest_type: Type, inst: *Inst) !*Inst { if (inst.value()) |val| { // The comptime Value representation is compatible with both types. return self.constInst(scope, inst.src, .{ .ty = dest_type, .val = val }); } return self.fail(scope, inst.src, "TODO implement coerceArrayPtrToSlice runtime instruction", .{}); } pub fn fail(self: *Module, scope: *Scope, src: usize, comptime format: []const u8, args: anytype) InnerError { @setCold(true); const err_msg = try ErrorMsg.create(self.gpa, src, format, args); return self.failWithOwnedErrorMsg(scope, src, err_msg); } pub fn failTok( self: *Module, scope: *Scope, token_index: ast.TokenIndex, comptime format: []const u8, args: anytype, ) InnerError { @setCold(true); const src = scope.tree().token_locs[token_index].start; return self.fail(scope, src, format, args); } pub fn failNode( self: *Module, scope: *Scope, ast_node: *ast.Node, comptime format: []const u8, args: anytype, ) InnerError { @setCold(true); const src = scope.tree().token_locs[ast_node.firstToken()].start; return self.fail(scope, src, format, args); } fn failWithOwnedErrorMsg(self: *Module, scope: *Scope, src: usize, err_msg: *ErrorMsg) InnerError { { errdefer err_msg.destroy(self.gpa); try self.failed_decls.ensureCapacity(self.gpa, self.failed_decls.items().len + 1); try self.failed_files.ensureCapacity(self.gpa, self.failed_files.items().len + 1); } switch (scope.tag) { .decl => { const decl = scope.cast(Scope.DeclAnalysis).?.decl; decl.analysis = .sema_failure; decl.generation = self.generation; self.failed_decls.putAssumeCapacityNoClobber(decl, err_msg); }, .block => { const block = scope.cast(Scope.Block).?; if (block.func) |func| { func.analysis = .sema_failure; } else { block.decl.analysis = .sema_failure; block.decl.generation = self.generation; } self.failed_decls.putAssumeCapacityNoClobber(block.decl, err_msg); }, .gen_zir => { const gen_zir = scope.cast(Scope.GenZIR).?; gen_zir.decl.analysis = .sema_failure; gen_zir.decl.generation = self.generation; self.failed_decls.putAssumeCapacityNoClobber(gen_zir.decl, err_msg); }, .local_var => { const gen_zir = scope.cast(Scope.LocalVar).?.gen_zir; gen_zir.decl.analysis = .sema_failure; gen_zir.decl.generation = self.generation; self.failed_decls.putAssumeCapacityNoClobber(gen_zir.decl, err_msg); }, .zir_module => { const zir_module = scope.cast(Scope.ZIRModule).?; zir_module.status = .loaded_sema_failure; self.failed_files.putAssumeCapacityNoClobber(scope, err_msg); }, .file => unreachable, } return error.AnalysisFail; } const InMemoryCoercionResult = enum { ok, no_match, }; fn coerceInMemoryAllowed(dest_type: Type, src_type: Type) InMemoryCoercionResult { if (dest_type.eql(src_type)) return .ok; // TODO: implement more of this function return .no_match; } pub const ErrorMsg = struct { byte_offset: usize, msg: []const u8, pub fn create(gpa: *Allocator, byte_offset: usize, comptime format: []const u8, args: anytype) !*ErrorMsg { const self = try gpa.create(ErrorMsg); errdefer gpa.destroy(self); self.* = try init(gpa, byte_offset, format, args); return self; } /// Assumes the ErrorMsg struct and msg were both allocated with allocator. pub fn destroy(self: *ErrorMsg, gpa: *Allocator) void { self.deinit(gpa); gpa.destroy(self); } pub fn init(gpa: *Allocator, byte_offset: usize, comptime format: []const u8, args: anytype) !ErrorMsg { return ErrorMsg{ .byte_offset = byte_offset, .msg = try std.fmt.allocPrint(gpa, format, args), }; } pub fn deinit(self: *ErrorMsg, gpa: *Allocator) void { gpa.free(self.msg); self.* = undefined; } }; fn srcHashEql(a: std.zig.SrcHash, b: std.zig.SrcHash) bool { return @bitCast(u128, a) == @bitCast(u128, b); }