const math = @import("index.zig"); const assert = @import("../debug.zig").assert; pub fn fma(comptime T: type, x: T, y: T, z: T) -> T { switch (T) { f32 => @inlineCall(fma32, x, y, z), f64 => @inlineCall(fma64, x, y ,z), else => @compileError("fma not implemented for " ++ @typeName(T)), } } fn fma32(x: f32, y: f32, z: f32) -> f32 { const xy = f64(x) * y; const xy_z = xy + z; const u = @bitCast(u64, xy_z); const e = (u >> 52) & 0x7FF; if ((u & 0x1FFFFFFF) != 0x10000000 or e == 0x7FF or xy_z - xy == z) { f32(xy_z) } else { // TODO: Handle inexact case with double-rounding f32(xy_z) } } fn fma64(x: f64, y: f64, z: f64) -> f64 { if (!math.isFinite(x) or !math.isFinite(y)) { return x * y + z; } if (!math.isFinite(z)) { return z; } if (x == 0.0 or y == 0.0) { return x * y + z; } if (z == 0.0) { return x * y; } const x1 = math.frexp(x); var ex = x1.exponent; var xs = x1.significand; const x2 = math.frexp(y); var ey = x2.exponent; var ys = x2.significand; const x3 = math.frexp(z); var ez = x3.exponent; var zs = x3.significand; var spread = ex + ey - ez; if (spread <= 53 * 2) { zs = math.scalbn(zs, -spread); } else { zs = math.copysign(f64, math.f64_min, zs); } const xy = dd_mul(xs, ys); const r = dd_add(xy.hi, zs); spread = ex + ey; if (r.hi == 0.0) { return xy.hi + zs + math.scalbn(xy.lo, spread); } const adj = add_adjusted(r.lo, xy.lo); if (spread + math.ilogb(r.hi) > -1023) { math.scalbn(r.hi + adj, spread) } else { add_and_denorm(r.hi, adj, spread) } } const dd = struct { hi: f64, lo: f64, }; fn dd_add(a: f64, b: f64) -> dd { var ret: dd = undefined; ret.hi = a + b; const s = ret.hi - a; ret.lo = (a - (ret.hi - s)) + (b - s); ret } fn dd_mul(a: f64, b: f64) -> dd { var ret: dd = undefined; const split: f64 = 0x1.0p27 + 1.0; var p = a * split; var ha = a - p; ha += p; var la = a - ha; p = b * split; var hb = b - p; hb += p; var lb = b - hb; p = ha * hb; var q = ha * lb + la * hb; ret.hi = p + q; ret.lo = p - ret.hi + q + la * lb; ret } fn add_adjusted(a: f64, b: f64) -> f64 { var sum = dd_add(a, b); if (sum.lo != 0) { var uhii = @bitCast(u64, sum.hi); if (uhii & 1 == 0) { // hibits += copysign(1.0, sum.hi, sum.lo) const uloi = @bitCast(u64, sum.lo); uhii += 1 - ((uhii ^ uloi) >> 62); sum.hi = @bitCast(f64, uhii); } } sum.hi } fn add_and_denorm(a: f64, b: f64, scale: i32) -> f64 { var sum = dd_add(a, b); if (sum.lo != 0) { var uhii = @bitCast(u64, sum.hi); const bits_lost = -i32((uhii >> 52) & 0x7FF) - scale + 1; if ((bits_lost != 1) == (uhii & 1 != 0)) { const uloi = @bitCast(u64, sum.lo); uhii += 1 - (((uhii ^ uloi) >> 62) & 2); sum.hi = @bitCast(f64, uhii); } } math.scalbn(sum.hi, scale) } test "fma" { assert(fma(f32, 0.0, 1.0, 1.0) == fma32(0.0, 1.0, 1.0)); assert(fma(f64, 0.0, 1.0, 1.0) == fma64(0.0, 1.0, 1.0)); } test "fma32" { const epsilon = 0.000001; assert(math.approxEq(f32, fma32(0.0, 5.0, 9.124), 9.124, epsilon)); assert(math.approxEq(f32, fma32(0.2, 5.0, 9.124), 10.124, epsilon)); assert(math.approxEq(f32, fma32(0.8923, 5.0, 9.124), 13.5855, epsilon)); assert(math.approxEq(f32, fma32(1.5, 5.0, 9.124), 16.624, epsilon)); assert(math.approxEq(f32, fma32(37.45, 5.0, 9.124), 196.374004, epsilon)); assert(math.approxEq(f32, fma32(89.123, 5.0, 9.124), 454.739005, epsilon)); assert(math.approxEq(f32, fma32(123123.234375, 5.0, 9.124), 615625.295875, epsilon)); } test "fma64" { const epsilon = 0.000001; assert(math.approxEq(f64, fma64(0.0, 5.0, 9.124), 9.124, epsilon)); assert(math.approxEq(f64, fma64(0.2, 5.0, 9.124), 10.124, epsilon)); assert(math.approxEq(f64, fma64(0.8923, 5.0, 9.124), 13.5855, epsilon)); assert(math.approxEq(f64, fma64(1.5, 5.0, 9.124), 16.624, epsilon)); assert(math.approxEq(f64, fma64(37.45, 5.0, 9.124), 196.374, epsilon)); assert(math.approxEq(f64, fma64(89.123, 5.0, 9.124), 454.739, epsilon)); assert(math.approxEq(f64, fma64(123123.234375, 5.0, 9.124), 615625.295875, epsilon)); }