/*===---- __clang_hip_math.h - HIP math decls -------------------------------=== * * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. * See https://llvm.org/LICENSE.txt for license information. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception * *===-----------------------------------------------------------------------=== */ #ifndef __CLANG_HIP_MATH_H__ #define __CLANG_HIP_MATH_H__ #include #include #include #include #pragma push_macro("__DEVICE__") #pragma push_macro("__RETURN_TYPE") // to be consistent with __clang_cuda_math_forward_declares #define __DEVICE__ static __device__ #define __RETURN_TYPE bool __DEVICE__ inline uint64_t __make_mantissa_base8(const char *__tagp) { uint64_t __r = 0; while (__tagp) { char __tmp = *__tagp; if (__tmp >= '0' && __tmp <= '7') __r = (__r * 8u) + __tmp - '0'; else return 0; ++__tagp; } return __r; } __DEVICE__ inline uint64_t __make_mantissa_base10(const char *__tagp) { uint64_t __r = 0; while (__tagp) { char __tmp = *__tagp; if (__tmp >= '0' && __tmp <= '9') __r = (__r * 10u) + __tmp - '0'; else return 0; ++__tagp; } return __r; } __DEVICE__ inline uint64_t __make_mantissa_base16(const char *__tagp) { uint64_t __r = 0; while (__tagp) { char __tmp = *__tagp; if (__tmp >= '0' && __tmp <= '9') __r = (__r * 16u) + __tmp - '0'; else if (__tmp >= 'a' && __tmp <= 'f') __r = (__r * 16u) + __tmp - 'a' + 10; else if (__tmp >= 'A' && __tmp <= 'F') __r = (__r * 16u) + __tmp - 'A' + 10; else return 0; ++__tagp; } return __r; } __DEVICE__ inline uint64_t __make_mantissa(const char *__tagp) { if (!__tagp) return 0u; if (*__tagp == '0') { ++__tagp; if (*__tagp == 'x' || *__tagp == 'X') return __make_mantissa_base16(__tagp); else return __make_mantissa_base8(__tagp); } return __make_mantissa_base10(__tagp); } // BEGIN FLOAT __DEVICE__ inline float abs(float __x) { return __ocml_fabs_f32(__x); } __DEVICE__ inline float acosf(float __x) { return __ocml_acos_f32(__x); } __DEVICE__ inline float acoshf(float __x) { return __ocml_acosh_f32(__x); } __DEVICE__ inline float asinf(float __x) { return __ocml_asin_f32(__x); } __DEVICE__ inline float asinhf(float __x) { return __ocml_asinh_f32(__x); } __DEVICE__ inline float atan2f(float __x, float __y) { return __ocml_atan2_f32(__x, __y); } __DEVICE__ inline float atanf(float __x) { return __ocml_atan_f32(__x); } __DEVICE__ inline float atanhf(float __x) { return __ocml_atanh_f32(__x); } __DEVICE__ inline float cbrtf(float __x) { return __ocml_cbrt_f32(__x); } __DEVICE__ inline float ceilf(float __x) { return __ocml_ceil_f32(__x); } __DEVICE__ inline float copysignf(float __x, float __y) { return __ocml_copysign_f32(__x, __y); } __DEVICE__ inline float cosf(float __x) { return __ocml_cos_f32(__x); } __DEVICE__ inline float coshf(float __x) { return __ocml_cosh_f32(__x); } __DEVICE__ inline float cospif(float __x) { return __ocml_cospi_f32(__x); } __DEVICE__ inline float cyl_bessel_i0f(float __x) { return __ocml_i0_f32(__x); } __DEVICE__ inline float cyl_bessel_i1f(float __x) { return __ocml_i1_f32(__x); } __DEVICE__ inline float erfcf(float __x) { return __ocml_erfc_f32(__x); } __DEVICE__ inline float erfcinvf(float __x) { return __ocml_erfcinv_f32(__x); } __DEVICE__ inline float erfcxf(float __x) { return __ocml_erfcx_f32(__x); } __DEVICE__ inline float erff(float __x) { return __ocml_erf_f32(__x); } __DEVICE__ inline float erfinvf(float __x) { return __ocml_erfinv_f32(__x); } __DEVICE__ inline float exp10f(float __x) { return __ocml_exp10_f32(__x); } __DEVICE__ inline float exp2f(float __x) { return __ocml_exp2_f32(__x); } __DEVICE__ inline float expf(float __x) { return __ocml_exp_f32(__x); } __DEVICE__ inline float expm1f(float __x) { return __ocml_expm1_f32(__x); } __DEVICE__ inline float fabsf(float __x) { return __ocml_fabs_f32(__x); } __DEVICE__ inline float fdimf(float __x, float __y) { return __ocml_fdim_f32(__x, __y); } __DEVICE__ inline float fdividef(float __x, float __y) { return __x / __y; } __DEVICE__ inline float floorf(float __x) { return __ocml_floor_f32(__x); } __DEVICE__ inline float fmaf(float __x, float __y, float __z) { return __ocml_fma_f32(__x, __y, __z); } __DEVICE__ inline float fmaxf(float __x, float __y) { return __ocml_fmax_f32(__x, __y); } __DEVICE__ inline float fminf(float __x, float __y) { return __ocml_fmin_f32(__x, __y); } __DEVICE__ inline float fmodf(float __x, float __y) { return __ocml_fmod_f32(__x, __y); } __DEVICE__ inline float frexpf(float __x, int *__nptr) { int __tmp; float __r = __ocml_frexp_f32(__x, (__attribute__((address_space(5))) int *)&__tmp); *__nptr = __tmp; return __r; } __DEVICE__ inline float hypotf(float __x, float __y) { return __ocml_hypot_f32(__x, __y); } __DEVICE__ inline int ilogbf(float __x) { return __ocml_ilogb_f32(__x); } __DEVICE__ inline __RETURN_TYPE isfinite(float __x) { return __ocml_isfinite_f32(__x); } __DEVICE__ inline __RETURN_TYPE isinf(float __x) { return __ocml_isinf_f32(__x); } __DEVICE__ inline __RETURN_TYPE isnan(float __x) { return __ocml_isnan_f32(__x); } __DEVICE__ inline float j0f(float __x) { return __ocml_j0_f32(__x); } __DEVICE__ inline float j1f(float __x) { return __ocml_j1_f32(__x); } __DEVICE__ inline float jnf(int __n, float __x) { // TODO: we could use Ahmes multiplication // and the Miller & Brown algorithm // for linear recurrences to get O(log n) steps, but it's unclear if // it'd be beneficial in this case. if (__n == 0) return j0f(__x); if (__n == 1) return j1f(__x); float __x0 = j0f(__x); float __x1 = j1f(__x); for (int __i = 1; __i < __n; ++__i) { float __x2 = (2 * __i) / __x * __x1 - __x0; __x0 = __x1; __x1 = __x2; } return __x1; } __DEVICE__ inline float ldexpf(float __x, int __e) { return __ocml_ldexp_f32(__x, __e); } __DEVICE__ inline float lgammaf(float __x) { return __ocml_lgamma_f32(__x); } __DEVICE__ inline long long int llrintf(float __x) { return __ocml_rint_f32(__x); } __DEVICE__ inline long long int llroundf(float __x) { return __ocml_round_f32(__x); } __DEVICE__ inline float log10f(float __x) { return __ocml_log10_f32(__x); } __DEVICE__ inline float log1pf(float __x) { return __ocml_log1p_f32(__x); } __DEVICE__ inline float log2f(float __x) { return __ocml_log2_f32(__x); } __DEVICE__ inline float logbf(float __x) { return __ocml_logb_f32(__x); } __DEVICE__ inline float logf(float __x) { return __ocml_log_f32(__x); } __DEVICE__ inline long int lrintf(float __x) { return __ocml_rint_f32(__x); } __DEVICE__ inline long int lroundf(float __x) { return __ocml_round_f32(__x); } __DEVICE__ inline float modff(float __x, float *__iptr) { float __tmp; float __r = __ocml_modf_f32(__x, (__attribute__((address_space(5))) float *)&__tmp); *__iptr = __tmp; return __r; } __DEVICE__ inline float nanf(const char *__tagp) { union { float val; struct ieee_float { uint32_t mantissa : 22; uint32_t quiet : 1; uint32_t exponent : 8; uint32_t sign : 1; } bits; static_assert(sizeof(float) == sizeof(ieee_float), ""); } __tmp; __tmp.bits.sign = 0u; __tmp.bits.exponent = ~0u; __tmp.bits.quiet = 1u; __tmp.bits.mantissa = __make_mantissa(__tagp); return __tmp.val; } __DEVICE__ inline float nearbyintf(float __x) { return __ocml_nearbyint_f32(__x); } __DEVICE__ inline float nextafterf(float __x, float __y) { return __ocml_nextafter_f32(__x, __y); } __DEVICE__ inline float norm3df(float __x, float __y, float __z) { return __ocml_len3_f32(__x, __y, __z); } __DEVICE__ inline float norm4df(float __x, float __y, float __z, float __w) { return __ocml_len4_f32(__x, __y, __z, __w); } __DEVICE__ inline float normcdff(float __x) { return __ocml_ncdf_f32(__x); } __DEVICE__ inline float normcdfinvf(float __x) { return __ocml_ncdfinv_f32(__x); } __DEVICE__ inline float normf(int __dim, const float *__a) { // TODO: placeholder until OCML adds support. float __r = 0; while (__dim--) { __r += __a[0] * __a[0]; ++__a; } return __ocml_sqrt_f32(__r); } __DEVICE__ inline float powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); } __DEVICE__ inline float rcbrtf(float __x) { return __ocml_rcbrt_f32(__x); } __DEVICE__ inline float remainderf(float __x, float __y) { return __ocml_remainder_f32(__x, __y); } __DEVICE__ inline float remquof(float __x, float __y, int *__quo) { int __tmp; float __r = __ocml_remquo_f32( __x, __y, (__attribute__((address_space(5))) int *)&__tmp); *__quo = __tmp; return __r; } __DEVICE__ inline float rhypotf(float __x, float __y) { return __ocml_rhypot_f32(__x, __y); } __DEVICE__ inline float rintf(float __x) { return __ocml_rint_f32(__x); } __DEVICE__ inline float rnorm3df(float __x, float __y, float __z) { return __ocml_rlen3_f32(__x, __y, __z); } __DEVICE__ inline float rnorm4df(float __x, float __y, float __z, float __w) { return __ocml_rlen4_f32(__x, __y, __z, __w); } __DEVICE__ inline float rnormf(int __dim, const float *__a) { // TODO: placeholder until OCML adds support. float __r = 0; while (__dim--) { __r += __a[0] * __a[0]; ++__a; } return __ocml_rsqrt_f32(__r); } __DEVICE__ inline float roundf(float __x) { return __ocml_round_f32(__x); } __DEVICE__ inline float rsqrtf(float __x) { return __ocml_rsqrt_f32(__x); } __DEVICE__ inline float scalblnf(float __x, long int __n) { return (__n < INT_MAX) ? __ocml_scalbn_f32(__x, __n) : __ocml_scalb_f32(__x, __n); } __DEVICE__ inline float scalbnf(float __x, int __n) { return __ocml_scalbn_f32(__x, __n); } __DEVICE__ inline __RETURN_TYPE signbit(float __x) { return __ocml_signbit_f32(__x); } __DEVICE__ inline void sincosf(float __x, float *__sinptr, float *__cosptr) { float __tmp; *__sinptr = __ocml_sincos_f32(__x, (__attribute__((address_space(5))) float *)&__tmp); *__cosptr = __tmp; } __DEVICE__ inline void sincospif(float __x, float *__sinptr, float *__cosptr) { float __tmp; *__sinptr = __ocml_sincospi_f32( __x, (__attribute__((address_space(5))) float *)&__tmp); *__cosptr = __tmp; } __DEVICE__ inline float sinf(float __x) { return __ocml_sin_f32(__x); } __DEVICE__ inline float sinhf(float __x) { return __ocml_sinh_f32(__x); } __DEVICE__ inline float sinpif(float __x) { return __ocml_sinpi_f32(__x); } __DEVICE__ inline float sqrtf(float __x) { return __ocml_sqrt_f32(__x); } __DEVICE__ inline float tanf(float __x) { return __ocml_tan_f32(__x); } __DEVICE__ inline float tanhf(float __x) { return __ocml_tanh_f32(__x); } __DEVICE__ inline float tgammaf(float __x) { return __ocml_tgamma_f32(__x); } __DEVICE__ inline float truncf(float __x) { return __ocml_trunc_f32(__x); } __DEVICE__ inline float y0f(float __x) { return __ocml_y0_f32(__x); } __DEVICE__ inline float y1f(float __x) { return __ocml_y1_f32(__x); } __DEVICE__ inline float ynf(int __n, float __x) { // TODO: we could use Ahmes multiplication // and the Miller & Brown algorithm // for linear recurrences to get O(log n) steps, but it's unclear if // it'd be beneficial in this case. Placeholder until OCML adds // support. if (__n == 0) return y0f(__x); if (__n == 1) return y1f(__x); float __x0 = y0f(__x); float __x1 = y1f(__x); for (int __i = 1; __i < __n; ++__i) { float __x2 = (2 * __i) / __x * __x1 - __x0; __x0 = __x1; __x1 = __x2; } return __x1; } // BEGIN INTRINSICS __DEVICE__ inline float __cosf(float __x) { return __ocml_native_cos_f32(__x); } __DEVICE__ inline float __exp10f(float __x) { return __ocml_native_exp10_f32(__x); } __DEVICE__ inline float __expf(float __x) { return __ocml_native_exp_f32(__x); } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline float __fadd_rd(float __x, float __y) { return __ocml_add_rtn_f32(__x, __y); } #endif __DEVICE__ inline float __fadd_rn(float __x, float __y) { return __x + __y; } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline float __fadd_ru(float __x, float __y) { return __ocml_add_rtp_f32(__x, __y); } __DEVICE__ inline float __fadd_rz(float __x, float __y) { return __ocml_add_rtz_f32(__x, __y); } __DEVICE__ inline float __fdiv_rd(float __x, float __y) { return __ocml_div_rtn_f32(__x, __y); } #endif __DEVICE__ inline float __fdiv_rn(float __x, float __y) { return __x / __y; } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline float __fdiv_ru(float __x, float __y) { return __ocml_div_rtp_f32(__x, __y); } __DEVICE__ inline float __fdiv_rz(float __x, float __y) { return __ocml_div_rtz_f32(__x, __y); } #endif __DEVICE__ inline float __fdividef(float __x, float __y) { return __x / __y; } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline float __fmaf_rd(float __x, float __y, float __z) { return __ocml_fma_rtn_f32(__x, __y, __z); } #endif __DEVICE__ inline float __fmaf_rn(float __x, float __y, float __z) { return __ocml_fma_f32(__x, __y, __z); } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline float __fmaf_ru(float __x, float __y, float __z) { return __ocml_fma_rtp_f32(__x, __y, __z); } __DEVICE__ inline float __fmaf_rz(float __x, float __y, float __z) { return __ocml_fma_rtz_f32(__x, __y, __z); } __DEVICE__ inline float __fmul_rd(float __x, float __y) { return __ocml_mul_rtn_f32(__x, __y); } #endif __DEVICE__ inline float __fmul_rn(float __x, float __y) { return __x * __y; } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline float __fmul_ru(float __x, float __y) { return __ocml_mul_rtp_f32(__x, __y); } __DEVICE__ inline float __fmul_rz(float __x, float __y) { return __ocml_mul_rtz_f32(__x, __y); } __DEVICE__ inline float __frcp_rd(float __x) { return __llvm_amdgcn_rcp_f32(__x); } #endif __DEVICE__ inline float __frcp_rn(float __x) { return __llvm_amdgcn_rcp_f32(__x); } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline float __frcp_ru(float __x) { return __llvm_amdgcn_rcp_f32(__x); } __DEVICE__ inline float __frcp_rz(float __x) { return __llvm_amdgcn_rcp_f32(__x); } #endif __DEVICE__ inline float __frsqrt_rn(float __x) { return __llvm_amdgcn_rsq_f32(__x); } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline float __fsqrt_rd(float __x) { return __ocml_sqrt_rtn_f32(__x); } #endif __DEVICE__ inline float __fsqrt_rn(float __x) { return __ocml_native_sqrt_f32(__x); } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline float __fsqrt_ru(float __x) { return __ocml_sqrt_rtp_f32(__x); } __DEVICE__ inline float __fsqrt_rz(float __x) { return __ocml_sqrt_rtz_f32(__x); } __DEVICE__ inline float __fsub_rd(float __x, float __y) { return __ocml_sub_rtn_f32(__x, __y); } #endif __DEVICE__ inline float __fsub_rn(float __x, float __y) { return __x - __y; } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline float __fsub_ru(float __x, float __y) { return __ocml_sub_rtp_f32(__x, __y); } __DEVICE__ inline float __fsub_rz(float __x, float __y) { return __ocml_sub_rtz_f32(__x, __y); } #endif __DEVICE__ inline float __log10f(float __x) { return __ocml_native_log10_f32(__x); } __DEVICE__ inline float __log2f(float __x) { return __ocml_native_log2_f32(__x); } __DEVICE__ inline float __logf(float __x) { return __ocml_native_log_f32(__x); } __DEVICE__ inline float __powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); } __DEVICE__ inline float __saturatef(float __x) { return (__x < 0) ? 0 : ((__x > 1) ? 1 : __x); } __DEVICE__ inline void __sincosf(float __x, float *__sinptr, float *__cosptr) { *__sinptr = __ocml_native_sin_f32(__x); *__cosptr = __ocml_native_cos_f32(__x); } __DEVICE__ inline float __sinf(float __x) { return __ocml_native_sin_f32(__x); } __DEVICE__ inline float __tanf(float __x) { return __ocml_tan_f32(__x); } // END INTRINSICS // END FLOAT // BEGIN DOUBLE __DEVICE__ inline double abs(double __x) { return __ocml_fabs_f64(__x); } __DEVICE__ inline double acos(double __x) { return __ocml_acos_f64(__x); } __DEVICE__ inline double acosh(double __x) { return __ocml_acosh_f64(__x); } __DEVICE__ inline double asin(double __x) { return __ocml_asin_f64(__x); } __DEVICE__ inline double asinh(double __x) { return __ocml_asinh_f64(__x); } __DEVICE__ inline double atan(double __x) { return __ocml_atan_f64(__x); } __DEVICE__ inline double atan2(double __x, double __y) { return __ocml_atan2_f64(__x, __y); } __DEVICE__ inline double atanh(double __x) { return __ocml_atanh_f64(__x); } __DEVICE__ inline double cbrt(double __x) { return __ocml_cbrt_f64(__x); } __DEVICE__ inline double ceil(double __x) { return __ocml_ceil_f64(__x); } __DEVICE__ inline double copysign(double __x, double __y) { return __ocml_copysign_f64(__x, __y); } __DEVICE__ inline double cos(double __x) { return __ocml_cos_f64(__x); } __DEVICE__ inline double cosh(double __x) { return __ocml_cosh_f64(__x); } __DEVICE__ inline double cospi(double __x) { return __ocml_cospi_f64(__x); } __DEVICE__ inline double cyl_bessel_i0(double __x) { return __ocml_i0_f64(__x); } __DEVICE__ inline double cyl_bessel_i1(double __x) { return __ocml_i1_f64(__x); } __DEVICE__ inline double erf(double __x) { return __ocml_erf_f64(__x); } __DEVICE__ inline double erfc(double __x) { return __ocml_erfc_f64(__x); } __DEVICE__ inline double erfcinv(double __x) { return __ocml_erfcinv_f64(__x); } __DEVICE__ inline double erfcx(double __x) { return __ocml_erfcx_f64(__x); } __DEVICE__ inline double erfinv(double __x) { return __ocml_erfinv_f64(__x); } __DEVICE__ inline double exp(double __x) { return __ocml_exp_f64(__x); } __DEVICE__ inline double exp10(double __x) { return __ocml_exp10_f64(__x); } __DEVICE__ inline double exp2(double __x) { return __ocml_exp2_f64(__x); } __DEVICE__ inline double expm1(double __x) { return __ocml_expm1_f64(__x); } __DEVICE__ inline double fabs(double __x) { return __ocml_fabs_f64(__x); } __DEVICE__ inline double fdim(double __x, double __y) { return __ocml_fdim_f64(__x, __y); } __DEVICE__ inline double floor(double __x) { return __ocml_floor_f64(__x); } __DEVICE__ inline double fma(double __x, double __y, double __z) { return __ocml_fma_f64(__x, __y, __z); } __DEVICE__ inline double fmax(double __x, double __y) { return __ocml_fmax_f64(__x, __y); } __DEVICE__ inline double fmin(double __x, double __y) { return __ocml_fmin_f64(__x, __y); } __DEVICE__ inline double fmod(double __x, double __y) { return __ocml_fmod_f64(__x, __y); } __DEVICE__ inline double frexp(double __x, int *__nptr) { int __tmp; double __r = __ocml_frexp_f64(__x, (__attribute__((address_space(5))) int *)&__tmp); *__nptr = __tmp; return __r; } __DEVICE__ inline double hypot(double __x, double __y) { return __ocml_hypot_f64(__x, __y); } __DEVICE__ inline int ilogb(double __x) { return __ocml_ilogb_f64(__x); } __DEVICE__ inline __RETURN_TYPE isfinite(double __x) { return __ocml_isfinite_f64(__x); } __DEVICE__ inline __RETURN_TYPE isinf(double __x) { return __ocml_isinf_f64(__x); } __DEVICE__ inline __RETURN_TYPE isnan(double __x) { return __ocml_isnan_f64(__x); } __DEVICE__ inline double j0(double __x) { return __ocml_j0_f64(__x); } __DEVICE__ inline double j1(double __x) { return __ocml_j1_f64(__x); } __DEVICE__ inline double jn(int __n, double __x) { // TODO: we could use Ahmes multiplication // and the Miller & Brown algorithm // for linear recurrences to get O(log n) steps, but it's unclear if // it'd be beneficial in this case. Placeholder until OCML adds // support. if (__n == 0) return j0f(__x); if (__n == 1) return j1f(__x); double __x0 = j0f(__x); double __x1 = j1f(__x); for (int __i = 1; __i < __n; ++__i) { double __x2 = (2 * __i) / __x * __x1 - __x0; __x0 = __x1; __x1 = __x2; } return __x1; } __DEVICE__ inline double ldexp(double __x, int __e) { return __ocml_ldexp_f64(__x, __e); } __DEVICE__ inline double lgamma(double __x) { return __ocml_lgamma_f64(__x); } __DEVICE__ inline long long int llrint(double __x) { return __ocml_rint_f64(__x); } __DEVICE__ inline long long int llround(double __x) { return __ocml_round_f64(__x); } __DEVICE__ inline double log(double __x) { return __ocml_log_f64(__x); } __DEVICE__ inline double log10(double __x) { return __ocml_log10_f64(__x); } __DEVICE__ inline double log1p(double __x) { return __ocml_log1p_f64(__x); } __DEVICE__ inline double log2(double __x) { return __ocml_log2_f64(__x); } __DEVICE__ inline double logb(double __x) { return __ocml_logb_f64(__x); } __DEVICE__ inline long int lrint(double __x) { return __ocml_rint_f64(__x); } __DEVICE__ inline long int lround(double __x) { return __ocml_round_f64(__x); } __DEVICE__ inline double modf(double __x, double *__iptr) { double __tmp; double __r = __ocml_modf_f64(__x, (__attribute__((address_space(5))) double *)&__tmp); *__iptr = __tmp; return __r; } __DEVICE__ inline double nan(const char *__tagp) { #if !_WIN32 union { double val; struct ieee_double { uint64_t mantissa : 51; uint32_t quiet : 1; uint32_t exponent : 11; uint32_t sign : 1; } bits; static_assert(sizeof(double) == sizeof(ieee_double), ""); } __tmp; __tmp.bits.sign = 0u; __tmp.bits.exponent = ~0u; __tmp.bits.quiet = 1u; __tmp.bits.mantissa = __make_mantissa(__tagp); return __tmp.val; #else static_assert(sizeof(uint64_t) == sizeof(double)); uint64_t val = __make_mantissa(__tagp); val |= 0xFFF << 51; return *reinterpret_cast(&val); #endif } __DEVICE__ inline double nearbyint(double __x) { return __ocml_nearbyint_f64(__x); } __DEVICE__ inline double nextafter(double __x, double __y) { return __ocml_nextafter_f64(__x, __y); } __DEVICE__ inline double norm(int __dim, const double *__a) { // TODO: placeholder until OCML adds support. double __r = 0; while (__dim--) { __r += __a[0] * __a[0]; ++__a; } return __ocml_sqrt_f64(__r); } __DEVICE__ inline double norm3d(double __x, double __y, double __z) { return __ocml_len3_f64(__x, __y, __z); } __DEVICE__ inline double norm4d(double __x, double __y, double __z, double __w) { return __ocml_len4_f64(__x, __y, __z, __w); } __DEVICE__ inline double normcdf(double __x) { return __ocml_ncdf_f64(__x); } __DEVICE__ inline double normcdfinv(double __x) { return __ocml_ncdfinv_f64(__x); } __DEVICE__ inline double pow(double __x, double __y) { return __ocml_pow_f64(__x, __y); } __DEVICE__ inline double rcbrt(double __x) { return __ocml_rcbrt_f64(__x); } __DEVICE__ inline double remainder(double __x, double __y) { return __ocml_remainder_f64(__x, __y); } __DEVICE__ inline double remquo(double __x, double __y, int *__quo) { int __tmp; double __r = __ocml_remquo_f64( __x, __y, (__attribute__((address_space(5))) int *)&__tmp); *__quo = __tmp; return __r; } __DEVICE__ inline double rhypot(double __x, double __y) { return __ocml_rhypot_f64(__x, __y); } __DEVICE__ inline double rint(double __x) { return __ocml_rint_f64(__x); } __DEVICE__ inline double rnorm(int __dim, const double *__a) { // TODO: placeholder until OCML adds support. double __r = 0; while (__dim--) { __r += __a[0] * __a[0]; ++__a; } return __ocml_rsqrt_f64(__r); } __DEVICE__ inline double rnorm3d(double __x, double __y, double __z) { return __ocml_rlen3_f64(__x, __y, __z); } __DEVICE__ inline double rnorm4d(double __x, double __y, double __z, double __w) { return __ocml_rlen4_f64(__x, __y, __z, __w); } __DEVICE__ inline double round(double __x) { return __ocml_round_f64(__x); } __DEVICE__ inline double rsqrt(double __x) { return __ocml_rsqrt_f64(__x); } __DEVICE__ inline double scalbln(double __x, long int __n) { return (__n < INT_MAX) ? __ocml_scalbn_f64(__x, __n) : __ocml_scalb_f64(__x, __n); } __DEVICE__ inline double scalbn(double __x, int __n) { return __ocml_scalbn_f64(__x, __n); } __DEVICE__ inline __RETURN_TYPE signbit(double __x) { return __ocml_signbit_f64(__x); } __DEVICE__ inline double sin(double __x) { return __ocml_sin_f64(__x); } __DEVICE__ inline void sincos(double __x, double *__sinptr, double *__cosptr) { double __tmp; *__sinptr = __ocml_sincos_f64( __x, (__attribute__((address_space(5))) double *)&__tmp); *__cosptr = __tmp; } __DEVICE__ inline void sincospi(double __x, double *__sinptr, double *__cosptr) { double __tmp; *__sinptr = __ocml_sincospi_f64( __x, (__attribute__((address_space(5))) double *)&__tmp); *__cosptr = __tmp; } __DEVICE__ inline double sinh(double __x) { return __ocml_sinh_f64(__x); } __DEVICE__ inline double sinpi(double __x) { return __ocml_sinpi_f64(__x); } __DEVICE__ inline double sqrt(double __x) { return __ocml_sqrt_f64(__x); } __DEVICE__ inline double tan(double __x) { return __ocml_tan_f64(__x); } __DEVICE__ inline double tanh(double __x) { return __ocml_tanh_f64(__x); } __DEVICE__ inline double tgamma(double __x) { return __ocml_tgamma_f64(__x); } __DEVICE__ inline double trunc(double __x) { return __ocml_trunc_f64(__x); } __DEVICE__ inline double y0(double __x) { return __ocml_y0_f64(__x); } __DEVICE__ inline double y1(double __x) { return __ocml_y1_f64(__x); } __DEVICE__ inline double yn(int __n, double __x) { // TODO: we could use Ahmes multiplication // and the Miller & Brown algorithm // for linear recurrences to get O(log n) steps, but it's unclear if // it'd be beneficial in this case. Placeholder until OCML adds // support. if (__n == 0) return j0f(__x); if (__n == 1) return j1f(__x); double __x0 = j0f(__x); double __x1 = j1f(__x); for (int __i = 1; __i < __n; ++__i) { double __x2 = (2 * __i) / __x * __x1 - __x0; __x0 = __x1; __x1 = __x2; } return __x1; } // BEGIN INTRINSICS #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline double __dadd_rd(double __x, double __y) { return __ocml_add_rtn_f64(__x, __y); } #endif __DEVICE__ inline double __dadd_rn(double __x, double __y) { return __x + __y; } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline double __dadd_ru(double __x, double __y) { return __ocml_add_rtp_f64(__x, __y); } __DEVICE__ inline double __dadd_rz(double __x, double __y) { return __ocml_add_rtz_f64(__x, __y); } __DEVICE__ inline double __ddiv_rd(double __x, double __y) { return __ocml_div_rtn_f64(__x, __y); } #endif __DEVICE__ inline double __ddiv_rn(double __x, double __y) { return __x / __y; } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline double __ddiv_ru(double __x, double __y) { return __ocml_div_rtp_f64(__x, __y); } __DEVICE__ inline double __ddiv_rz(double __x, double __y) { return __ocml_div_rtz_f64(__x, __y); } __DEVICE__ inline double __dmul_rd(double __x, double __y) { return __ocml_mul_rtn_f64(__x, __y); } #endif __DEVICE__ inline double __dmul_rn(double __x, double __y) { return __x * __y; } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline double __dmul_ru(double __x, double __y) { return __ocml_mul_rtp_f64(__x, __y); } __DEVICE__ inline double __dmul_rz(double __x, double __y) { return __ocml_mul_rtz_f64(__x, __y); } __DEVICE__ inline double __drcp_rd(double __x) { return __llvm_amdgcn_rcp_f64(__x); } #endif __DEVICE__ inline double __drcp_rn(double __x) { return __llvm_amdgcn_rcp_f64(__x); } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline double __drcp_ru(double __x) { return __llvm_amdgcn_rcp_f64(__x); } __DEVICE__ inline double __drcp_rz(double __x) { return __llvm_amdgcn_rcp_f64(__x); } __DEVICE__ inline double __dsqrt_rd(double __x) { return __ocml_sqrt_rtn_f64(__x); } #endif __DEVICE__ inline double __dsqrt_rn(double __x) { return __ocml_sqrt_f64(__x); } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline double __dsqrt_ru(double __x) { return __ocml_sqrt_rtp_f64(__x); } __DEVICE__ inline double __dsqrt_rz(double __x) { return __ocml_sqrt_rtz_f64(__x); } __DEVICE__ inline double __dsub_rd(double __x, double __y) { return __ocml_sub_rtn_f64(__x, __y); } #endif __DEVICE__ inline double __dsub_rn(double __x, double __y) { return __x - __y; } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline double __dsub_ru(double __x, double __y) { return __ocml_sub_rtp_f64(__x, __y); } __DEVICE__ inline double __dsub_rz(double __x, double __y) { return __ocml_sub_rtz_f64(__x, __y); } __DEVICE__ inline double __fma_rd(double __x, double __y, double __z) { return __ocml_fma_rtn_f64(__x, __y, __z); } #endif __DEVICE__ inline double __fma_rn(double __x, double __y, double __z) { return __ocml_fma_f64(__x, __y, __z); } #if defined OCML_BASIC_ROUNDED_OPERATIONS __DEVICE__ inline double __fma_ru(double __x, double __y, double __z) { return __ocml_fma_rtp_f64(__x, __y, __z); } __DEVICE__ inline double __fma_rz(double __x, double __y, double __z) { return __ocml_fma_rtz_f64(__x, __y, __z); } #endif // END INTRINSICS // END DOUBLE // BEGIN INTEGER __DEVICE__ inline int abs(int __x) { int __sgn = __x >> (sizeof(int) * CHAR_BIT - 1); return (__x ^ __sgn) - __sgn; } __DEVICE__ inline long labs(long __x) { long __sgn = __x >> (sizeof(long) * CHAR_BIT - 1); return (__x ^ __sgn) - __sgn; } __DEVICE__ inline long long llabs(long long __x) { long long __sgn = __x >> (sizeof(long long) * CHAR_BIT - 1); return (__x ^ __sgn) - __sgn; } #if defined(__cplusplus) __DEVICE__ inline long abs(long __x) { return labs(__x); } __DEVICE__ inline long long abs(long long __x) { return llabs(__x); } #endif // END INTEGER __DEVICE__ inline _Float16 fma(_Float16 __x, _Float16 __y, _Float16 __z) { return __ocml_fma_f16(__x, __y, __z); } __DEVICE__ inline float fma(float __x, float __y, float __z) { return fmaf(__x, __y, __z); } #pragma push_macro("__DEF_FUN1") #pragma push_macro("__DEF_FUN2") #pragma push_macro("__DEF_FUNI") #pragma push_macro("__DEF_FLOAT_FUN2I") #pragma push_macro("__HIP_OVERLOAD1") #pragma push_macro("__HIP_OVERLOAD2") // __hip_enable_if::type is a type function which returns __T if __B is true. template struct __hip_enable_if {}; template struct __hip_enable_if { typedef __T type; }; // __HIP_OVERLOAD1 is used to resolve function calls with integer argument to // avoid compilation error due to ambibuity. e.g. floor(5) is resolved with // floor(double). #define __HIP_OVERLOAD1(__retty, __fn) \ template \ __DEVICE__ typename __hip_enable_if::is_integer, \ __retty>::type \ __fn(__T __x) { \ return ::__fn((double)__x); \ } // __HIP_OVERLOAD2 is used to resolve function calls with mixed float/double // or integer argument to avoid compilation error due to ambibuity. e.g. // max(5.0f, 6.0) is resolved with max(double, double). #define __HIP_OVERLOAD2(__retty, __fn) \ template \ __DEVICE__ \ typename __hip_enable_if::is_specialized && \ std::numeric_limits<__T2>::is_specialized, \ __retty>::type \ __fn(__T1 __x, __T2 __y) { \ return __fn((double)__x, (double)__y); \ } // Define cmath functions with float argument and returns float. #define __DEF_FUN1(__retty, __func) \ __DEVICE__ \ inline float __func(float __x) { return __func##f(__x); } \ __HIP_OVERLOAD1(__retty, __func) // Define cmath functions with float argument and returns __retty. #define __DEF_FUNI(__retty, __func) \ __DEVICE__ \ inline __retty __func(float __x) { return __func##f(__x); } \ __HIP_OVERLOAD1(__retty, __func) // define cmath functions with two float arguments. #define __DEF_FUN2(__retty, __func) \ __DEVICE__ \ inline float __func(float __x, float __y) { return __func##f(__x, __y); } \ __HIP_OVERLOAD2(__retty, __func) __DEF_FUN1(double, acos) __DEF_FUN1(double, acosh) __DEF_FUN1(double, asin) __DEF_FUN1(double, asinh) __DEF_FUN1(double, atan) __DEF_FUN2(double, atan2); __DEF_FUN1(double, atanh) __DEF_FUN1(double, cbrt) __DEF_FUN1(double, ceil) __DEF_FUN2(double, copysign); __DEF_FUN1(double, cos) __DEF_FUN1(double, cosh) __DEF_FUN1(double, erf) __DEF_FUN1(double, erfc) __DEF_FUN1(double, exp) __DEF_FUN1(double, exp2) __DEF_FUN1(double, expm1) __DEF_FUN1(double, fabs) __DEF_FUN2(double, fdim); __DEF_FUN1(double, floor) __DEF_FUN2(double, fmax); __DEF_FUN2(double, fmin); __DEF_FUN2(double, fmod); //__HIP_OVERLOAD1(int, fpclassify) __DEF_FUN2(double, hypot); __DEF_FUNI(int, ilogb) __HIP_OVERLOAD1(bool, isfinite) __HIP_OVERLOAD2(bool, isgreater); __HIP_OVERLOAD2(bool, isgreaterequal); __HIP_OVERLOAD1(bool, isinf); __HIP_OVERLOAD2(bool, isless); __HIP_OVERLOAD2(bool, islessequal); __HIP_OVERLOAD2(bool, islessgreater); __HIP_OVERLOAD1(bool, isnan); //__HIP_OVERLOAD1(bool, isnormal) __HIP_OVERLOAD2(bool, isunordered); __DEF_FUN1(double, lgamma) __DEF_FUN1(double, log) __DEF_FUN1(double, log10) __DEF_FUN1(double, log1p) __DEF_FUN1(double, log2) __DEF_FUN1(double, logb) __DEF_FUNI(long long, llrint) __DEF_FUNI(long long, llround) __DEF_FUNI(long, lrint) __DEF_FUNI(long, lround) __DEF_FUN1(double, nearbyint); __DEF_FUN2(double, nextafter); __DEF_FUN2(double, pow); __DEF_FUN2(double, remainder); __DEF_FUN1(double, rint); __DEF_FUN1(double, round); __HIP_OVERLOAD1(bool, signbit) __DEF_FUN1(double, sin) __DEF_FUN1(double, sinh) __DEF_FUN1(double, sqrt) __DEF_FUN1(double, tan) __DEF_FUN1(double, tanh) __DEF_FUN1(double, tgamma) __DEF_FUN1(double, trunc); // define cmath functions with a float and an integer argument. #define __DEF_FLOAT_FUN2I(__func) \ __DEVICE__ \ inline float __func(float __x, int __y) { return __func##f(__x, __y); } __DEF_FLOAT_FUN2I(scalbn) template __DEVICE__ inline T min(T __arg1, T __arg2) { return (__arg1 < __arg2) ? __arg1 : __arg2; } template __DEVICE__ inline T max(T __arg1, T __arg2) { return (__arg1 > __arg2) ? __arg1 : __arg2; } __DEVICE__ inline int min(int __arg1, int __arg2) { return (__arg1 < __arg2) ? __arg1 : __arg2; } __DEVICE__ inline int max(int __arg1, int __arg2) { return (__arg1 > __arg2) ? __arg1 : __arg2; } __DEVICE__ inline float max(float __x, float __y) { return fmaxf(__x, __y); } __DEVICE__ inline double max(double __x, double __y) { return fmax(__x, __y); } __DEVICE__ inline float min(float __x, float __y) { return fminf(__x, __y); } __DEVICE__ inline double min(double __x, double __y) { return fmin(__x, __y); } __HIP_OVERLOAD2(double, max) __HIP_OVERLOAD2(double, min) __host__ inline static int min(int __arg1, int __arg2) { return std::min(__arg1, __arg2); } __host__ inline static int max(int __arg1, int __arg2) { return std::max(__arg1, __arg2); } #pragma pop_macro("__DEF_FUN1") #pragma pop_macro("__DEF_FUN2") #pragma pop_macro("__DEF_FUNI") #pragma pop_macro("__DEF_FLOAT_FUN2I") #pragma pop_macro("__HIP_OVERLOAD1") #pragma pop_macro("__HIP_OVERLOAD2") #pragma pop_macro("__DEVICE__") #pragma pop_macro("__RETURN_TYPE") #endif // __CLANG_HIP_MATH_H__