/* * Copyright (c) 2015 Andrew Kelley * * This file is part of zig, which is MIT licensed. * See http://opensource.org/licenses/MIT */ #include "analyze.hpp" #include "parser.hpp" #include "error.hpp" #include "zig_llvm.hpp" #include "os.hpp" #include "parseh.hpp" #include "config.h" #include "ast_render.hpp" static TypeTableEntry * analyze_expression(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node); static VariableTableEntry *analyze_variable_declaration(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node); static void resolve_struct_type(CodeGen *g, ImportTableEntry *import, TypeTableEntry *struct_type); static TypeTableEntry *unwrapped_node_type(AstNode *node); static TypeTableEntry *analyze_cast_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node); static TypeTableEntry *analyze_error_literal_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node, Buf *err_name); static TypeTableEntry *analyze_block_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node); static TypeTableEntry *resolve_expr_const_val_as_void(CodeGen *g, AstNode *node); static TypeTableEntry *resolve_expr_const_val_as_fn(CodeGen *g, AstNode *node, FnTableEntry *fn); static void detect_top_level_decl_deps(CodeGen *g, ImportTableEntry *import, AstNode *node); static AstNode *first_executing_node(AstNode *node) { switch (node->type) { case NodeTypeFnCallExpr: return first_executing_node(node->data.fn_call_expr.fn_ref_expr); case NodeTypeBinOpExpr: return first_executing_node(node->data.bin_op_expr.op1); case NodeTypeUnwrapErrorExpr: return first_executing_node(node->data.unwrap_err_expr.op1); case NodeTypeArrayAccessExpr: return first_executing_node(node->data.array_access_expr.array_ref_expr); case NodeTypeSliceExpr: return first_executing_node(node->data.slice_expr.array_ref_expr); case NodeTypeFieldAccessExpr: return first_executing_node(node->data.field_access_expr.struct_expr); case NodeTypeSwitchRange: return first_executing_node(node->data.switch_range.start); case NodeTypeRoot: case NodeTypeRootExportDecl: case NodeTypeFnProto: case NodeTypeFnDef: case NodeTypeFnDecl: case NodeTypeParamDecl: case NodeTypeBlock: case NodeTypeDirective: case NodeTypeReturnExpr: case NodeTypeVariableDeclaration: case NodeTypeTypeDecl: case NodeTypeErrorValueDecl: case NodeTypeNumberLiteral: case NodeTypeStringLiteral: case NodeTypeCharLiteral: case NodeTypeSymbol: case NodeTypePrefixOpExpr: case NodeTypeImport: case NodeTypeCImport: case NodeTypeBoolLiteral: case NodeTypeNullLiteral: case NodeTypeUndefinedLiteral: case NodeTypeIfBoolExpr: case NodeTypeIfVarExpr: case NodeTypeLabel: case NodeTypeGoto: case NodeTypeBreak: case NodeTypeContinue: case NodeTypeAsmExpr: case NodeTypeStructDecl: case NodeTypeStructField: case NodeTypeStructValueField: case NodeTypeWhileExpr: case NodeTypeForExpr: case NodeTypeSwitchExpr: case NodeTypeSwitchProng: case NodeTypeArrayType: case NodeTypeErrorType: case NodeTypeTypeLiteral: case NodeTypeContainerInitExpr: return node; } zig_unreachable(); } ErrorMsg *add_node_error(CodeGen *g, AstNode *node, Buf *msg) { // if this assert fails, then parseh generated code that // failed semantic analysis, which isn't supposed to happen assert(!node->owner->c_import_node); ErrorMsg *err = err_msg_create_with_line(node->owner->path, node->line, node->column, node->owner->source_code, node->owner->line_offsets, msg); g->errors.append(err); return err; } TypeTableEntry *new_type_table_entry(TypeTableEntryId id) { TypeTableEntry *entry = allocate(1); entry->arrays_by_size.init(2); entry->id = id; switch (id) { case TypeTableEntryIdInvalid: case TypeTableEntryIdMetaType: case TypeTableEntryIdVoid: case TypeTableEntryIdBool: case TypeTableEntryIdUnreachable: case TypeTableEntryIdInt: case TypeTableEntryIdFloat: case TypeTableEntryIdPointer: case TypeTableEntryIdArray: case TypeTableEntryIdNumLitFloat: case TypeTableEntryIdNumLitInt: case TypeTableEntryIdMaybe: case TypeTableEntryIdFn: case TypeTableEntryIdErrorUnion: case TypeTableEntryIdPureError: case TypeTableEntryIdUndefLit: case TypeTableEntryIdTypeDecl: // nothing to init break; case TypeTableEntryIdStruct: entry->data.structure.fn_table.init(8); break; case TypeTableEntryIdEnum: entry->data.enumeration.fn_table.init(8); break; } return entry; } static int bits_needed_for_unsigned(uint64_t x) { if (x <= UINT8_MAX) { return 8; } else if (x <= UINT16_MAX) { return 16; } else if (x <= UINT32_MAX) { return 32; } else { return 64; } } TypeTableEntry *get_smallest_unsigned_int_type(CodeGen *g, uint64_t x) { return get_int_type(g, false, bits_needed_for_unsigned(x)); } TypeTableEntry *get_pointer_to_type(CodeGen *g, TypeTableEntry *child_type, bool is_const) { assert(child_type->id != TypeTableEntryIdInvalid); TypeTableEntry **parent_pointer = &child_type->pointer_parent[(is_const ? 1 : 0)]; if (*parent_pointer) { return *parent_pointer; } else { TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdPointer); const char *const_str = is_const ? "const " : ""; buf_resize(&entry->name, 0); buf_appendf(&entry->name, "&%s%s", const_str, buf_ptr(&child_type->name)); TypeTableEntry *canon_child_type = get_underlying_type(child_type); assert(canon_child_type->id != TypeTableEntryIdInvalid); bool zero_bits; if (canon_child_type->size_in_bits == 0) { if (canon_child_type->id == TypeTableEntryIdStruct) { zero_bits = canon_child_type->data.structure.complete; } else if (canon_child_type->id == TypeTableEntryIdEnum) { zero_bits = canon_child_type->data.enumeration.complete; } else { zero_bits = true; } } else { zero_bits = false; } if (!zero_bits) { entry->type_ref = LLVMPointerType(child_type->type_ref, 0); entry->size_in_bits = g->pointer_size_bytes * 8; entry->align_in_bits = g->pointer_size_bytes * 8; assert(child_type->di_type); entry->di_type = LLVMZigCreateDebugPointerType(g->dbuilder, child_type->di_type, entry->size_in_bits, entry->align_in_bits, buf_ptr(&entry->name)); } entry->data.pointer.child_type = child_type; entry->data.pointer.is_const = is_const; *parent_pointer = entry; return entry; } } TypeTableEntry *get_maybe_type(CodeGen *g, TypeTableEntry *child_type) { if (child_type->maybe_parent) { TypeTableEntry *entry = child_type->maybe_parent; return entry; } else { TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdMaybe); assert(child_type->type_ref); assert(child_type->di_type); buf_resize(&entry->name, 0); buf_appendf(&entry->name, "?%s", buf_ptr(&child_type->name)); if (child_type->id == TypeTableEntryIdPointer) { // this is an optimization but also is necessary for calling C // functions where all pointers are maybe pointers entry->size_in_bits = child_type->size_in_bits; entry->align_in_bits = child_type->align_in_bits; entry->type_ref = child_type->type_ref; entry->di_type = child_type->di_type; } else { // create a struct with a boolean whether this is the null value LLVMTypeRef elem_types[] = { child_type->type_ref, LLVMInt1Type(), }; entry->type_ref = LLVMStructType(elem_types, 2, false); entry->size_in_bits = child_type->size_in_bits + 8; entry->align_in_bits = child_type->align_in_bits; LLVMZigDIScope *compile_unit_scope = LLVMZigCompileUnitToScope(g->compile_unit); LLVMZigDIFile *di_file = nullptr; unsigned line = 0; entry->di_type = LLVMZigCreateReplaceableCompositeType(g->dbuilder, LLVMZigTag_DW_structure_type(), buf_ptr(&entry->name), compile_unit_scope, di_file, line); LLVMZigDIType *di_element_types[] = { LLVMZigCreateDebugMemberType(g->dbuilder, LLVMZigTypeToScope(entry->di_type), "val", di_file, line, child_type->size_in_bits, child_type->align_in_bits, 0, 0, child_type->di_type), LLVMZigCreateDebugMemberType(g->dbuilder, LLVMZigTypeToScope(entry->di_type), "maybe", di_file, line, 8, 8, child_type->size_in_bits, 0, child_type->di_type), }; LLVMZigDIType *replacement_di_type = LLVMZigCreateDebugStructType(g->dbuilder, compile_unit_scope, buf_ptr(&entry->name), di_file, line, entry->size_in_bits, entry->align_in_bits, 0, nullptr, di_element_types, 2, 0, nullptr, ""); LLVMZigReplaceTemporary(g->dbuilder, entry->di_type, replacement_di_type); entry->di_type = replacement_di_type; } entry->data.maybe.child_type = child_type; child_type->maybe_parent = entry; return entry; } } static TypeTableEntry *get_error_type(CodeGen *g, TypeTableEntry *child_type) { if (child_type->error_parent) { return child_type->error_parent; } else { TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdErrorUnion); assert(child_type->type_ref); assert(child_type->di_type); buf_resize(&entry->name, 0); buf_appendf(&entry->name, "%%%s", buf_ptr(&child_type->name)); entry->data.error.child_type = child_type; if (child_type->size_in_bits == 0) { entry->type_ref = g->err_tag_type->type_ref; entry->size_in_bits = g->err_tag_type->size_in_bits; entry->align_in_bits = g->err_tag_type->align_in_bits; entry->di_type = g->err_tag_type->di_type; } else { LLVMTypeRef elem_types[] = { g->err_tag_type->type_ref, child_type->type_ref, }; entry->type_ref = LLVMStructType(elem_types, 2, false); entry->size_in_bits = g->err_tag_type->size_in_bits + child_type->size_in_bits; entry->align_in_bits = g->err_tag_type->align_in_bits; LLVMZigDIScope *compile_unit_scope = LLVMZigCompileUnitToScope(g->compile_unit); LLVMZigDIFile *di_file = nullptr; unsigned line = 0; entry->di_type = LLVMZigCreateReplaceableCompositeType(g->dbuilder, LLVMZigTag_DW_structure_type(), buf_ptr(&entry->name), compile_unit_scope, di_file, line); LLVMZigDIType *di_element_types[] = { LLVMZigCreateDebugMemberType(g->dbuilder, LLVMZigTypeToScope(entry->di_type), "tag", di_file, line, g->err_tag_type->size_in_bits, g->err_tag_type->align_in_bits, 0, 0, child_type->di_type), LLVMZigCreateDebugMemberType(g->dbuilder, LLVMZigTypeToScope(entry->di_type), "value", di_file, line, child_type->size_in_bits, child_type->align_in_bits, g->err_tag_type->size_in_bits, 0, child_type->di_type), }; LLVMZigDIType *replacement_di_type = LLVMZigCreateDebugStructType(g->dbuilder, compile_unit_scope, buf_ptr(&entry->name), di_file, line, entry->size_in_bits, entry->align_in_bits, 0, nullptr, di_element_types, 2, 0, nullptr, ""); LLVMZigReplaceTemporary(g->dbuilder, entry->di_type, replacement_di_type); entry->di_type = replacement_di_type; } child_type->error_parent = entry; return entry; } } TypeTableEntry *get_array_type(CodeGen *g, TypeTableEntry *child_type, uint64_t array_size) { auto existing_entry = child_type->arrays_by_size.maybe_get(array_size); if (existing_entry) { TypeTableEntry *entry = existing_entry->value; return entry; } else { TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdArray); entry->type_ref = LLVMArrayType(child_type->type_ref, array_size); buf_resize(&entry->name, 0); buf_appendf(&entry->name, "[%" PRIu64 "]%s", array_size, buf_ptr(&child_type->name)); entry->size_in_bits = child_type->size_in_bits * array_size; entry->align_in_bits = child_type->align_in_bits; entry->di_type = LLVMZigCreateDebugArrayType(g->dbuilder, entry->size_in_bits, entry->align_in_bits, child_type->di_type, array_size); entry->data.array.child_type = child_type; entry->data.array.len = array_size; child_type->arrays_by_size.put(array_size, entry); return entry; } } static void unknown_size_array_type_common_init(CodeGen *g, TypeTableEntry *child_type, bool is_const, TypeTableEntry *entry) { TypeTableEntry *pointer_type = get_pointer_to_type(g, child_type, is_const); unsigned element_count = 2; entry->size_in_bits = g->pointer_size_bytes * 2 * 8; entry->align_in_bits = g->pointer_size_bytes * 8; entry->data.structure.is_packed = false; entry->data.structure.is_unknown_size_array = true; entry->data.structure.src_field_count = element_count; entry->data.structure.gen_field_count = element_count; entry->data.structure.fields = allocate(element_count); entry->data.structure.fields[0].name = buf_create_from_str("ptr"); entry->data.structure.fields[0].type_entry = pointer_type; entry->data.structure.fields[0].src_index = 0; entry->data.structure.fields[0].gen_index = 0; entry->data.structure.fields[1].name = buf_create_from_str("len"); entry->data.structure.fields[1].type_entry = g->builtin_types.entry_isize; entry->data.structure.fields[1].src_index = 1; entry->data.structure.fields[1].gen_index = 1; } static TypeTableEntry *get_unknown_size_array_type(CodeGen *g, TypeTableEntry *child_type, bool is_const) { assert(child_type->id != TypeTableEntryIdInvalid); TypeTableEntry **parent_pointer = &child_type->unknown_size_array_parent[(is_const ? 1 : 0)]; if (*parent_pointer) { return *parent_pointer; } else if (is_const) { TypeTableEntry *var_peer = get_unknown_size_array_type(g, child_type, false); TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdStruct); buf_resize(&entry->name, 0); buf_appendf(&entry->name, "[]const %s", buf_ptr(&child_type->name)); unknown_size_array_type_common_init(g, child_type, is_const, entry); entry->type_ref = var_peer->type_ref; entry->di_type = var_peer->di_type; *parent_pointer = entry; return entry; } else { TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdStruct); buf_resize(&entry->name, 0); buf_appendf(&entry->name, "[]%s", buf_ptr(&child_type->name)); entry->type_ref = LLVMStructCreateNamed(LLVMGetGlobalContext(), buf_ptr(&entry->name)); TypeTableEntry *pointer_type = get_pointer_to_type(g, child_type, is_const); unsigned element_count = 2; LLVMTypeRef element_types[] = { pointer_type->type_ref, g->builtin_types.entry_isize->type_ref, }; LLVMStructSetBody(entry->type_ref, element_types, element_count, false); unknown_size_array_type_common_init(g, child_type, is_const, entry); LLVMZigDIType *di_element_types[] = { pointer_type->di_type, g->builtin_types.entry_isize->di_type, }; LLVMZigDIScope *compile_unit_scope = LLVMZigCompileUnitToScope(g->compile_unit); entry->di_type = LLVMZigCreateDebugStructType(g->dbuilder, compile_unit_scope, buf_ptr(&entry->name), g->dummy_di_file, 0, entry->size_in_bits, entry->align_in_bits, 0, nullptr, di_element_types, element_count, 0, nullptr, ""); *parent_pointer = entry; return entry; } } TypeTableEntry *get_typedecl_type(CodeGen *g, const char *name, TypeTableEntry *child_type) { TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdTypeDecl); buf_init_from_str(&entry->name, name); entry->type_ref = child_type->type_ref; entry->type_ref = child_type->type_ref; entry->di_type = child_type->di_type; entry->size_in_bits = child_type->size_in_bits; entry->align_in_bits = child_type->align_in_bits; entry->data.type_decl.child_type = child_type; if (child_type->id == TypeTableEntryIdTypeDecl) { entry->data.type_decl.canonical_type = child_type->data.type_decl.canonical_type; } else { entry->data.type_decl.canonical_type = child_type; } return entry; } // accepts ownership of fn_type_id memory TypeTableEntry *get_fn_type(CodeGen *g, FnTypeId fn_type_id) { auto table_entry = g->fn_type_table.maybe_get(fn_type_id); if (table_entry) { return table_entry->value; } TypeTableEntry *fn_type = new_type_table_entry(TypeTableEntryIdFn); fn_type->data.fn.fn_type_id = fn_type_id; fn_type->data.fn.calling_convention = fn_type_id.is_extern ? LLVMCCallConv : LLVMFastCallConv; fn_type->size_in_bits = g->pointer_size_bytes * 8; fn_type->align_in_bits = g->pointer_size_bytes * 8; // populate the name of the type buf_resize(&fn_type->name, 0); const char *extern_str = fn_type_id.is_extern ? "extern " : ""; const char *naked_str = fn_type_id.is_naked ? "naked " : ""; buf_appendf(&fn_type->name, "%s%sfn(", extern_str, naked_str); for (int i = 0; i < fn_type_id.param_count; i += 1) { FnTypeParamInfo *param_info = &fn_type_id.param_info[i]; TypeTableEntry *param_type = param_info->type; const char *comma = (i == 0) ? "" : ", "; const char *noalias_str = param_info->is_noalias ? "noalias " : ""; buf_appendf(&fn_type->name, "%s%s%s", comma, noalias_str, buf_ptr(¶m_type->name)); } if (fn_type_id.is_var_args) { const char *comma = (fn_type_id.param_count == 0) ? "" : ", "; buf_appendf(&fn_type->name, "%s...", comma); } buf_appendf(&fn_type->name, ")"); if (fn_type_id.return_type->id != TypeTableEntryIdVoid) { buf_appendf(&fn_type->name, " -> %s", buf_ptr(&fn_type_id.return_type->name)); } // next, loop over the parameters again and compute debug information // and codegen information bool first_arg_return = handle_is_ptr(fn_type_id.return_type); // +1 for maybe making the first argument the return value LLVMTypeRef *gen_param_types = allocate(1 + fn_type_id.param_count); // +1 because 0 is the return type and +1 for maybe making first arg ret val LLVMZigDIType **param_di_types = allocate(2 + fn_type_id.param_count); param_di_types[0] = fn_type_id.return_type->di_type; int gen_param_index = 0; TypeTableEntry *gen_return_type; if (first_arg_return) { TypeTableEntry *gen_type = get_pointer_to_type(g, fn_type_id.return_type, false); gen_param_types[gen_param_index] = gen_type->type_ref; gen_param_index += 1; // after the gen_param_index += 1 because 0 is the return type param_di_types[gen_param_index] = gen_type->di_type; gen_return_type = g->builtin_types.entry_void; } else if (fn_type_id.return_type->size_in_bits == 0) { gen_return_type = g->builtin_types.entry_void; } else { gen_return_type = fn_type_id.return_type; } fn_type->data.fn.gen_return_type = gen_return_type; fn_type->data.fn.gen_param_info = allocate(fn_type_id.param_count); for (int i = 0; i < fn_type_id.param_count; i += 1) { FnTypeParamInfo *src_param_info = &fn_type->data.fn.fn_type_id.param_info[i]; TypeTableEntry *type_entry = src_param_info->type; FnGenParamInfo *gen_param_info = &fn_type->data.fn.gen_param_info[i]; gen_param_info->src_index = i; gen_param_info->gen_index = -1; if (type_entry->size_in_bits > 0) { TypeTableEntry *gen_type; if (handle_is_ptr(type_entry)) { gen_type = get_pointer_to_type(g, type_entry, true); gen_param_info->is_byval = true; } else { gen_type = type_entry; } gen_param_types[gen_param_index] = gen_type->type_ref; gen_param_info->gen_index = gen_param_index; gen_param_index += 1; // after the gen_param_index += 1 because 0 is the return type param_di_types[gen_param_index] = gen_type->di_type; } } fn_type->data.fn.gen_param_count = gen_param_index; fn_type->data.fn.raw_type_ref = LLVMFunctionType(gen_return_type->type_ref, gen_param_types, gen_param_index, fn_type_id.is_var_args); fn_type->type_ref = LLVMPointerType(fn_type->data.fn.raw_type_ref, 0); LLVMZigDIFile *di_file = nullptr; // TODO if we get a crash maybe this is the culprit fn_type->di_type = LLVMZigCreateSubroutineType(g->dbuilder, di_file, param_di_types, gen_param_index + 1, 0); g->fn_type_table.put(fn_type_id, fn_type); return fn_type; } static TypeTableEntryId container_to_type(ContainerKind kind) { switch (kind) { case ContainerKindStruct: return TypeTableEntryIdStruct; case ContainerKindEnum: return TypeTableEntryIdEnum; } zig_unreachable(); } TypeTableEntry *get_partial_container_type(CodeGen *g, ImportTableEntry *import, ContainerKind kind, AstNode *decl_node, const char *name) { TypeTableEntryId type_id = container_to_type(kind); TypeTableEntry *entry = new_type_table_entry(type_id); switch (kind) { case ContainerKindStruct: entry->data.structure.decl_node = decl_node; break; case ContainerKindEnum: entry->data.enumeration.decl_node = decl_node; break; } unsigned line = decl_node ? decl_node->line : 0; entry->type_ref = LLVMStructCreateNamed(LLVMGetGlobalContext(), name); entry->di_type = LLVMZigCreateReplaceableCompositeType(g->dbuilder, LLVMZigTag_DW_structure_type(), name, LLVMZigFileToScope(import->di_file), import->di_file, line + 1); buf_init_from_str(&entry->name, name); return entry; } TypeTableEntry *get_underlying_type(TypeTableEntry *type_entry) { if (type_entry->id == TypeTableEntryIdTypeDecl) { return type_entry->data.type_decl.canonical_type; } else { return type_entry; } } // If the node does not have a constant expression value with a metatype, generates an error // and returns invalid type. Otherwise, returns the type of the constant expression value. // Must be called after analyze_expression on the same node. static TypeTableEntry *resolve_type(CodeGen *g, AstNode *node) { if (node->type == NodeTypeSymbol && node->data.symbol_expr.override_type_entry) { return node->data.symbol_expr.override_type_entry; } Expr *expr = get_resolved_expr(node); assert(expr->type_entry); if (expr->type_entry->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } else if (expr->type_entry->id == TypeTableEntryIdMetaType) { // OK } else { add_node_error(g, node, buf_sprintf("expected type, found expression")); return g->builtin_types.entry_invalid; } ConstExprValue *const_val = &expr->const_val; if (!const_val->ok) { add_node_error(g, node, buf_sprintf("unable to resolve constant expression")); return g->builtin_types.entry_invalid; } return const_val->data.x_type; } // Calls analyze_expression on node, and then resolve_type. static TypeTableEntry *analyze_type_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node) { AstNode **node_ptr = node->parent_field; analyze_expression(g, import, context, nullptr, *node_ptr); return resolve_type(g, *node_ptr); } static TypeTableEntry *analyze_fn_proto_type(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node, bool is_naked) { assert(node->type == NodeTypeFnProto); AstNodeFnProto *fn_proto = &node->data.fn_proto; if (fn_proto->skip) { return g->builtin_types.entry_invalid; } FnTypeId fn_type_id; fn_type_id.is_extern = fn_proto->is_extern || (fn_proto->visib_mod == VisibModExport); fn_type_id.is_naked = is_naked; fn_type_id.param_count = node->data.fn_proto.params.length; fn_type_id.param_info = allocate(fn_type_id.param_count); fn_type_id.is_var_args = fn_proto->is_var_args; fn_type_id.return_type = analyze_type_expr(g, import, import->block_context, node->data.fn_proto.return_type); if (fn_type_id.return_type->id == TypeTableEntryIdInvalid) { fn_proto->skip = true; } for (int i = 0; i < fn_type_id.param_count; i += 1) { AstNode *child = node->data.fn_proto.params.at(i); assert(child->type == NodeTypeParamDecl); TypeTableEntry *type_entry = analyze_type_expr(g, import, import->block_context, child->data.param_decl.type); switch (type_entry->id) { case TypeTableEntryIdInvalid: fn_proto->skip = true; break; case TypeTableEntryIdNumLitFloat: case TypeTableEntryIdNumLitInt: case TypeTableEntryIdUndefLit: case TypeTableEntryIdMetaType: case TypeTableEntryIdUnreachable: fn_proto->skip = true; add_node_error(g, child->data.param_decl.type, buf_sprintf("parameter of type '%s' not allowed'", buf_ptr(&type_entry->name))); break; case TypeTableEntryIdVoid: case TypeTableEntryIdBool: case TypeTableEntryIdInt: case TypeTableEntryIdFloat: case TypeTableEntryIdPointer: case TypeTableEntryIdArray: case TypeTableEntryIdStruct: case TypeTableEntryIdMaybe: case TypeTableEntryIdErrorUnion: case TypeTableEntryIdPureError: case TypeTableEntryIdEnum: case TypeTableEntryIdFn: case TypeTableEntryIdTypeDecl: break; } if (type_entry->id == TypeTableEntryIdInvalid) { fn_proto->skip = true; } FnTypeParamInfo *param_info = &fn_type_id.param_info[i]; param_info->type = type_entry; param_info->is_noalias = child->data.param_decl.is_noalias; } if (fn_proto->skip) { return g->builtin_types.entry_invalid; } return get_fn_type(g, fn_type_id); } static void resolve_function_proto(CodeGen *g, AstNode *node, FnTableEntry *fn_table_entry, ImportTableEntry *import) { assert(node->type == NodeTypeFnProto); AstNodeFnProto *fn_proto = &node->data.fn_proto; if (fn_proto->skip) { return; } bool is_naked = false; for (int i = 0; i < fn_proto->directives->length; i += 1) { AstNode *directive_node = fn_proto->directives->at(i); Buf *name = &directive_node->data.directive.name; if (buf_eql_str(name, "attribute")) { Buf *attr_name = &directive_node->data.directive.param; if (fn_table_entry->fn_def_node) { if (buf_eql_str(attr_name, "naked")) { is_naked = true; } else if (buf_eql_str(attr_name, "inline")) { fn_table_entry->is_inline = true; } else { add_node_error(g, directive_node, buf_sprintf("invalid function attribute: '%s'", buf_ptr(name))); } } else { add_node_error(g, directive_node, buf_sprintf("invalid function attribute: '%s'", buf_ptr(name))); } } else { add_node_error(g, directive_node, buf_sprintf("invalid directive: '%s'", buf_ptr(name))); } } TypeTableEntry *fn_type = analyze_fn_proto_type(g, import, import->block_context, nullptr, node, is_naked); if (fn_type->id == TypeTableEntryIdInvalid) { fn_proto->skip = true; return; } fn_table_entry->type_entry = fn_type; fn_table_entry->fn_value = LLVMAddFunction(g->module, buf_ptr(&fn_table_entry->symbol_name), fn_type->data.fn.raw_type_ref); if (fn_table_entry->is_inline) { LLVMAddFunctionAttr(fn_table_entry->fn_value, LLVMAlwaysInlineAttribute); } if (fn_type->data.fn.fn_type_id.is_naked) { LLVMAddFunctionAttr(fn_table_entry->fn_value, LLVMNakedAttribute); } LLVMSetLinkage(fn_table_entry->fn_value, fn_table_entry->internal_linkage ? LLVMInternalLinkage : LLVMExternalLinkage); if (fn_type->data.fn.fn_type_id.return_type->id == TypeTableEntryIdUnreachable) { LLVMAddFunctionAttr(fn_table_entry->fn_value, LLVMNoReturnAttribute); } LLVMSetFunctionCallConv(fn_table_entry->fn_value, fn_type->data.fn.calling_convention); if (!fn_table_entry->is_extern) { LLVMAddFunctionAttr(fn_table_entry->fn_value, LLVMNoUnwindAttribute); } // Add debug info. unsigned line_number = node->line + 1; unsigned scope_line = line_number; bool is_definition = fn_table_entry->fn_def_node != nullptr; unsigned flags = 0; bool is_optimized = g->build_type == CodeGenBuildTypeRelease; LLVMZigDISubprogram *subprogram = LLVMZigCreateFunction(g->dbuilder, import->block_context->di_scope, buf_ptr(&fn_table_entry->symbol_name), "", import->di_file, line_number, fn_type->di_type, fn_table_entry->internal_linkage, is_definition, scope_line, flags, is_optimized, fn_table_entry->fn_value); if (fn_table_entry->fn_def_node) { BlockContext *context = new_block_context(fn_table_entry->fn_def_node, import->block_context); fn_table_entry->fn_def_node->data.fn_def.block_context = context; context->di_scope = LLVMZigSubprogramToScope(subprogram); } } static void preview_function_labels(CodeGen *g, AstNode *node, FnTableEntry *fn_table_entry) { assert(node->type == NodeTypeBlock); for (int i = 0; i < node->data.block.statements.length; i += 1) { AstNode *label_node = node->data.block.statements.at(i); if (label_node->type != NodeTypeLabel) continue; LabelTableEntry *label_entry = allocate(1); label_entry->label_node = label_node; Buf *name = &label_node->data.label.name; fn_table_entry->label_table.put(name, label_entry); label_node->data.label.label_entry = label_entry; } } static void resolve_enum_type(CodeGen *g, ImportTableEntry *import, TypeTableEntry *enum_type) { // if you change this logic you likely must also change similar logic in parseh.cpp assert(enum_type->id == TypeTableEntryIdEnum); AstNode *decl_node = enum_type->data.enumeration.decl_node; if (enum_type->data.enumeration.embedded_in_current) { if (!enum_type->data.enumeration.reported_infinite_err) { enum_type->data.enumeration.reported_infinite_err = true; add_node_error(g, decl_node, buf_sprintf("enum has infinite size")); } return; } if (enum_type->data.enumeration.fields) { // we already resolved this type. skip return; } assert(enum_type->di_type); uint32_t field_count = decl_node->data.struct_decl.fields.length; enum_type->data.enumeration.field_count = field_count; enum_type->data.enumeration.fields = allocate(field_count); LLVMZigDIEnumerator **di_enumerators = allocate(field_count); // we possibly allocate too much here since gen_field_count can be lower than field_count. // the only problem is potential wasted space though. LLVMZigDIType **union_inner_di_types = allocate(field_count); TypeTableEntry *biggest_union_member = nullptr; uint64_t biggest_align_in_bits = 0; uint64_t biggest_union_member_size_in_bits = 0; // set temporary flag enum_type->data.enumeration.embedded_in_current = true; int gen_field_index = 0; for (uint32_t i = 0; i < field_count; i += 1) { AstNode *field_node = decl_node->data.struct_decl.fields.at(i); TypeEnumField *type_enum_field = &enum_type->data.enumeration.fields[i]; type_enum_field->name = &field_node->data.struct_field.name; type_enum_field->type_entry = analyze_type_expr(g, import, import->block_context, field_node->data.struct_field.type); type_enum_field->value = i; di_enumerators[i] = LLVMZigCreateDebugEnumerator(g->dbuilder, buf_ptr(type_enum_field->name), i); if (type_enum_field->type_entry->id == TypeTableEntryIdStruct) { resolve_struct_type(g, import, type_enum_field->type_entry); } else if (type_enum_field->type_entry->id == TypeTableEntryIdEnum) { resolve_enum_type(g, import, type_enum_field->type_entry); } else if (type_enum_field->type_entry->id == TypeTableEntryIdInvalid) { enum_type->data.enumeration.is_invalid = true; continue; } else if (type_enum_field->type_entry->id == TypeTableEntryIdVoid) { continue; } union_inner_di_types[gen_field_index] = LLVMZigCreateDebugMemberType(g->dbuilder, LLVMZigTypeToScope(enum_type->di_type), buf_ptr(type_enum_field->name), import->di_file, field_node->line + 1, type_enum_field->type_entry->size_in_bits, type_enum_field->type_entry->align_in_bits, 0, 0, type_enum_field->type_entry->di_type); biggest_align_in_bits = max(biggest_align_in_bits, type_enum_field->type_entry->align_in_bits); if (!biggest_union_member || type_enum_field->type_entry->size_in_bits > biggest_union_member->size_in_bits) { biggest_union_member = type_enum_field->type_entry; biggest_union_member_size_in_bits = biggest_union_member->size_in_bits; } gen_field_index += 1; } // unset temporary flag enum_type->data.enumeration.embedded_in_current = false; enum_type->data.enumeration.complete = true; if (!enum_type->data.enumeration.is_invalid) { enum_type->data.enumeration.gen_field_count = gen_field_index; TypeTableEntry *tag_type_entry = get_smallest_unsigned_int_type(g, field_count); enum_type->align_in_bits = tag_type_entry->size_in_bits; enum_type->size_in_bits = tag_type_entry->size_in_bits + biggest_union_member_size_in_bits; enum_type->data.enumeration.tag_type = tag_type_entry; if (biggest_union_member) { // create llvm type for union LLVMTypeRef union_element_type = biggest_union_member->type_ref; LLVMTypeRef union_type_ref = LLVMStructType(&union_element_type, 1, false); // create llvm type for root struct LLVMTypeRef root_struct_element_types[] = { tag_type_entry->type_ref, union_type_ref, }; LLVMStructSetBody(enum_type->type_ref, root_struct_element_types, 2, false); // create debug type for tag LLVMZigDIType *tag_di_type = LLVMZigCreateDebugEnumerationType(g->dbuilder, LLVMZigTypeToScope(enum_type->di_type), "AnonEnum", import->di_file, decl_node->line + 1, tag_type_entry->size_in_bits, tag_type_entry->align_in_bits, di_enumerators, field_count, tag_type_entry->di_type, ""); // create debug type for union LLVMZigDIType *union_di_type = LLVMZigCreateDebugUnionType(g->dbuilder, LLVMZigTypeToScope(enum_type->di_type), "AnonUnion", import->di_file, decl_node->line + 1, biggest_union_member->size_in_bits, biggest_align_in_bits, 0, union_inner_di_types, gen_field_index, 0, ""); // create debug types for members of root struct LLVMZigDIType *tag_member_di_type = LLVMZigCreateDebugMemberType(g->dbuilder, LLVMZigTypeToScope(enum_type->di_type), "tag_field", import->di_file, decl_node->line + 1, tag_type_entry->size_in_bits, tag_type_entry->align_in_bits, 0, 0, tag_di_type); LLVMZigDIType *union_member_di_type = LLVMZigCreateDebugMemberType(g->dbuilder, LLVMZigTypeToScope(enum_type->di_type), "union_field", import->di_file, decl_node->line + 1, biggest_union_member->size_in_bits, biggest_align_in_bits, tag_type_entry->size_in_bits, 0, union_di_type); // create debug type for root struct LLVMZigDIType *di_root_members[] = { tag_member_di_type, union_member_di_type, }; LLVMZigDIType *replacement_di_type = LLVMZigCreateDebugStructType(g->dbuilder, LLVMZigFileToScope(import->di_file), buf_ptr(&decl_node->data.struct_decl.name), import->di_file, decl_node->line + 1, enum_type->size_in_bits, enum_type->align_in_bits, 0, nullptr, di_root_members, 2, 0, nullptr, ""); LLVMZigReplaceTemporary(g->dbuilder, enum_type->di_type, replacement_di_type); enum_type->di_type = replacement_di_type; } else { // create llvm type for root struct enum_type->type_ref = tag_type_entry->type_ref; // create debug type for tag LLVMZigDIType *tag_di_type = LLVMZigCreateDebugEnumerationType(g->dbuilder, LLVMZigFileToScope(import->di_file), buf_ptr(&decl_node->data.struct_decl.name), import->di_file, decl_node->line + 1, tag_type_entry->size_in_bits, tag_type_entry->align_in_bits, di_enumerators, field_count, tag_type_entry->di_type, ""); LLVMZigReplaceTemporary(g->dbuilder, enum_type->di_type, tag_di_type); enum_type->di_type = tag_di_type; } } } static void resolve_struct_type(CodeGen *g, ImportTableEntry *import, TypeTableEntry *struct_type) { // if you change the logic of this function likely you must make a similar change in // parseh.cpp assert(struct_type->id == TypeTableEntryIdStruct); AstNode *decl_node = struct_type->data.structure.decl_node; if (struct_type->data.structure.embedded_in_current) { if (!struct_type->data.structure.reported_infinite_err) { struct_type->data.structure.reported_infinite_err = true; add_node_error(g, decl_node, buf_sprintf("struct has infinite size")); } return; } if (struct_type->data.structure.fields) { // we already resolved this type. skip return; } assert(struct_type->di_type); int field_count = decl_node->data.struct_decl.fields.length; struct_type->data.structure.src_field_count = field_count; struct_type->data.structure.fields = allocate(field_count); // we possibly allocate too much here since gen_field_count can be lower than field_count. // the only problem is potential wasted space though. LLVMTypeRef *element_types = allocate(field_count); LLVMZigDIType **di_element_types = allocate(field_count); uint64_t total_size_in_bits = 0; uint64_t first_field_align_in_bits = 0; uint64_t offset_in_bits = 0; // this field should be set to true only during the recursive calls to resolve_struct_type struct_type->data.structure.embedded_in_current = true; int gen_field_index = 0; for (int i = 0; i < field_count; i += 1) { AstNode *field_node = decl_node->data.struct_decl.fields.at(i); TypeStructField *type_struct_field = &struct_type->data.structure.fields[i]; type_struct_field->name = &field_node->data.struct_field.name; type_struct_field->type_entry = analyze_type_expr(g, import, import->block_context, field_node->data.struct_field.type); type_struct_field->src_index = i; type_struct_field->gen_index = -1; if (type_struct_field->type_entry->id == TypeTableEntryIdStruct) { resolve_struct_type(g, import, type_struct_field->type_entry); } else if (type_struct_field->type_entry->id == TypeTableEntryIdEnum) { resolve_enum_type(g, import, type_struct_field->type_entry); } else if (type_struct_field->type_entry->id == TypeTableEntryIdInvalid) { struct_type->data.structure.is_invalid = true; continue; } else if (type_struct_field->type_entry->id == TypeTableEntryIdVoid) { continue; } type_struct_field->gen_index = gen_field_index; di_element_types[gen_field_index] = LLVMZigCreateDebugMemberType(g->dbuilder, LLVMZigTypeToScope(struct_type->di_type), buf_ptr(type_struct_field->name), import->di_file, field_node->line + 1, type_struct_field->type_entry->size_in_bits, type_struct_field->type_entry->align_in_bits, offset_in_bits, 0, type_struct_field->type_entry->di_type); element_types[gen_field_index] = type_struct_field->type_entry->type_ref; assert(di_element_types[gen_field_index]); assert(element_types[gen_field_index]); total_size_in_bits += type_struct_field->type_entry->size_in_bits; if (first_field_align_in_bits == 0) { first_field_align_in_bits = type_struct_field->type_entry->align_in_bits; } offset_in_bits += type_struct_field->type_entry->size_in_bits; gen_field_index += 1; } struct_type->data.structure.embedded_in_current = false; struct_type->data.structure.gen_field_count = gen_field_index; struct_type->data.structure.complete = true; if (!struct_type->data.structure.is_invalid) { LLVMStructSetBody(struct_type->type_ref, element_types, gen_field_index, false); struct_type->align_in_bits = first_field_align_in_bits; struct_type->size_in_bits = total_size_in_bits; LLVMZigDIType *replacement_di_type = LLVMZigCreateDebugStructType(g->dbuilder, LLVMZigFileToScope(import->di_file), buf_ptr(&decl_node->data.struct_decl.name), import->di_file, decl_node->line + 1, struct_type->size_in_bits, struct_type->align_in_bits, 0, nullptr, di_element_types, gen_field_index, 0, nullptr, ""); LLVMZigReplaceTemporary(g->dbuilder, struct_type->di_type, replacement_di_type); struct_type->di_type = replacement_di_type; } } static void preview_fn_proto(CodeGen *g, ImportTableEntry *import, AstNode *proto_node) { if (proto_node->data.fn_proto.skip) { return; } AstNode *fn_def_node = proto_node->data.fn_proto.fn_def_node; AstNode *struct_node = proto_node->data.fn_proto.struct_node; bool is_extern = proto_node->data.fn_proto.is_extern; TypeTableEntry *struct_type; if (struct_node) { assert(struct_node->type == NodeTypeStructDecl); struct_type = struct_node->data.struct_decl.type_entry; } else { struct_type = nullptr; } Buf *proto_name = &proto_node->data.fn_proto.name; auto fn_table = struct_type ? &struct_type->data.structure.fn_table : &import->fn_table; auto entry = fn_table->maybe_get(proto_name); bool skip = false; bool is_internal = (proto_node->data.fn_proto.visib_mod != VisibModExport); bool is_c_compat = !is_internal || is_extern; bool is_pub = (proto_node->data.fn_proto.visib_mod != VisibModPrivate); if (entry) { add_node_error(g, proto_node, buf_sprintf("redefinition of '%s'", buf_ptr(proto_name))); proto_node->data.fn_proto.skip = true; skip = true; } if (!is_extern && proto_node->data.fn_proto.is_var_args) { add_node_error(g, proto_node, buf_sprintf("variadic arguments only allowed in extern functions")); } if (skip) { return; } FnTableEntry *fn_table_entry = allocate(1); fn_table_entry->import_entry = import; fn_table_entry->proto_node = proto_node; fn_table_entry->fn_def_node = fn_def_node; fn_table_entry->internal_linkage = !is_c_compat; fn_table_entry->is_extern = is_extern; fn_table_entry->label_table.init(8); fn_table_entry->member_of_struct = struct_type; if (struct_type) { buf_resize(&fn_table_entry->symbol_name, 0); buf_appendf(&fn_table_entry->symbol_name, "%s_%s", buf_ptr(&struct_type->name), buf_ptr(proto_name)); } else { buf_init_from_buf(&fn_table_entry->symbol_name, proto_name); } g->fn_protos.append(fn_table_entry); if (!is_extern) { g->fn_defs.append(fn_table_entry); } fn_table->put(proto_name, fn_table_entry); if (!struct_type && g->bootstrap_import && import == g->root_import && buf_eql_str(proto_name, "main")) { g->bootstrap_import->fn_table.put(proto_name, fn_table_entry); } proto_node->data.fn_proto.fn_table_entry = fn_table_entry; resolve_function_proto(g, proto_node, fn_table_entry, import); if (fn_def_node) { preview_function_labels(g, fn_def_node->data.fn_def.body, fn_table_entry); } if (is_pub && !struct_type) { for (int i = 0; i < import->importers.length; i += 1) { ImporterInfo importer = import->importers.at(i); auto table_entry = importer.import->fn_table.maybe_get(proto_name); if (table_entry) { add_node_error(g, importer.source_node, buf_sprintf("import of function '%s' overrides existing definition", buf_ptr(proto_name))); } else { importer.import->fn_table.put(proto_name, fn_table_entry); } } } } static void resolve_error_value_decl(CodeGen *g, ImportTableEntry *import, AstNode *node) { assert(node->type == NodeTypeErrorValueDecl); ErrorTableEntry *err = allocate(1); err->value = g->next_error_index; g->next_error_index += 1; err->decl_node = node; buf_init_from_buf(&err->name, &node->data.error_value_decl.name); auto existing_entry = import->block_context->error_table.maybe_get(&err->name); if (existing_entry) { add_node_error(g, node, buf_sprintf("redefinition of error '%s'", buf_ptr(&err->name))); } else { import->block_context->error_table.put(&err->name, err); } bool is_pub = (node->data.error_value_decl.visib_mod != VisibModPrivate); if (is_pub) { for (int i = 0; i < import->importers.length; i += 1) { ImporterInfo importer = import->importers.at(i); auto table_entry = importer.import->block_context->error_table.maybe_get(&err->name); if (table_entry) { add_node_error(g, importer.source_node, buf_sprintf("import of error '%s' overrides existing definition", buf_ptr(&err->name))); } else { importer.import->block_context->error_table.put(&err->name, err); } } } } static void resolve_c_import_decl(CodeGen *g, ImportTableEntry *parent_import, AstNode *node) { assert(node->type == NodeTypeCImport); AstNode *block_node = node->data.c_import.block; BlockContext *child_context = new_block_context(node, parent_import->block_context); child_context->c_import_buf = buf_alloc(); TypeTableEntry *resolved_type = analyze_block_expr(g, parent_import, child_context, g->builtin_types.entry_void, block_node); if (resolved_type->id == TypeTableEntryIdInvalid) { return; } find_libc_path(g); ImportTableEntry *child_import = allocate(1); child_import->fn_table.init(32); child_import->c_import_node = node; ZigList errors = {0}; int err; if ((err = parse_h_buf(child_import, &errors, child_context->c_import_buf, g, node))) { zig_panic("unable to parse h file: %s\n", err_str(err)); } if (errors.length > 0) { ErrorMsg *parent_err_msg = add_node_error(g, node, buf_sprintf("C import failed")); for (int i = 0; i < errors.length; i += 1) { ErrorMsg *err_msg = errors.at(i); err_msg_add_note(parent_err_msg, err_msg); } return; } if (g->verbose) { fprintf(stderr, "\nc_import:\n"); fprintf(stderr, "-----------\n"); ast_render(stderr, child_import->root, 4); } child_import->di_file = parent_import->di_file; child_import->block_context = new_block_context(child_import->root, nullptr); child_import->importers.append({parent_import, node}); detect_top_level_decl_deps(g, child_import, child_import->root); } static void satisfy_dep(CodeGen *g, AstNode *node) { Buf *name = get_resolved_top_level_decl(node)->name; if (name) { g->unresolved_top_level_decls.maybe_remove(name); } } static void resolve_top_level_decl(CodeGen *g, ImportTableEntry *import, AstNode *node) { switch (node->type) { case NodeTypeFnProto: preview_fn_proto(g, import, node); break; case NodeTypeRootExportDecl: // handled earlier return; case NodeTypeStructDecl: { TypeTableEntry *type_entry = node->data.struct_decl.type_entry; // struct/enum member fns will get resolved independently switch (node->data.struct_decl.kind) { case ContainerKindStruct: resolve_struct_type(g, import, type_entry); break; case ContainerKindEnum: resolve_enum_type(g, import, type_entry); break; } break; } case NodeTypeVariableDeclaration: { VariableTableEntry *var = analyze_variable_declaration(g, import, import->block_context, nullptr, node); g->global_vars.append(var); break; } case NodeTypeTypeDecl: { AstNode *type_node = node->data.type_decl.child_type; Buf *decl_name = &node->data.type_decl.symbol; TypeTableEntry *typedecl_type; if (node->data.type_decl.override_type) { typedecl_type = node->data.type_decl.override_type; } else { TypeTableEntry *child_type = analyze_type_expr(g, import, import->block_context, type_node); if (child_type->id == TypeTableEntryIdInvalid) { typedecl_type = child_type; } else { typedecl_type = get_typedecl_type(g, buf_ptr(decl_name), child_type); } } import->block_context->type_table.put(decl_name, typedecl_type); break; } case NodeTypeErrorValueDecl: resolve_error_value_decl(g, import, node); break; case NodeTypeImport: // nothing to do here return; case NodeTypeCImport: resolve_c_import_decl(g, import, node); break; case NodeTypeFnDef: case NodeTypeDirective: case NodeTypeParamDecl: case NodeTypeFnDecl: case NodeTypeReturnExpr: case NodeTypeRoot: case NodeTypeBlock: case NodeTypeBinOpExpr: case NodeTypeUnwrapErrorExpr: case NodeTypeFnCallExpr: case NodeTypeArrayAccessExpr: case NodeTypeSliceExpr: case NodeTypeNumberLiteral: case NodeTypeStringLiteral: case NodeTypeCharLiteral: case NodeTypeBoolLiteral: case NodeTypeNullLiteral: case NodeTypeUndefinedLiteral: case NodeTypeSymbol: case NodeTypePrefixOpExpr: case NodeTypeIfBoolExpr: case NodeTypeIfVarExpr: case NodeTypeWhileExpr: case NodeTypeForExpr: case NodeTypeSwitchExpr: case NodeTypeSwitchProng: case NodeTypeSwitchRange: case NodeTypeLabel: case NodeTypeGoto: case NodeTypeBreak: case NodeTypeContinue: case NodeTypeAsmExpr: case NodeTypeFieldAccessExpr: case NodeTypeStructField: case NodeTypeStructValueField: case NodeTypeContainerInitExpr: case NodeTypeArrayType: case NodeTypeErrorType: case NodeTypeTypeLiteral: zig_unreachable(); } satisfy_dep(g, node); } static FnTableEntry *get_context_fn_entry(BlockContext *context) { assert(context->fn_entry); return context->fn_entry; } static TypeTableEntry *unwrapped_node_type(AstNode *node) { Expr *expr = get_resolved_expr(node); if (expr->type_entry->id == TypeTableEntryIdInvalid) { return expr->type_entry; } assert(expr->type_entry->id == TypeTableEntryIdMetaType); ConstExprValue *const_val = &expr->const_val; assert(const_val->ok); return const_val->data.x_type; } static TypeTableEntry *get_return_type(BlockContext *context) { FnTableEntry *fn_entry = get_context_fn_entry(context); AstNode *fn_proto_node = fn_entry->proto_node; assert(fn_proto_node->type == NodeTypeFnProto); AstNode *return_type_node = fn_proto_node->data.fn_proto.return_type; return unwrapped_node_type(return_type_node); } static bool type_has_codegen_value(TypeTableEntryId id) { switch (id) { case TypeTableEntryIdInvalid: case TypeTableEntryIdMetaType: case TypeTableEntryIdVoid: case TypeTableEntryIdUnreachable: case TypeTableEntryIdNumLitFloat: case TypeTableEntryIdNumLitInt: case TypeTableEntryIdUndefLit: return false; case TypeTableEntryIdBool: case TypeTableEntryIdInt: case TypeTableEntryIdFloat: case TypeTableEntryIdPointer: case TypeTableEntryIdArray: case TypeTableEntryIdStruct: case TypeTableEntryIdMaybe: case TypeTableEntryIdErrorUnion: case TypeTableEntryIdPureError: case TypeTableEntryIdEnum: case TypeTableEntryIdFn: return true; case TypeTableEntryIdTypeDecl: zig_unreachable(); } } static void add_global_const_expr(CodeGen *g, Expr *expr) { if (expr->const_val.ok && type_has_codegen_value(expr->type_entry->id) && !expr->has_global_const && expr->type_entry->size_in_bits > 0) { g->global_const_list.append(expr); expr->has_global_const = true; } } static bool num_lit_fits_in_other_type(CodeGen *g, AstNode *literal_node, TypeTableEntry *other_type) { if (other_type->id == TypeTableEntryIdInvalid) { return false; } Expr *expr = get_resolved_expr(literal_node); ConstExprValue *const_val = &expr->const_val; assert(const_val->ok); if (other_type->id == TypeTableEntryIdFloat) { return true; } else if (other_type->id == TypeTableEntryIdInt && const_val->data.x_bignum.kind == BigNumKindInt) { if (bignum_fits_in_bits(&const_val->data.x_bignum, other_type->size_in_bits, other_type->data.integral.is_signed)) { return true; } } else if ((other_type->id == TypeTableEntryIdNumLitFloat && const_val->data.x_bignum.kind == BigNumKindFloat) || (other_type->id == TypeTableEntryIdNumLitInt && const_val->data.x_bignum.kind == BigNumKindInt)) { return true; } const char *num_lit_str = (const_val->data.x_bignum.kind == BigNumKindFloat) ? "float" : "integer"; add_node_error(g, literal_node, buf_sprintf("%s value %s cannot be implicitly casted to type '%s'", num_lit_str, buf_ptr(bignum_to_buf(&const_val->data.x_bignum)), buf_ptr(&other_type->name))); return false; } static bool types_match_const_cast_only(TypeTableEntry *expected_type, TypeTableEntry *actual_type) { if (expected_type == actual_type) return true; // pointer const if (expected_type->id == TypeTableEntryIdPointer && actual_type->id == TypeTableEntryIdPointer && (!actual_type->data.pointer.is_const || expected_type->data.pointer.is_const)) { return types_match_const_cast_only(expected_type->data.pointer.child_type, actual_type->data.pointer.child_type); } // unknown size array const if (expected_type->id == TypeTableEntryIdStruct && actual_type->id == TypeTableEntryIdStruct && expected_type->data.structure.is_unknown_size_array && actual_type->data.structure.is_unknown_size_array && (!actual_type->data.structure.fields[0].type_entry->data.pointer.is_const || expected_type->data.structure.fields[0].type_entry->data.pointer.is_const)) { return types_match_const_cast_only( expected_type->data.structure.fields[0].type_entry->data.pointer.child_type, actual_type->data.structure.fields[0].type_entry->data.pointer.child_type); } // maybe if (expected_type->id == TypeTableEntryIdMaybe && actual_type->id == TypeTableEntryIdMaybe) { return types_match_const_cast_only( expected_type->data.maybe.child_type, actual_type->data.maybe.child_type); } // error if (expected_type->id == TypeTableEntryIdErrorUnion && actual_type->id == TypeTableEntryIdErrorUnion) { return types_match_const_cast_only( expected_type->data.error.child_type, actual_type->data.error.child_type); } // fn if (expected_type->id == TypeTableEntryIdFn && actual_type->id == TypeTableEntryIdFn) { if (expected_type->data.fn.fn_type_id.is_extern != actual_type->data.fn.fn_type_id.is_extern) { return false; } if (expected_type->data.fn.fn_type_id.is_naked != actual_type->data.fn.fn_type_id.is_naked) { return false; } if (!types_match_const_cast_only(expected_type->data.fn.fn_type_id.return_type, actual_type->data.fn.fn_type_id.return_type)) { return false; } if (expected_type->data.fn.fn_type_id.param_count != actual_type->data.fn.fn_type_id.param_count) { return false; } for (int i = 0; i < expected_type->data.fn.fn_type_id.param_count; i += 1) { // note it's reversed for parameters FnTypeParamInfo *actual_param_info = &actual_type->data.fn.fn_type_id.param_info[i]; FnTypeParamInfo *expected_param_info = &expected_type->data.fn.fn_type_id.param_info[i]; if (!types_match_const_cast_only(actual_param_info->type, expected_param_info->type)) { return false; } if (expected_param_info->is_noalias != actual_param_info->is_noalias) { return false; } } return true; } return false; } static TypeTableEntry *determine_peer_type_compatibility(CodeGen *g, AstNode *parent_source_node, AstNode **child_nodes, TypeTableEntry **child_types, int child_count) { TypeTableEntry *prev_type = child_types[0]; AstNode *prev_node = child_nodes[0]; if (prev_type->id == TypeTableEntryIdInvalid) { return prev_type; } for (int i = 1; i < child_count; i += 1) { TypeTableEntry *cur_type = child_types[i]; AstNode *cur_node = child_nodes[i]; if (cur_type->id == TypeTableEntryIdInvalid) { return cur_type; } else if (types_match_const_cast_only(prev_type, cur_type)) { continue; } else if (types_match_const_cast_only(cur_type, prev_type)) { prev_type = cur_type; prev_node = cur_node; continue; } else if (prev_type->id == TypeTableEntryIdUnreachable) { prev_type = cur_type; prev_node = cur_node; } else if (cur_type->id == TypeTableEntryIdUnreachable) { continue; } else if (prev_type->id == TypeTableEntryIdInt && cur_type->id == TypeTableEntryIdInt && prev_type->data.integral.is_signed == cur_type->data.integral.is_signed) { if (cur_type->size_in_bits > prev_type->size_in_bits) { prev_type = cur_type; prev_node = cur_node; } } else if (prev_type->id == TypeTableEntryIdFloat && cur_type->id == TypeTableEntryIdFloat) { if (cur_type->size_in_bits > prev_type->size_in_bits) { prev_type = cur_type; prev_node = cur_node; } } else if (prev_type->id == TypeTableEntryIdErrorUnion && types_match_const_cast_only(prev_type->data.error.child_type, cur_type)) { continue; } else if (cur_type->id == TypeTableEntryIdErrorUnion && types_match_const_cast_only(cur_type->data.error.child_type, prev_type)) { prev_type = cur_type; prev_node = cur_node; continue; } else if (prev_type->id == TypeTableEntryIdNumLitInt || prev_type->id == TypeTableEntryIdNumLitFloat) { if (num_lit_fits_in_other_type(g, prev_node, cur_type)) { prev_type = cur_type; prev_node = cur_node; continue; } else { return g->builtin_types.entry_invalid; } } else if (cur_type->id == TypeTableEntryIdNumLitInt || cur_type->id == TypeTableEntryIdNumLitFloat) { if (num_lit_fits_in_other_type(g, cur_node, prev_type)) { continue; } else { return g->builtin_types.entry_invalid; } } else { add_node_error(g, parent_source_node, buf_sprintf("incompatible types: '%s' and '%s'", buf_ptr(&prev_type->name), buf_ptr(&cur_type->name))); return g->builtin_types.entry_invalid; } } return prev_type; } static bool types_match_with_implicit_cast(CodeGen *g, TypeTableEntry *expected_type, TypeTableEntry *actual_type, AstNode *literal_node, bool *reported_err) { if (types_match_const_cast_only(expected_type, actual_type)) { return true; } // implicit conversion from non maybe type to maybe type if (expected_type->id == TypeTableEntryIdMaybe && types_match_with_implicit_cast(g, expected_type->data.maybe.child_type, actual_type, literal_node, reported_err)) { return true; } // implicit conversion from error child type to error type if (expected_type->id == TypeTableEntryIdErrorUnion && types_match_with_implicit_cast(g, expected_type->data.error.child_type, actual_type, literal_node, reported_err)) { return true; } // implicit conversion from pure error to error union type if (expected_type->id == TypeTableEntryIdErrorUnion && actual_type->id == TypeTableEntryIdPureError) { return true; } // implicit widening conversion if (expected_type->id == TypeTableEntryIdInt && actual_type->id == TypeTableEntryIdInt && expected_type->data.integral.is_signed == actual_type->data.integral.is_signed && expected_type->size_in_bits >= actual_type->size_in_bits) { return true; } // implicit constant sized array to unknown size array conversion if (expected_type->id == TypeTableEntryIdStruct && expected_type->data.structure.is_unknown_size_array && actual_type->id == TypeTableEntryIdArray && types_match_const_cast_only( expected_type->data.structure.fields[0].type_entry->data.pointer.child_type, actual_type->data.array.child_type)) { return true; } // implicit number literal to typed number if ((actual_type->id == TypeTableEntryIdNumLitFloat || actual_type->id == TypeTableEntryIdNumLitInt)) { if (num_lit_fits_in_other_type(g, literal_node, expected_type)) { return true; } else { *reported_err = true; } } return false; } static AstNode *create_ast_node(CodeGen *g, ImportTableEntry *import, NodeType kind) { AstNode *node = allocate(1); node->type = kind; node->owner = import; node->create_index = g->next_node_index; g->next_node_index += 1; return node; } static AstNode *create_ast_type_node(CodeGen *g, ImportTableEntry *import, TypeTableEntry *type_entry) { AstNode *node = create_ast_node(g, import, NodeTypeSymbol); node->data.symbol_expr.override_type_entry = type_entry; return node; } static AstNode *create_ast_void_node(CodeGen *g, ImportTableEntry *import, AstNode *source_node) { AstNode *node = create_ast_node(g, import, NodeTypeContainerInitExpr); node->data.container_init_expr.kind = ContainerInitKindArray; node->data.container_init_expr.type = create_ast_type_node(g, import, g->builtin_types.entry_void); node->line = source_node->line; node->column = source_node->column; normalize_parent_ptrs(node); return node; } static TypeTableEntry *create_and_analyze_cast_node(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *cast_to_type, AstNode *node) { AstNode *new_parent_node = create_ast_node(g, import, NodeTypeFnCallExpr); new_parent_node->line = node->line; new_parent_node->column = node->column; *node->parent_field = new_parent_node; new_parent_node->parent_field = node->parent_field; new_parent_node->data.fn_call_expr.fn_ref_expr = create_ast_type_node(g, import, cast_to_type); new_parent_node->data.fn_call_expr.params.append(node); normalize_parent_ptrs(new_parent_node); return analyze_expression(g, import, context, cast_to_type, new_parent_node); } static TypeTableEntry *resolve_type_compatibility(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node, TypeTableEntry *expected_type, TypeTableEntry *actual_type) { if (expected_type == nullptr) return actual_type; // anything will do if (expected_type == actual_type) return expected_type; // match if (expected_type->id == TypeTableEntryIdInvalid || actual_type->id == TypeTableEntryIdInvalid) return g->builtin_types.entry_invalid; if (actual_type->id == TypeTableEntryIdUnreachable) return actual_type; bool reported_err = false; if (types_match_with_implicit_cast(g, expected_type, actual_type, node, &reported_err)) { return create_and_analyze_cast_node(g, import, context, expected_type, node); } if (!reported_err) { add_node_error(g, first_executing_node(node), buf_sprintf("expected type '%s', got '%s'", buf_ptr(&expected_type->name), buf_ptr(&actual_type->name))); } return g->builtin_types.entry_invalid; } static TypeTableEntry *resolve_peer_type_compatibility(CodeGen *g, ImportTableEntry *import, BlockContext *block_context, AstNode *parent_source_node, AstNode **child_nodes, TypeTableEntry **child_types, int child_count) { assert(child_count > 0); TypeTableEntry *expected_type = determine_peer_type_compatibility(g, parent_source_node, child_nodes, child_types, child_count); if (expected_type->id == TypeTableEntryIdInvalid) { return expected_type; } for (int i = 0; i < child_count; i += 1) { if (!child_nodes[i]) { continue; } AstNode **child_node = child_nodes[i]->parent_field; TypeTableEntry *resolved_type = resolve_type_compatibility(g, import, block_context, *child_node, expected_type, child_types[i]); Expr *expr = get_resolved_expr(*child_node); expr->type_entry = resolved_type; add_global_const_expr(g, expr); } return expected_type; } BlockContext *new_block_context(AstNode *node, BlockContext *parent) { BlockContext *context = allocate(1); context->node = node; context->parent = parent; context->variable_table.init(8); context->type_table.init(8); context->error_table.init(8); if (parent) { context->parent_loop_node = parent->parent_loop_node; context->c_import_buf = parent->c_import_buf; } if (node && node->type == NodeTypeFnDef) { AstNode *fn_proto_node = node->data.fn_def.fn_proto; context->fn_entry = fn_proto_node->data.fn_proto.fn_table_entry; } else if (parent) { context->fn_entry = parent->fn_entry; } if (context->fn_entry) { context->fn_entry->all_block_contexts.append(context); } return context; } static VariableTableEntry *find_local_variable(BlockContext *context, Buf *name) { while (context && context->fn_entry) { auto entry = context->variable_table.maybe_get(name); if (entry != nullptr) return entry->value; context = context->parent; } return nullptr; } VariableTableEntry *find_variable(BlockContext *context, Buf *name) { while (context) { auto entry = context->variable_table.maybe_get(name); if (entry != nullptr) return entry->value; context = context->parent; } return nullptr; } TypeTableEntry *find_container(BlockContext *context, Buf *name) { while (context) { auto entry = context->type_table.maybe_get(name); if (entry != nullptr) return entry->value; context = context->parent; } return nullptr; } static TypeEnumField *get_enum_field(TypeTableEntry *enum_type, Buf *name) { for (uint32_t i = 0; i < enum_type->data.enumeration.field_count; i += 1) { TypeEnumField *type_enum_field = &enum_type->data.enumeration.fields[i]; if (buf_eql_buf(type_enum_field->name, name)) { return type_enum_field; } } return nullptr; } static TypeTableEntry *analyze_enum_value_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *field_access_node, AstNode *value_node, TypeTableEntry *enum_type, Buf *field_name) { assert(field_access_node->type == NodeTypeFieldAccessExpr); TypeEnumField *type_enum_field = get_enum_field(enum_type, field_name); field_access_node->data.field_access_expr.type_enum_field = type_enum_field; if (type_enum_field) { if (value_node) { analyze_expression(g, import, context, type_enum_field->type_entry, value_node); StructValExprCodeGen *codegen = &field_access_node->data.field_access_expr.resolved_struct_val_expr; codegen->type_entry = enum_type; codegen->source_node = field_access_node; context->struct_val_expr_alloca_list.append(codegen); } else if (type_enum_field->type_entry->id != TypeTableEntryIdVoid) { add_node_error(g, field_access_node, buf_sprintf("enum value '%s.%s' requires parameter of type '%s'", buf_ptr(&enum_type->name), buf_ptr(field_name), buf_ptr(&type_enum_field->type_entry->name))); } else { Expr *expr = get_resolved_expr(field_access_node); expr->const_val.ok = true; expr->const_val.data.x_enum.tag = type_enum_field->value; expr->const_val.data.x_enum.payload = nullptr; } } else { add_node_error(g, field_access_node, buf_sprintf("no member named '%s' in '%s'", buf_ptr(field_name), buf_ptr(&enum_type->name))); } return enum_type; } static TypeStructField *find_struct_type_field(TypeTableEntry *type_entry, Buf *name) { assert(type_entry->id == TypeTableEntryIdStruct); for (uint32_t i = 0; i < type_entry->data.structure.src_field_count; i += 1) { TypeStructField *field = &type_entry->data.structure.fields[i]; if (buf_eql_buf(field->name, name)) { return field; } } return nullptr; } static const char *err_container_init_syntax_name(ContainerInitKind kind) { switch (kind) { case ContainerInitKindStruct: return "struct"; case ContainerInitKindArray: return "array"; } zig_unreachable(); } static TypeTableEntry *analyze_container_init_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node) { assert(node->type == NodeTypeContainerInitExpr); AstNodeContainerInitExpr *container_init_expr = &node->data.container_init_expr; ContainerInitKind kind = container_init_expr->kind; TypeTableEntry *container_type = analyze_type_expr(g, import, context, container_init_expr->type); if (container_type->id == TypeTableEntryIdInvalid) { return container_type; } else if (container_type->id == TypeTableEntryIdStruct && !container_type->data.structure.is_unknown_size_array && kind == ContainerInitKindStruct) { StructValExprCodeGen *codegen = &container_init_expr->resolved_struct_val_expr; codegen->type_entry = container_type; codegen->source_node = node; context->struct_val_expr_alloca_list.append(codegen); int expr_field_count = container_init_expr->entries.length; int actual_field_count = container_type->data.structure.src_field_count; int *field_use_counts = allocate(actual_field_count); ConstExprValue *const_val = &get_resolved_expr(node)->const_val; const_val->ok = true; const_val->data.x_struct.fields = allocate(actual_field_count); for (int i = 0; i < expr_field_count; i += 1) { AstNode *val_field_node = container_init_expr->entries.at(i); assert(val_field_node->type == NodeTypeStructValueField); val_field_node->block_context = context; TypeStructField *type_field = find_struct_type_field(container_type, &val_field_node->data.struct_val_field.name); if (!type_field) { add_node_error(g, val_field_node, buf_sprintf("no member named '%s' in '%s'", buf_ptr(&val_field_node->data.struct_val_field.name), buf_ptr(&container_type->name))); continue; } int field_index = type_field->src_index; field_use_counts[field_index] += 1; if (field_use_counts[field_index] > 1) { add_node_error(g, val_field_node, buf_sprintf("duplicate field")); continue; } val_field_node->data.struct_val_field.type_struct_field = type_field; analyze_expression(g, import, context, type_field->type_entry, val_field_node->data.struct_val_field.expr); if (const_val->ok) { ConstExprValue *field_val = &get_resolved_expr(val_field_node->data.struct_val_field.expr)->const_val; if (field_val->ok) { const_val->data.x_struct.fields[field_index] = field_val; } else { const_val->ok = false; } } } for (int i = 0; i < actual_field_count; i += 1) { if (field_use_counts[i] == 0) { add_node_error(g, node, buf_sprintf("missing field: '%s'", buf_ptr(container_type->data.structure.fields[i].name))); } } return container_type; } else if (container_type->id == TypeTableEntryIdStruct && container_type->data.structure.is_unknown_size_array && kind == ContainerInitKindArray) { int elem_count = container_init_expr->entries.length; TypeTableEntry *pointer_type = container_type->data.structure.fields[0].type_entry; assert(pointer_type->id == TypeTableEntryIdPointer); TypeTableEntry *child_type = pointer_type->data.pointer.child_type; ConstExprValue *const_val = &get_resolved_expr(node)->const_val; const_val->ok = true; const_val->data.x_array.fields = allocate(elem_count); for (int i = 0; i < elem_count; i += 1) { AstNode **elem_node = &container_init_expr->entries.at(i); analyze_expression(g, import, context, child_type, *elem_node); if (const_val->ok) { ConstExprValue *elem_const_val = &get_resolved_expr(*elem_node)->const_val; if (elem_const_val->ok) { const_val->data.x_array.fields[i] = elem_const_val; } else { const_val->ok = false; } } } TypeTableEntry *fixed_size_array_type = get_array_type(g, child_type, elem_count); StructValExprCodeGen *codegen = &container_init_expr->resolved_struct_val_expr; codegen->type_entry = fixed_size_array_type; codegen->source_node = node; context->struct_val_expr_alloca_list.append(codegen); return fixed_size_array_type; } else if (container_type->id == TypeTableEntryIdArray) { zig_panic("TODO array container init"); return container_type; } else if (container_type->id == TypeTableEntryIdEnum) { zig_panic("TODO enum container init"); return container_type; } else if (container_type->id == TypeTableEntryIdVoid) { if (container_init_expr->entries.length != 0) { add_node_error(g, node, buf_sprintf("void expression expects no arguments")); return g->builtin_types.entry_invalid; } else { return resolve_expr_const_val_as_void(g, node); } } else if (container_type->id == TypeTableEntryIdUnreachable) { if (container_init_expr->entries.length != 0) { add_node_error(g, node, buf_sprintf("unreachable expression expects no arguments")); return g->builtin_types.entry_invalid; } else { return container_type; } } else { add_node_error(g, node, buf_sprintf("type '%s' does not support %s initialization syntax", buf_ptr(&container_type->name), err_container_init_syntax_name(kind))); return g->builtin_types.entry_invalid; } } static TypeTableEntry *analyze_field_access_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node) { assert(node->type == NodeTypeFieldAccessExpr); AstNode *struct_expr_node = node->data.field_access_expr.struct_expr; TypeTableEntry *struct_type = analyze_expression(g, import, context, nullptr, struct_expr_node); Buf *field_name = &node->data.field_access_expr.field_name; if (struct_type->id == TypeTableEntryIdStruct || (struct_type->id == TypeTableEntryIdPointer && struct_type->data.pointer.child_type->id == TypeTableEntryIdStruct)) { TypeTableEntry *bare_struct_type = (struct_type->id == TypeTableEntryIdStruct) ? struct_type : struct_type->data.pointer.child_type; node->data.field_access_expr.type_struct_field = find_struct_type_field(bare_struct_type, field_name); if (node->data.field_access_expr.type_struct_field) { return node->data.field_access_expr.type_struct_field->type_entry; } else { add_node_error(g, node, buf_sprintf("no member named '%s' in '%s'", buf_ptr(field_name), buf_ptr(&struct_type->name))); return g->builtin_types.entry_invalid; } } else if (struct_type->id == TypeTableEntryIdArray) { if (buf_eql_str(field_name, "len")) { return g->builtin_types.entry_isize; } else if (buf_eql_str(field_name, "ptr")) { // TODO determine whether the pointer should be const return get_pointer_to_type(g, struct_type->data.array.child_type, false); } else { add_node_error(g, node, buf_sprintf("no member named '%s' in '%s'", buf_ptr(field_name), buf_ptr(&struct_type->name))); return g->builtin_types.entry_invalid; } } else if (struct_type->id == TypeTableEntryIdMetaType) { TypeTableEntry *child_type = resolve_type(g, struct_expr_node); if (child_type->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } else if (child_type->id == TypeTableEntryIdEnum) { return analyze_enum_value_expr(g, import, context, node, nullptr, child_type, field_name); } else if (child_type->id == TypeTableEntryIdStruct) { auto entry = child_type->data.structure.fn_table.maybe_get(field_name); if (entry) { return resolve_expr_const_val_as_fn(g, node, entry->value); } else { add_node_error(g, node, buf_sprintf("struct '%s' has no function called '%s'", buf_ptr(&child_type->name), buf_ptr(field_name))); return g->builtin_types.entry_invalid; } } else if (child_type->id == TypeTableEntryIdPureError) { return analyze_error_literal_expr(g, import, context, node, field_name); } else { add_node_error(g, node, buf_sprintf("type '%s' does not support field access", buf_ptr(&struct_type->name))); return g->builtin_types.entry_invalid; } } else { if (struct_type->id != TypeTableEntryIdInvalid) { add_node_error(g, node, buf_sprintf("type '%s' does not support field access", buf_ptr(&struct_type->name))); } return g->builtin_types.entry_invalid; } } static TypeTableEntry *analyze_slice_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node) { assert(node->type == NodeTypeSliceExpr); TypeTableEntry *array_type = analyze_expression(g, import, context, nullptr, node->data.slice_expr.array_ref_expr); TypeTableEntry *return_type; if (array_type->id == TypeTableEntryIdInvalid) { return_type = g->builtin_types.entry_invalid; } else if (array_type->id == TypeTableEntryIdArray) { return_type = get_unknown_size_array_type(g, array_type->data.array.child_type, node->data.slice_expr.is_const); } else if (array_type->id == TypeTableEntryIdPointer) { return_type = get_unknown_size_array_type(g, array_type->data.pointer.child_type, node->data.slice_expr.is_const); } else if (array_type->id == TypeTableEntryIdStruct && array_type->data.structure.is_unknown_size_array) { return_type = get_unknown_size_array_type(g, array_type->data.structure.fields[0].type_entry->data.pointer.child_type, node->data.slice_expr.is_const); } else { add_node_error(g, node, buf_sprintf("slice of non-array type '%s'", buf_ptr(&array_type->name))); return_type = g->builtin_types.entry_invalid; } if (return_type->id != TypeTableEntryIdInvalid) { node->data.slice_expr.resolved_struct_val_expr.type_entry = return_type; node->data.slice_expr.resolved_struct_val_expr.source_node = node; context->struct_val_expr_alloca_list.append(&node->data.slice_expr.resolved_struct_val_expr); } analyze_expression(g, import, context, g->builtin_types.entry_isize, node->data.slice_expr.start); if (node->data.slice_expr.end) { analyze_expression(g, import, context, g->builtin_types.entry_isize, node->data.slice_expr.end); } return return_type; } static TypeTableEntry *analyze_array_access_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node) { TypeTableEntry *array_type = analyze_expression(g, import, context, nullptr, node->data.array_access_expr.array_ref_expr); TypeTableEntry *return_type; if (array_type->id == TypeTableEntryIdInvalid) { return_type = g->builtin_types.entry_invalid; } else if (array_type->id == TypeTableEntryIdArray) { return_type = array_type->data.array.child_type; } else if (array_type->id == TypeTableEntryIdPointer) { return_type = array_type->data.pointer.child_type; } else if (array_type->id == TypeTableEntryIdStruct && array_type->data.structure.is_unknown_size_array) { return_type = array_type->data.structure.fields[0].type_entry->data.pointer.child_type; } else { add_node_error(g, node, buf_sprintf("array access of non-array type '%s'", buf_ptr(&array_type->name))); return_type = g->builtin_types.entry_invalid; } analyze_expression(g, import, context, g->builtin_types.entry_isize, node->data.array_access_expr.subscript); return return_type; } static TypeTableEntry *resolve_expr_const_val_as_void(CodeGen *g, AstNode *node) { Expr *expr = get_resolved_expr(node); expr->const_val.ok = true; return g->builtin_types.entry_void; } static TypeTableEntry *resolve_expr_const_val_as_type(CodeGen *g, AstNode *node, TypeTableEntry *type) { Expr *expr = get_resolved_expr(node); expr->const_val.ok = true; expr->const_val.data.x_type = type; return g->builtin_types.entry_type; } static TypeTableEntry *resolve_expr_const_val_as_other_expr(CodeGen *g, AstNode *node, AstNode *other) { Expr *expr = get_resolved_expr(node); Expr *other_expr = get_resolved_expr(other); expr->const_val = other_expr->const_val; return other_expr->type_entry; } static TypeTableEntry *resolve_expr_const_val_as_fn(CodeGen *g, AstNode *node, FnTableEntry *fn) { Expr *expr = get_resolved_expr(node); expr->const_val.ok = true; expr->const_val.data.x_fn = fn; return fn->type_entry; } static TypeTableEntry *resolve_expr_const_val_as_err(CodeGen *g, AstNode *node, ErrorTableEntry *err) { Expr *expr = get_resolved_expr(node); expr->const_val.ok = true; expr->const_val.data.x_err.err = err; return g->builtin_types.entry_pure_error; } static TypeTableEntry *resolve_expr_const_val_as_bool(CodeGen *g, AstNode *node, bool value) { Expr *expr = get_resolved_expr(node); expr->const_val.ok = true; expr->const_val.data.x_bool = value; return g->builtin_types.entry_bool; } static TypeTableEntry *resolve_expr_const_val_as_null(CodeGen *g, AstNode *node, TypeTableEntry *type) { Expr *expr = get_resolved_expr(node); expr->const_val.ok = true; expr->const_val.data.x_maybe = nullptr; return type; } static TypeTableEntry *resolve_expr_const_val_as_c_string_lit(CodeGen *g, AstNode *node, Buf *str) { Expr *expr = get_resolved_expr(node); expr->const_val.ok = true; int len_with_null = buf_len(str) + 1; expr->const_val.data.x_ptr.ptr = allocate(len_with_null); expr->const_val.data.x_ptr.len = len_with_null; ConstExprValue *all_chars = allocate(len_with_null); for (int i = 0; i < buf_len(str); i += 1) { ConstExprValue *this_char = &all_chars[i]; this_char->ok = true; bignum_init_unsigned(&this_char->data.x_bignum, buf_ptr(str)[i]); expr->const_val.data.x_ptr.ptr[i] = this_char; } ConstExprValue *null_char = &all_chars[len_with_null - 1]; null_char->ok = true; bignum_init_unsigned(&null_char->data.x_bignum, 0); expr->const_val.data.x_ptr.ptr[len_with_null - 1] = null_char; return get_pointer_to_type(g, g->builtin_types.entry_u8, true); } static TypeTableEntry *resolve_expr_const_val_as_string_lit(CodeGen *g, AstNode *node, Buf *str) { Expr *expr = get_resolved_expr(node); expr->const_val.ok = true; expr->const_val.data.x_array.fields = allocate(buf_len(str)); ConstExprValue *all_chars = allocate(buf_len(str)); for (int i = 0; i < buf_len(str); i += 1) { ConstExprValue *this_char = &all_chars[i]; this_char->ok = true; bignum_init_unsigned(&this_char->data.x_bignum, buf_ptr(str)[i]); expr->const_val.data.x_array.fields[i] = this_char; } return get_array_type(g, g->builtin_types.entry_u8, buf_len(str)); } static TypeTableEntry *resolve_expr_const_val_as_unsigned_num_lit(CodeGen *g, AstNode *node, TypeTableEntry *expected_type, uint64_t x) { Expr *expr = get_resolved_expr(node); expr->const_val.ok = true; bignum_init_unsigned(&expr->const_val.data.x_bignum, x); return g->builtin_types.entry_num_lit_int; } static TypeTableEntry *resolve_expr_const_val_as_float_num_lit(CodeGen *g, AstNode *node, TypeTableEntry *expected_type, double x) { Expr *expr = get_resolved_expr(node); expr->const_val.ok = true; bignum_init_float(&expr->const_val.data.x_bignum, x); if (expected_type) { num_lit_fits_in_other_type(g, node, expected_type); return expected_type; } else { return g->builtin_types.entry_num_lit_float; } } static TypeTableEntry *resolve_expr_const_val_as_bignum_op(CodeGen *g, AstNode *node, bool (*bignum_fn)(BigNum *, BigNum *, BigNum *), AstNode *op1, AstNode *op2, TypeTableEntry *resolved_type) { ConstExprValue *const_val = &get_resolved_expr(node)->const_val; ConstExprValue *op1_val = &get_resolved_expr(op1)->const_val; ConstExprValue *op2_val = &get_resolved_expr(op2)->const_val; const_val->ok = true; if (bignum_fn(&const_val->data.x_bignum, &op1_val->data.x_bignum, &op2_val->data.x_bignum)) { add_node_error(g, node, buf_sprintf("value cannot be represented in any integer type")); } else { num_lit_fits_in_other_type(g, node, resolved_type); } return resolved_type; } static TypeTableEntry *analyze_error_literal_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node, Buf *err_name) { auto err_table_entry = import->block_context->error_table.maybe_get(err_name); if (err_table_entry) { return resolve_expr_const_val_as_err(g, node, err_table_entry->value); } add_node_error(g, node, buf_sprintf("use of undeclared error value '%s'", buf_ptr(err_name))); return get_error_type(g, g->builtin_types.entry_void); } static TypeTableEntry *analyze_symbol_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { if (node->data.symbol_expr.override_type_entry) { return resolve_expr_const_val_as_type(g, node, node->data.symbol_expr.override_type_entry); } Buf *variable_name = &node->data.symbol_expr.symbol; auto primitive_table_entry = g->primitive_type_table.maybe_get(variable_name); if (primitive_table_entry) { return resolve_expr_const_val_as_type(g, node, primitive_table_entry->value); } VariableTableEntry *var = find_variable(context, variable_name); if (var) { node->data.symbol_expr.variable = var; if (var->is_const) { AstNode *decl_node = var->decl_node; if (decl_node->type == NodeTypeVariableDeclaration) { AstNode *expr_node = decl_node->data.variable_declaration.expr; ConstExprValue *other_const_val = &get_resolved_expr(expr_node)->const_val; if (other_const_val->ok) { return resolve_expr_const_val_as_other_expr(g, node, expr_node); } } } return var->type; } TypeTableEntry *container_type = find_container(context, variable_name); if (container_type) { return resolve_expr_const_val_as_type(g, node, container_type); } auto fn_table_entry = import->fn_table.maybe_get(variable_name); if (fn_table_entry) { node->data.symbol_expr.fn_entry = fn_table_entry->value; return resolve_expr_const_val_as_fn(g, node, fn_table_entry->value); } add_node_error(g, node, buf_sprintf("use of undeclared identifier '%s'", buf_ptr(variable_name))); return g->builtin_types.entry_invalid; } static TypeTableEntry *analyze_variable_name(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node, Buf *variable_name) { VariableTableEntry *var = find_variable(context, variable_name); if (var) { return var->type; } else { add_node_error(g, node, buf_sprintf("use of undeclared identifier '%s'", buf_ptr(variable_name))); return g->builtin_types.entry_invalid; } } static bool is_op_allowed(TypeTableEntry *type, BinOpType op) { switch (op) { case BinOpTypeAssign: return true; case BinOpTypeAssignTimes: case BinOpTypeAssignDiv: case BinOpTypeAssignMod: return type->id == TypeTableEntryIdInt || type->id == TypeTableEntryIdFloat; case BinOpTypeAssignPlus: case BinOpTypeAssignMinus: return type->id == TypeTableEntryIdInt || type->id == TypeTableEntryIdFloat || type->id == TypeTableEntryIdPointer; case BinOpTypeAssignBitShiftLeft: case BinOpTypeAssignBitShiftRight: case BinOpTypeAssignBitAnd: case BinOpTypeAssignBitXor: case BinOpTypeAssignBitOr: return type->id == TypeTableEntryIdInt; case BinOpTypeAssignBoolAnd: case BinOpTypeAssignBoolOr: return type->id == TypeTableEntryIdBool; case BinOpTypeInvalid: case BinOpTypeBoolOr: case BinOpTypeBoolAnd: case BinOpTypeCmpEq: case BinOpTypeCmpNotEq: case BinOpTypeCmpLessThan: case BinOpTypeCmpGreaterThan: case BinOpTypeCmpLessOrEq: case BinOpTypeCmpGreaterOrEq: case BinOpTypeBinOr: case BinOpTypeBinXor: case BinOpTypeBinAnd: case BinOpTypeBitShiftLeft: case BinOpTypeBitShiftRight: case BinOpTypeAdd: case BinOpTypeSub: case BinOpTypeMult: case BinOpTypeDiv: case BinOpTypeMod: case BinOpTypeUnwrapMaybe: case BinOpTypeStrCat: zig_unreachable(); } zig_unreachable(); } enum LValPurpose { LValPurposeAssign, LValPurposeAddressOf, }; static TypeTableEntry *analyze_lvalue(CodeGen *g, ImportTableEntry *import, BlockContext *block_context, AstNode *lhs_node, LValPurpose purpose, bool is_ptr_const) { TypeTableEntry *expected_rhs_type = nullptr; lhs_node->block_context = block_context; if (lhs_node->type == NodeTypeSymbol) { Buf *name = &lhs_node->data.symbol_expr.symbol; if (purpose == LValPurposeAddressOf) { expected_rhs_type = analyze_symbol_expr(g, import, block_context, nullptr, lhs_node); } else { VariableTableEntry *var = find_variable(block_context, name); if (var) { if (var->is_const) { add_node_error(g, lhs_node, buf_sprintf("cannot assign to constant")); expected_rhs_type = g->builtin_types.entry_invalid; } else { expected_rhs_type = var->type; } } else { add_node_error(g, lhs_node, buf_sprintf("use of undeclared identifier '%s'", buf_ptr(name))); expected_rhs_type = g->builtin_types.entry_invalid; } } } else if (lhs_node->type == NodeTypeArrayAccessExpr) { expected_rhs_type = analyze_array_access_expr(g, import, block_context, lhs_node); } else if (lhs_node->type == NodeTypeFieldAccessExpr) { expected_rhs_type = analyze_field_access_expr(g, import, block_context, lhs_node); } else if (lhs_node->type == NodeTypePrefixOpExpr && lhs_node->data.prefix_op_expr.prefix_op == PrefixOpDereference) { assert(purpose == LValPurposeAssign); AstNode *target_node = lhs_node->data.prefix_op_expr.primary_expr; TypeTableEntry *type_entry = analyze_expression(g, import, block_context, nullptr, target_node); if (type_entry->id == TypeTableEntryIdInvalid) { expected_rhs_type = type_entry; } else if (type_entry->id == TypeTableEntryIdPointer) { expected_rhs_type = type_entry->data.pointer.child_type; } else { add_node_error(g, target_node, buf_sprintf("indirection requires pointer operand ('%s' invalid)", buf_ptr(&type_entry->name))); expected_rhs_type = g->builtin_types.entry_invalid; } } else { if (purpose == LValPurposeAssign) { add_node_error(g, lhs_node, buf_sprintf("invalid assignment target")); expected_rhs_type = g->builtin_types.entry_invalid; } else if (purpose == LValPurposeAddressOf) { TypeTableEntry *type_entry = analyze_expression(g, import, block_context, nullptr, lhs_node); if (type_entry->id == TypeTableEntryIdInvalid) { expected_rhs_type = g->builtin_types.entry_invalid; } else if (type_entry->id == TypeTableEntryIdMetaType) { expected_rhs_type = type_entry; } else { add_node_error(g, lhs_node, buf_sprintf("invalid addressof target")); expected_rhs_type = g->builtin_types.entry_invalid; } } } assert(expected_rhs_type); return expected_rhs_type; } static bool eval_bool_bin_op_bool(bool a, BinOpType bin_op, bool b) { if (bin_op == BinOpTypeBoolOr) { return a || b; } else if (bin_op == BinOpTypeBoolAnd) { return a && b; } else { zig_unreachable(); } } static TypeTableEntry *analyze_bool_bin_op_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node) { assert(node->type == NodeTypeBinOpExpr); BinOpType bin_op_type = node->data.bin_op_expr.bin_op; AstNode *op1 = node->data.bin_op_expr.op1; AstNode *op2 = node->data.bin_op_expr.op2; TypeTableEntry *op1_type = analyze_expression(g, import, context, nullptr, op1); TypeTableEntry *op2_type = analyze_expression(g, import, context, nullptr, op2); AstNode *op_nodes[] = {op1, op2}; TypeTableEntry *op_types[] = {op1_type, op2_type}; TypeTableEntry *resolved_type = resolve_peer_type_compatibility(g, import, context, node, op_nodes, op_types, 2); if (resolved_type->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } ConstExprValue *op1_val = &get_resolved_expr(op1)->const_val; ConstExprValue *op2_val = &get_resolved_expr(op2)->const_val; if (!op1_val->ok || !op2_val->ok) { return g->builtin_types.entry_bool; } bool answer; if (resolved_type->id == TypeTableEntryIdNumLitFloat || resolved_type->id == TypeTableEntryIdNumLitInt || resolved_type->id == TypeTableEntryIdFloat || resolved_type->id == TypeTableEntryIdInt) { bool (*bignum_cmp)(BigNum *, BigNum *); if (bin_op_type == BinOpTypeCmpEq) { bignum_cmp = bignum_cmp_eq; } else if (bin_op_type == BinOpTypeCmpNotEq) { bignum_cmp = bignum_cmp_neq; } else if (bin_op_type == BinOpTypeCmpLessThan) { bignum_cmp = bignum_cmp_lt; } else if (bin_op_type == BinOpTypeCmpGreaterThan) { bignum_cmp = bignum_cmp_gt; } else if (bin_op_type == BinOpTypeCmpLessOrEq) { bignum_cmp = bignum_cmp_lte; } else if (bin_op_type == BinOpTypeCmpGreaterOrEq) { bignum_cmp = bignum_cmp_gte; } else { zig_unreachable(); } answer = bignum_cmp(&op1_val->data.x_bignum, &op2_val->data.x_bignum); } else if (resolved_type->id == TypeTableEntryIdEnum) { ConstEnumValue *enum1 = &op1_val->data.x_enum; ConstEnumValue *enum2 = &op2_val->data.x_enum; bool are_equal = false; if (enum1->tag == enum2->tag) { TypeEnumField *enum_field = &op1_type->data.enumeration.fields[enum1->tag]; if (enum_field->type_entry->size_in_bits > 0) { zig_panic("TODO const expr analyze enum special value for equality"); } else { are_equal = true; } } if (bin_op_type == BinOpTypeCmpEq) { answer = are_equal; } else if (bin_op_type == BinOpTypeCmpNotEq) { answer = !are_equal; } else { zig_unreachable(); } } else { zig_unreachable(); } return resolve_expr_const_val_as_bool(g, node, answer); } static TypeTableEntry *analyze_logic_bin_op_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node) { assert(node->type == NodeTypeBinOpExpr); BinOpType bin_op_type = node->data.bin_op_expr.bin_op; AstNode *op1 = node->data.bin_op_expr.op1; AstNode *op2 = node->data.bin_op_expr.op2; TypeTableEntry *op1_type = analyze_expression(g, import, context, g->builtin_types.entry_bool, op1); TypeTableEntry *op2_type = analyze_expression(g, import, context, g->builtin_types.entry_bool, op2); if (op1_type->id == TypeTableEntryIdInvalid || op2_type->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } ConstExprValue *op1_val = &get_resolved_expr(op1)->const_val; ConstExprValue *op2_val = &get_resolved_expr(op2)->const_val; if (!op1_val->ok || !op2_val->ok) { return g->builtin_types.entry_bool; } bool answer = eval_bool_bin_op_bool(op1_val->data.x_bool, bin_op_type, op2_val->data.x_bool); return resolve_expr_const_val_as_bool(g, node, answer); } static TypeTableEntry *analyze_bin_op_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { BinOpType bin_op_type = node->data.bin_op_expr.bin_op; switch (bin_op_type) { case BinOpTypeAssign: case BinOpTypeAssignTimes: case BinOpTypeAssignDiv: case BinOpTypeAssignMod: case BinOpTypeAssignPlus: case BinOpTypeAssignMinus: case BinOpTypeAssignBitShiftLeft: case BinOpTypeAssignBitShiftRight: case BinOpTypeAssignBitAnd: case BinOpTypeAssignBitXor: case BinOpTypeAssignBitOr: case BinOpTypeAssignBoolAnd: case BinOpTypeAssignBoolOr: { AstNode *lhs_node = node->data.bin_op_expr.op1; TypeTableEntry *expected_rhs_type = analyze_lvalue(g, import, context, lhs_node, LValPurposeAssign, false); if (!is_op_allowed(expected_rhs_type, node->data.bin_op_expr.bin_op)) { if (expected_rhs_type->id != TypeTableEntryIdInvalid) { add_node_error(g, lhs_node, buf_sprintf("operator not allowed for type '%s'", buf_ptr(&expected_rhs_type->name))); } } analyze_expression(g, import, context, expected_rhs_type, node->data.bin_op_expr.op2); return g->builtin_types.entry_void; } case BinOpTypeBoolOr: case BinOpTypeBoolAnd: return analyze_logic_bin_op_expr(g, import, context, node); case BinOpTypeCmpEq: case BinOpTypeCmpNotEq: case BinOpTypeCmpLessThan: case BinOpTypeCmpGreaterThan: case BinOpTypeCmpLessOrEq: case BinOpTypeCmpGreaterOrEq: return analyze_bool_bin_op_expr(g, import, context, node); case BinOpTypeBinOr: case BinOpTypeBinXor: case BinOpTypeBinAnd: case BinOpTypeBitShiftLeft: case BinOpTypeBitShiftRight: case BinOpTypeAdd: case BinOpTypeSub: case BinOpTypeMult: case BinOpTypeDiv: case BinOpTypeMod: { AstNode *op1 = node->data.bin_op_expr.op1; AstNode *op2 = node->data.bin_op_expr.op2; TypeTableEntry *lhs_type = analyze_expression(g, import, context, expected_type, op1); TypeTableEntry *rhs_type = analyze_expression(g, import, context, expected_type, op2); AstNode *op_nodes[] = {op1, op2}; TypeTableEntry *op_types[] = {lhs_type, rhs_type}; TypeTableEntry *resolved_type = resolve_peer_type_compatibility(g, import, context, node, op_nodes, op_types, 2); if (resolved_type->id == TypeTableEntryIdInvalid) { return resolved_type; } ConstExprValue *op1_val = &get_resolved_expr(op1)->const_val; ConstExprValue *op2_val = &get_resolved_expr(op2)->const_val; if (!op1_val->ok || !op2_val->ok) { return resolved_type; } if (bin_op_type == BinOpTypeAdd) { return resolve_expr_const_val_as_bignum_op(g, node, bignum_add, op1, op2, resolved_type); } else if (bin_op_type == BinOpTypeSub) { return resolve_expr_const_val_as_bignum_op(g, node, bignum_sub, op1, op2, resolved_type); } else if (bin_op_type == BinOpTypeMult) { return resolve_expr_const_val_as_bignum_op(g, node, bignum_mul, op1, op2, resolved_type); } else if (bin_op_type == BinOpTypeDiv) { return resolve_expr_const_val_as_bignum_op(g, node, bignum_div, op1, op2, resolved_type); } else if (bin_op_type == BinOpTypeMod) { return resolve_expr_const_val_as_bignum_op(g, node, bignum_mod, op1, op2, resolved_type); } else if (bin_op_type == BinOpTypeBinOr) { return resolve_expr_const_val_as_bignum_op(g, node, bignum_or, op1, op2, resolved_type); } else if (bin_op_type == BinOpTypeBinAnd) { return resolve_expr_const_val_as_bignum_op(g, node, bignum_and, op1, op2, resolved_type); } else if (bin_op_type == BinOpTypeBinXor) { return resolve_expr_const_val_as_bignum_op(g, node, bignum_xor, op1, op2, resolved_type); } else if (bin_op_type == BinOpTypeBitShiftLeft) { return resolve_expr_const_val_as_bignum_op(g, node, bignum_shl, op1, op2, resolved_type); } else if (bin_op_type == BinOpTypeBitShiftRight) { return resolve_expr_const_val_as_bignum_op(g, node, bignum_shr, op1, op2, resolved_type); } else { zig_unreachable(); } } case BinOpTypeUnwrapMaybe: { AstNode *op1 = node->data.bin_op_expr.op1; AstNode *op2 = node->data.bin_op_expr.op2; TypeTableEntry *lhs_type = analyze_expression(g, import, context, nullptr, op1); if (lhs_type->id == TypeTableEntryIdInvalid) { return lhs_type; } else if (lhs_type->id == TypeTableEntryIdMaybe) { TypeTableEntry *child_type = lhs_type->data.maybe.child_type; analyze_expression(g, import, context, child_type, op2); return child_type; } else { add_node_error(g, op1, buf_sprintf("expected maybe type, got '%s'", buf_ptr(&lhs_type->name))); return g->builtin_types.entry_invalid; } } case BinOpTypeStrCat: { AstNode **op1 = node->data.bin_op_expr.op1->parent_field; AstNode **op2 = node->data.bin_op_expr.op2->parent_field; TypeTableEntry *str_type = get_unknown_size_array_type(g, g->builtin_types.entry_u8, true); TypeTableEntry *op1_type = analyze_expression(g, import, context, str_type, *op1); TypeTableEntry *op2_type = analyze_expression(g, import, context, str_type, *op2); if (op1_type->id == TypeTableEntryIdInvalid || op2_type->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } ConstExprValue *op1_val = &get_resolved_expr(*op1)->const_val; ConstExprValue *op2_val = &get_resolved_expr(*op2)->const_val; AstNode *bad_node; if (!op1_val->ok) { bad_node = *op1; } else if (!op2_val->ok) { bad_node = *op2; } else { bad_node = nullptr; } if (bad_node) { add_node_error(g, bad_node, buf_sprintf("string concatenation requires constant expression")); return g->builtin_types.entry_invalid; } ConstExprValue *const_val = &get_resolved_expr(node)->const_val; const_val->ok = true; ConstExprValue *all_fields = allocate(2); ConstExprValue *ptr_field = &all_fields[0]; ConstExprValue *len_field = &all_fields[1]; const_val->data.x_struct.fields = allocate(2); const_val->data.x_struct.fields[0] = ptr_field; const_val->data.x_struct.fields[1] = len_field; len_field->ok = true; uint64_t op1_len = op1_val->data.x_struct.fields[1]->data.x_bignum.data.x_uint; uint64_t op2_len = op2_val->data.x_struct.fields[1]->data.x_bignum.data.x_uint; uint64_t len = op1_len + op2_len; bignum_init_unsigned(&len_field->data.x_bignum, len); ptr_field->ok = true; ptr_field->data.x_ptr.ptr = allocate(len); ptr_field->data.x_ptr.len = len; uint64_t i = 0; for (uint64_t op1_i = 0; op1_i < op1_len; op1_i += 1, i += 1) { ptr_field->data.x_ptr.ptr[i] = op1_val->data.x_struct.fields[0]->data.x_ptr.ptr[op1_i]; } for (uint64_t op2_i = 0; op2_i < op2_len; op2_i += 1, i += 1) { ptr_field->data.x_ptr.ptr[i] = op2_val->data.x_struct.fields[0]->data.x_ptr.ptr[op2_i]; } return str_type; } case BinOpTypeInvalid: zig_unreachable(); } zig_unreachable(); } // Set name to nullptr to make the variable anonymous (not visible to programmer). static VariableTableEntry *add_local_var(CodeGen *g, AstNode *source_node, BlockContext *context, Buf *name, TypeTableEntry *type_entry, bool is_const) { VariableTableEntry *variable_entry = allocate(1); variable_entry->type = type_entry; if (name) { buf_init_from_buf(&variable_entry->name, name); VariableTableEntry *existing_var; if (context->fn_entry) { existing_var = find_local_variable(context, name); } else { existing_var = find_variable(context, name); } if (existing_var) { add_node_error(g, source_node, buf_sprintf("redeclaration of variable '%s'", buf_ptr(name))); variable_entry->type = g->builtin_types.entry_invalid; } else { auto primitive_table_entry = g->primitive_type_table.maybe_get(name); TypeTableEntry *type; if (primitive_table_entry) { type = primitive_table_entry->value; } else { type = find_container(context, name); } if (type) { add_node_error(g, source_node, buf_sprintf("variable shadows type '%s'", buf_ptr(&type->name))); variable_entry->type = g->builtin_types.entry_invalid; } } context->variable_table.put(&variable_entry->name, variable_entry); context->variable_list.append(variable_entry); } else { buf_init_from_str(&variable_entry->name, "_anon"); context->variable_list.append(variable_entry); } variable_entry->is_const = is_const; variable_entry->is_ptr = true; variable_entry->decl_node = source_node; return variable_entry; } static TypeTableEntry *analyze_unwrap_error_expr(CodeGen *g, ImportTableEntry *import, BlockContext *parent_context, TypeTableEntry *expected_type, AstNode *node) { AstNode *op1 = node->data.unwrap_err_expr.op1; AstNode *op2 = node->data.unwrap_err_expr.op2; AstNode *var_node = node->data.unwrap_err_expr.symbol; TypeTableEntry *lhs_type = analyze_expression(g, import, parent_context, nullptr, op1); if (lhs_type->id == TypeTableEntryIdInvalid) { return lhs_type; } else if (lhs_type->id == TypeTableEntryIdErrorUnion) { TypeTableEntry *child_type = lhs_type->data.error.child_type; BlockContext *child_context; if (var_node) { child_context = new_block_context(node, parent_context); var_node->block_context = child_context; Buf *var_name = &var_node->data.symbol_expr.symbol; node->data.unwrap_err_expr.var = add_local_var(g, var_node, child_context, var_name, g->builtin_types.entry_pure_error, true); } else { child_context = parent_context; } analyze_expression(g, import, child_context, child_type, op2); return child_type; } else { add_node_error(g, op1, buf_sprintf("expected error type, got '%s'", buf_ptr(&lhs_type->name))); return g->builtin_types.entry_invalid; } } static VariableTableEntry *analyze_variable_declaration_raw(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *source_node, AstNodeVariableDeclaration *variable_declaration, bool expr_is_maybe) { bool is_const = variable_declaration->is_const; bool is_export = (variable_declaration->visib_mod == VisibModExport); bool is_extern = variable_declaration->is_extern; TypeTableEntry *explicit_type = nullptr; if (variable_declaration->type != nullptr) { explicit_type = analyze_type_expr(g, import, context, variable_declaration->type); if (explicit_type->id == TypeTableEntryIdUnreachable) { add_node_error(g, variable_declaration->type, buf_sprintf("variable of type 'unreachable' not allowed")); explicit_type = g->builtin_types.entry_invalid; } } TypeTableEntry *implicit_type = nullptr; if (variable_declaration->expr) { implicit_type = analyze_expression(g, import, context, explicit_type, variable_declaration->expr); if (implicit_type->id == TypeTableEntryIdInvalid) { // ignore the poison value } else if (expr_is_maybe) { if (implicit_type->id == TypeTableEntryIdMaybe) { implicit_type = implicit_type->data.maybe.child_type; } else { add_node_error(g, variable_declaration->expr, buf_sprintf("expected maybe type")); implicit_type = g->builtin_types.entry_invalid; } } else if (implicit_type->id == TypeTableEntryIdUnreachable) { add_node_error(g, source_node, buf_sprintf("variable initialization is unreachable")); implicit_type = g->builtin_types.entry_invalid; } else if ((!is_const || is_export) && (implicit_type->id == TypeTableEntryIdNumLitFloat || implicit_type->id == TypeTableEntryIdNumLitInt)) { add_node_error(g, source_node, buf_sprintf("unable to infer variable type")); implicit_type = g->builtin_types.entry_invalid; } else if (implicit_type->id == TypeTableEntryIdMetaType && !is_const) { add_node_error(g, source_node, buf_sprintf("variable of type 'type' must be constant")); implicit_type = g->builtin_types.entry_invalid; } if (implicit_type->id != TypeTableEntryIdInvalid && !context->fn_entry) { ConstExprValue *const_val = &get_resolved_expr(variable_declaration->expr)->const_val; if (!const_val->ok) { add_node_error(g, first_executing_node(variable_declaration->expr), buf_sprintf("global variable initializer requires constant expression")); } } } else if (!is_extern) { add_node_error(g, source_node, buf_sprintf("variables must be initialized")); implicit_type = g->builtin_types.entry_invalid; } TypeTableEntry *type = explicit_type != nullptr ? explicit_type : implicit_type; assert(type != nullptr); // should have been caught by the parser VariableTableEntry *var = add_local_var(g, source_node, context, &variable_declaration->symbol, type, is_const); variable_declaration->variable = var; bool is_pub = (variable_declaration->visib_mod != VisibModPrivate); if (is_pub) { for (int i = 0; i < import->importers.length; i += 1) { ImporterInfo importer = import->importers.at(i); auto table_entry = importer.import->block_context->variable_table.maybe_get(&var->name); if (table_entry) { add_node_error(g, importer.source_node, buf_sprintf("import of variable '%s' overrides existing definition", buf_ptr(&var->name))); } else { importer.import->block_context->variable_table.put(&var->name, var); } } } return var; } static VariableTableEntry *analyze_variable_declaration(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { AstNodeVariableDeclaration *variable_declaration = &node->data.variable_declaration; return analyze_variable_declaration_raw(g, import, context, node, variable_declaration, false); } static TypeTableEntry *analyze_null_literal_expr(CodeGen *g, ImportTableEntry *import, BlockContext *block_context, TypeTableEntry *expected_type, AstNode *node) { assert(node->type == NodeTypeNullLiteral); if (!expected_type) { add_node_error(g, node, buf_sprintf("unable to determine null type")); return g->builtin_types.entry_invalid; } assert(expected_type->id == TypeTableEntryIdMaybe); node->data.null_literal.resolved_struct_val_expr.type_entry = expected_type; node->data.null_literal.resolved_struct_val_expr.source_node = node; block_context->struct_val_expr_alloca_list.append(&node->data.null_literal.resolved_struct_val_expr); return resolve_expr_const_val_as_null(g, node, expected_type); } static TypeTableEntry *analyze_undefined_literal_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { Expr *expr = get_resolved_expr(node); ConstExprValue *const_val = &expr->const_val; const_val->ok = true; const_val->undef = true; return expected_type ? expected_type : g->builtin_types.entry_undef; } static TypeTableEntry *analyze_number_literal_expr(CodeGen *g, ImportTableEntry *import, BlockContext *block_context, TypeTableEntry *expected_type, AstNode *node) { if (node->data.number_literal.overflow) { add_node_error(g, node, buf_sprintf("number literal too large to be represented in any type")); return g->builtin_types.entry_invalid; } if (node->data.number_literal.kind == NumLitUInt) { return resolve_expr_const_val_as_unsigned_num_lit(g, node, expected_type, node->data.number_literal.data.x_uint); } else if (node->data.number_literal.kind == NumLitFloat) { return resolve_expr_const_val_as_float_num_lit(g, node, expected_type, node->data.number_literal.data.x_float); } else { zig_unreachable(); } } static TypeTableEntry *analyze_array_type(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { AstNode *size_node = node->data.array_type.size; TypeTableEntry *child_type = analyze_type_expr(g, import, context, node->data.array_type.child_type); if (child_type->id == TypeTableEntryIdUnreachable) { add_node_error(g, node, buf_create_from_str("array of unreachable not allowed")); return g->builtin_types.entry_invalid; } else if (child_type->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } if (size_node) { TypeTableEntry *size_type = analyze_expression(g, import, context, g->builtin_types.entry_isize, size_node); if (size_type->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } ConstExprValue *const_val = &get_resolved_expr(size_node)->const_val; if (const_val->ok) { if (const_val->data.x_bignum.is_negative) { add_node_error(g, size_node, buf_sprintf("array size %s is negative", buf_ptr(bignum_to_buf(&const_val->data.x_bignum)))); return g->builtin_types.entry_invalid; } else { return resolve_expr_const_val_as_type(g, node, get_array_type(g, child_type, const_val->data.x_bignum.data.x_uint)); } } else { return resolve_expr_const_val_as_type(g, node, get_unknown_size_array_type(g, child_type, node->data.array_type.is_const)); } } else { return resolve_expr_const_val_as_type(g, node, get_unknown_size_array_type(g, child_type, node->data.array_type.is_const)); } } static TypeTableEntry *analyze_fn_proto_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { TypeTableEntry *type_entry = analyze_fn_proto_type(g, import, context, expected_type, node, false); if (type_entry->id == TypeTableEntryIdInvalid) { return type_entry; } return resolve_expr_const_val_as_type(g, node, type_entry); } static TypeTableEntry *analyze_while_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { assert(node->type == NodeTypeWhileExpr); AstNode *condition_node = node->data.while_expr.condition; AstNode *while_body_node = node->data.while_expr.body; TypeTableEntry *condition_type = analyze_expression(g, import, context, g->builtin_types.entry_bool, condition_node); BlockContext *child_context = new_block_context(node, context); child_context->parent_loop_node = node; node->data.while_expr.block_context = child_context; analyze_expression(g, import, child_context, g->builtin_types.entry_void, while_body_node); TypeTableEntry *expr_return_type = g->builtin_types.entry_void; if (condition_type->id == TypeTableEntryIdInvalid) { expr_return_type = g->builtin_types.entry_invalid; } else { // if the condition is a simple constant expression and there are no break statements // then the return type is unreachable ConstExprValue *const_val = &get_resolved_expr(condition_node)->const_val; if (const_val->ok) { if (const_val->data.x_bool) { node->data.while_expr.condition_always_true = true; if (!node->data.while_expr.contains_break) { expr_return_type = g->builtin_types.entry_unreachable; } } } } return expr_return_type; } static TypeTableEntry *analyze_for_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { assert(node->type == NodeTypeForExpr); AstNode *array_node = node->data.for_expr.array_expr; TypeTableEntry *array_type = analyze_expression(g, import, context, nullptr, array_node); TypeTableEntry *child_type; if (array_type->id == TypeTableEntryIdInvalid) { child_type = array_type; } else if (array_type->id == TypeTableEntryIdArray) { child_type = array_type->data.array.child_type; } else if (array_type->id == TypeTableEntryIdStruct && array_type->data.structure.is_unknown_size_array) { TypeTableEntry *pointer_type = array_type->data.structure.fields[0].type_entry; assert(pointer_type->id == TypeTableEntryIdPointer); child_type = pointer_type->data.pointer.child_type; } else { add_node_error(g, node, buf_sprintf("iteration over non array type '%s'", buf_ptr(&array_type->name))); child_type = g->builtin_types.entry_invalid; } BlockContext *child_context = new_block_context(node, context); AstNode *elem_var_node = node->data.for_expr.elem_node; elem_var_node->block_context = child_context; Buf *elem_var_name = &elem_var_node->data.symbol_expr.symbol; node->data.for_expr.elem_var = add_local_var(g, elem_var_node, child_context, elem_var_name, child_type, true); AstNode *index_var_node = node->data.for_expr.index_node; if (index_var_node) { Buf *index_var_name = &index_var_node->data.symbol_expr.symbol; index_var_node->block_context = child_context; node->data.for_expr.index_var = add_local_var(g, index_var_node, child_context, index_var_name, g->builtin_types.entry_isize, true); } else { node->data.for_expr.index_var = add_local_var(g, node, child_context, nullptr, g->builtin_types.entry_isize, true); } AstNode *for_body_node = node->data.for_expr.body; analyze_expression(g, import, child_context, g->builtin_types.entry_void, for_body_node); return g->builtin_types.entry_void; } static TypeTableEntry *analyze_break_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { assert(node->type == NodeTypeBreak); AstNode *loop_node = context->parent_loop_node; if (loop_node) { assert(loop_node->type == NodeTypeWhileExpr); loop_node->data.while_expr.contains_break = true; } else { add_node_error(g, node, buf_sprintf("'break' expression outside loop")); } return g->builtin_types.entry_unreachable; } static TypeTableEntry *analyze_continue_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { if (!context->parent_loop_node) { add_node_error(g, node, buf_sprintf("'continue' expression outside loop")); } return g->builtin_types.entry_unreachable; } static TypeTableEntry *analyze_if_then_else(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *then_block, AstNode *else_node, AstNode *parent_node) { TypeTableEntry *then_type = analyze_expression(g, import, context, expected_type, then_block); TypeTableEntry *else_type; if (else_node) { else_type = analyze_expression(g, import, context, expected_type, else_node); } else { else_type = resolve_type_compatibility(g, import, context, parent_node, expected_type, g->builtin_types.entry_void); } if (expected_type) { return (then_type->id == TypeTableEntryIdUnreachable) ? else_type : then_type; } else { AstNode *op_nodes[] = {then_block, else_node}; TypeTableEntry *op_types[] = {then_type, else_type}; return resolve_peer_type_compatibility(g, import, context, parent_node, op_nodes, op_types, 2); } } static TypeTableEntry *analyze_if_bool_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { analyze_expression(g, import, context, g->builtin_types.entry_bool, node->data.if_bool_expr.condition); return analyze_if_then_else(g, import, context, expected_type, node->data.if_bool_expr.then_block, node->data.if_bool_expr.else_node, node); } static TypeTableEntry *analyze_if_var_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { assert(node->type == NodeTypeIfVarExpr); BlockContext *child_context = new_block_context(node, context); analyze_variable_declaration_raw(g, import, child_context, node, &node->data.if_var_expr.var_decl, true); return analyze_if_then_else(g, import, child_context, expected_type, node->data.if_var_expr.then_block, node->data.if_var_expr.else_node, node); } static TypeTableEntry *analyze_min_max_value(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node, const char *err_format, bool is_max) { assert(node->type == NodeTypeFnCallExpr); assert(node->data.fn_call_expr.params.length == 1); AstNode *type_node = node->data.fn_call_expr.params.at(0); TypeTableEntry *type_entry = analyze_type_expr(g, import, context, type_node); if (type_entry->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } else if (type_entry->id == TypeTableEntryIdInt) { ConstExprValue *const_val = &get_resolved_expr(node)->const_val; const_val->ok = true; if (is_max) { if (type_entry->data.integral.is_signed) { int64_t val; if (type_entry->size_in_bits == 64) { val = INT64_MAX; } else if (type_entry->size_in_bits == 32) { val = INT32_MAX; } else if (type_entry->size_in_bits == 16) { val = INT16_MAX; } else if (type_entry->size_in_bits == 8) { val = INT8_MAX; } else { zig_unreachable(); } bignum_init_signed(&const_val->data.x_bignum, val); } else { uint64_t val; if (type_entry->size_in_bits == 64) { val = UINT64_MAX; } else if (type_entry->size_in_bits == 32) { val = UINT32_MAX; } else if (type_entry->size_in_bits == 16) { val = UINT16_MAX; } else if (type_entry->size_in_bits == 8) { val = UINT8_MAX; } else { zig_unreachable(); } bignum_init_unsigned(&const_val->data.x_bignum, val); } } else { if (type_entry->data.integral.is_signed) { int64_t val; if (type_entry->size_in_bits == 64) { val = INT64_MIN; } else if (type_entry->size_in_bits == 32) { val = INT32_MIN; } else if (type_entry->size_in_bits == 16) { val = INT16_MIN; } else if (type_entry->size_in_bits == 8) { val = INT8_MIN; } else { zig_unreachable(); } bignum_init_signed(&const_val->data.x_bignum, val); } else { bignum_init_unsigned(&const_val->data.x_bignum, 0); } } return type_entry; } else if (type_entry->id == TypeTableEntryIdFloat) { zig_panic("TODO analyze_min_max_value float"); return type_entry; } else if (type_entry->id == TypeTableEntryIdBool) { return resolve_expr_const_val_as_bool(g, node, is_max); } else { add_node_error(g, node, buf_sprintf(err_format, buf_ptr(&type_entry->name))); return g->builtin_types.entry_invalid; } } static void eval_const_expr_implicit_cast(CodeGen *g, AstNode *node, AstNode *expr_node) { assert(node->type == NodeTypeFnCallExpr); ConstExprValue *other_val = &get_resolved_expr(expr_node)->const_val; ConstExprValue *const_val = &get_resolved_expr(node)->const_val; if (!other_val->ok) { return; } assert(other_val != const_val); switch (node->data.fn_call_expr.cast_op) { case CastOpNoCast: zig_unreachable(); case CastOpNoop: case CastOpIntWidenOrShorten: case CastOpPointerReinterpret: *const_val = *other_val; break; case CastOpPtrToInt: case CastOpIntToPtr: // can't do it break; case CastOpToUnknownSizeArray: { TypeTableEntry *other_type = get_resolved_expr(expr_node)->type_entry; assert(other_type->id == TypeTableEntryIdArray); ConstExprValue *all_fields = allocate(2); ConstExprValue *ptr_field = &all_fields[0]; ConstExprValue *len_field = &all_fields[1]; const_val->data.x_struct.fields = allocate(2); const_val->data.x_struct.fields[0] = ptr_field; const_val->data.x_struct.fields[1] = len_field; ptr_field->ok = true; ptr_field->data.x_ptr.ptr = other_val->data.x_array.fields; ptr_field->data.x_ptr.len = other_type->data.array.len; len_field->ok = true; bignum_init_unsigned(&len_field->data.x_bignum, other_type->data.array.len); const_val->ok = true; break; } case CastOpMaybeWrap: const_val->data.x_maybe = other_val; const_val->ok = true; break; case CastOpErrorWrap: const_val->data.x_err.err = nullptr; const_val->data.x_err.payload = other_val; const_val->ok = true; break; case CastOpPureErrorWrap: const_val->data.x_err.err = other_val->data.x_err.err; const_val->ok = true; break; case CastOpErrToInt: { uint64_t value = other_val->data.x_err.err ? other_val->data.x_err.err->value : 0; bignum_init_unsigned(&const_val->data.x_bignum, value); const_val->ok = true; break; } } } static TypeTableEntry *analyze_cast_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node) { assert(node->type == NodeTypeFnCallExpr); AstNode *fn_ref_expr = node->data.fn_call_expr.fn_ref_expr; int actual_param_count = node->data.fn_call_expr.params.length; if (actual_param_count != 1) { add_node_error(g, fn_ref_expr, buf_sprintf("cast expression expects exactly one parameter")); return g->builtin_types.entry_invalid; } AstNode *expr_node = node->data.fn_call_expr.params.at(0); TypeTableEntry *wanted_type = resolve_type(g, fn_ref_expr); TypeTableEntry *actual_type = analyze_expression(g, import, context, nullptr, expr_node); if (wanted_type->id == TypeTableEntryIdInvalid || actual_type->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } // explicit match or non-const to const if (types_match_const_cast_only(wanted_type, actual_type)) { node->data.fn_call_expr.cast_op = CastOpNoop; eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } // explicit cast from pointer to isize or usize if ((wanted_type == g->builtin_types.entry_isize || wanted_type == g->builtin_types.entry_usize) && actual_type->id == TypeTableEntryIdPointer) { node->data.fn_call_expr.cast_op = CastOpPtrToInt; eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } // explicit cast from isize or usize to pointer if (wanted_type->id == TypeTableEntryIdPointer && (actual_type == g->builtin_types.entry_isize || actual_type == g->builtin_types.entry_usize)) { node->data.fn_call_expr.cast_op = CastOpIntToPtr; eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } // explicit cast from any int to any other int if (wanted_type->id == TypeTableEntryIdInt && actual_type->id == TypeTableEntryIdInt) { node->data.fn_call_expr.cast_op = CastOpIntWidenOrShorten; eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } // explicit cast from fixed size array to unknown size array if (wanted_type->id == TypeTableEntryIdStruct && wanted_type->data.structure.is_unknown_size_array && actual_type->id == TypeTableEntryIdArray && types_match_const_cast_only( wanted_type->data.structure.fields[0].type_entry->data.pointer.child_type, actual_type->data.array.child_type)) { node->data.fn_call_expr.cast_op = CastOpToUnknownSizeArray; context->cast_alloca_list.append(node); eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } // explicit cast from pointer to another pointer if (actual_type->id == TypeTableEntryIdPointer && wanted_type->id == TypeTableEntryIdPointer) { node->data.fn_call_expr.cast_op = CastOpPointerReinterpret; eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } // explicit cast from child type of maybe type to maybe type if (wanted_type->id == TypeTableEntryIdMaybe) { if (types_match_const_cast_only(wanted_type->data.maybe.child_type, actual_type)) { node->data.fn_call_expr.cast_op = CastOpMaybeWrap; context->cast_alloca_list.append(node); eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } else if (actual_type->id == TypeTableEntryIdNumLitInt || actual_type->id == TypeTableEntryIdNumLitFloat) { if (num_lit_fits_in_other_type(g, expr_node, wanted_type->data.maybe.child_type)) { node->data.fn_call_expr.cast_op = CastOpMaybeWrap; context->cast_alloca_list.append(node); eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } else { return g->builtin_types.entry_invalid; } } } // explicit cast from child type of error type to error type if (wanted_type->id == TypeTableEntryIdErrorUnion) { if (types_match_const_cast_only(wanted_type->data.error.child_type, actual_type)) { node->data.fn_call_expr.cast_op = CastOpErrorWrap; context->cast_alloca_list.append(node); eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } else if (actual_type->id == TypeTableEntryIdNumLitInt || actual_type->id == TypeTableEntryIdNumLitFloat) { if (num_lit_fits_in_other_type(g, expr_node, wanted_type->data.error.child_type)) { node->data.fn_call_expr.cast_op = CastOpErrorWrap; context->cast_alloca_list.append(node); eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } else { return g->builtin_types.entry_invalid; } } } // explicit cast from pure error to error union type if (wanted_type->id == TypeTableEntryIdErrorUnion && actual_type->id == TypeTableEntryIdPureError) { node->data.fn_call_expr.cast_op = CastOpPureErrorWrap; eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } // explicit cast from number literal to another type if (actual_type->id == TypeTableEntryIdNumLitFloat || actual_type->id == TypeTableEntryIdNumLitInt) { if (num_lit_fits_in_other_type(g, expr_node, wanted_type)) { node->data.fn_call_expr.cast_op = CastOpNoop; eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } else { return g->builtin_types.entry_invalid; } } // explicit cast from %void to integer type which can fit it bool actual_type_is_void_err = actual_type->id == TypeTableEntryIdErrorUnion && actual_type->data.error.child_type->size_in_bits == 0; bool actual_type_is_pure_err = actual_type->id == TypeTableEntryIdPureError; if ((actual_type_is_void_err || actual_type_is_pure_err) && wanted_type->id == TypeTableEntryIdInt) { BigNum bn; bignum_init_unsigned(&bn, g->error_value_count); if (bignum_fits_in_bits(&bn, wanted_type->size_in_bits, wanted_type->data.integral.is_signed)) { node->data.fn_call_expr.cast_op = CastOpErrToInt; eval_const_expr_implicit_cast(g, node, expr_node); return wanted_type; } else { add_node_error(g, node, buf_sprintf("too many error values to fit in '%s'", buf_ptr(&wanted_type->name))); return g->builtin_types.entry_invalid; } } add_node_error(g, node, buf_sprintf("invalid cast from type '%s' to '%s'", buf_ptr(&actual_type->name), buf_ptr(&wanted_type->name))); return g->builtin_types.entry_invalid; } static TypeTableEntry *analyze_builtin_fn_call_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { assert(node->type == NodeTypeFnCallExpr); AstNode *fn_ref_expr = node->data.fn_call_expr.fn_ref_expr; Buf *name = &fn_ref_expr->data.symbol_expr.symbol; auto entry = g->builtin_fn_table.maybe_get(name); if (!entry) { add_node_error(g, node, buf_sprintf("invalid builtin function: '%s'", buf_ptr(name))); return g->builtin_types.entry_invalid; } BuiltinFnEntry *builtin_fn = entry->value; int actual_param_count = node->data.fn_call_expr.params.length; node->data.fn_call_expr.builtin_fn = builtin_fn; if (builtin_fn->param_count != actual_param_count) { add_node_error(g, node, buf_sprintf("expected %d arguments, got %d", builtin_fn->param_count, actual_param_count)); return g->builtin_types.entry_invalid; } switch (builtin_fn->id) { case BuiltinFnIdInvalid: zig_unreachable(); case BuiltinFnIdAddWithOverflow: case BuiltinFnIdSubWithOverflow: case BuiltinFnIdMulWithOverflow: { AstNode *type_node = node->data.fn_call_expr.params.at(0); TypeTableEntry *int_type = analyze_type_expr(g, import, context, type_node); if (int_type->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_bool; } else if (int_type->id == TypeTableEntryIdInt) { AstNode *op1_node = node->data.fn_call_expr.params.at(1); AstNode *op2_node = node->data.fn_call_expr.params.at(2); AstNode *result_node = node->data.fn_call_expr.params.at(3); analyze_expression(g, import, context, int_type, op1_node); analyze_expression(g, import, context, int_type, op2_node); analyze_expression(g, import, context, get_pointer_to_type(g, int_type, false), result_node); } else { add_node_error(g, type_node, buf_sprintf("expected integer type, got '%s'", buf_ptr(&int_type->name))); } // TODO constant expression evaluation return g->builtin_types.entry_bool; } case BuiltinFnIdMemcpy: { AstNode *dest_node = node->data.fn_call_expr.params.at(0); AstNode *src_node = node->data.fn_call_expr.params.at(1); AstNode *len_node = node->data.fn_call_expr.params.at(2); TypeTableEntry *dest_type = analyze_expression(g, import, context, nullptr, dest_node); TypeTableEntry *src_type = analyze_expression(g, import, context, nullptr, src_node); analyze_expression(g, import, context, builtin_fn->param_types[2], len_node); if (dest_type->id != TypeTableEntryIdInvalid && dest_type->id != TypeTableEntryIdPointer) { add_node_error(g, dest_node, buf_sprintf("expected pointer argument, got '%s'", buf_ptr(&dest_type->name))); } if (src_type->id != TypeTableEntryIdInvalid && src_type->id != TypeTableEntryIdPointer) { add_node_error(g, src_node, buf_sprintf("expected pointer argument, got '%s'", buf_ptr(&src_type->name))); } if (dest_type->id == TypeTableEntryIdPointer && src_type->id == TypeTableEntryIdPointer) { uint64_t dest_align_bits = dest_type->data.pointer.child_type->align_in_bits; uint64_t src_align_bits = src_type->data.pointer.child_type->align_in_bits; if (dest_align_bits != src_align_bits) { add_node_error(g, dest_node, buf_sprintf( "misaligned memcpy, '%s' has alignment '%" PRIu64 ", '%s' has alignment %" PRIu64, buf_ptr(&dest_type->name), dest_align_bits / 8, buf_ptr(&src_type->name), src_align_bits / 8)); } } return builtin_fn->return_type; } case BuiltinFnIdMemset: { AstNode *dest_node = node->data.fn_call_expr.params.at(0); AstNode *char_node = node->data.fn_call_expr.params.at(1); AstNode *len_node = node->data.fn_call_expr.params.at(2); TypeTableEntry *dest_type = analyze_expression(g, import, context, nullptr, dest_node); analyze_expression(g, import, context, builtin_fn->param_types[1], char_node); analyze_expression(g, import, context, builtin_fn->param_types[2], len_node); if (dest_type->id != TypeTableEntryIdInvalid && dest_type->id != TypeTableEntryIdPointer) { add_node_error(g, dest_node, buf_sprintf("expected pointer argument, got '%s'", buf_ptr(&dest_type->name))); } return builtin_fn->return_type; } case BuiltinFnIdSizeof: { AstNode *type_node = node->data.fn_call_expr.params.at(0); TypeTableEntry *type_entry = analyze_type_expr(g, import, context, type_node); if (type_entry->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } else if (type_entry->id == TypeTableEntryIdUnreachable) { add_node_error(g, first_executing_node(type_node), buf_sprintf("no size available for type '%s'", buf_ptr(&type_entry->name))); return g->builtin_types.entry_invalid; } else { uint64_t size_in_bytes = type_entry->size_in_bits / 8; return resolve_expr_const_val_as_unsigned_num_lit(g, node, expected_type, size_in_bytes); } } case BuiltinFnIdMaxValue: return analyze_min_max_value(g, import, context, node, "no max value available for type '%s'", true); case BuiltinFnIdMinValue: return analyze_min_max_value(g, import, context, node, "no min value available for type '%s'", false); case BuiltinFnIdMemberCount: { AstNode *type_node = node->data.fn_call_expr.params.at(0); TypeTableEntry *type_entry = analyze_type_expr(g, import, context, type_node); if (type_entry->id == TypeTableEntryIdInvalid) { return type_entry; } else if (type_entry->id == TypeTableEntryIdEnum) { uint64_t value_count = type_entry->data.enumeration.field_count; return resolve_expr_const_val_as_unsigned_num_lit(g, node, expected_type, value_count); } else { add_node_error(g, node, buf_sprintf("no value count available for type '%s'", buf_ptr(&type_entry->name))); return g->builtin_types.entry_invalid; } } case BuiltinFnIdTypeof: { AstNode *expr_node = node->data.fn_call_expr.params.at(0); TypeTableEntry *type_entry = analyze_expression(g, import, context, nullptr, expr_node); switch (type_entry->id) { case TypeTableEntryIdInvalid: return type_entry; case TypeTableEntryIdNumLitFloat: case TypeTableEntryIdNumLitInt: case TypeTableEntryIdUndefLit: add_node_error(g, expr_node, buf_sprintf("type '%s' not eligible for @typeof", buf_ptr(&type_entry->name))); return g->builtin_types.entry_invalid; case TypeTableEntryIdMetaType: case TypeTableEntryIdVoid: case TypeTableEntryIdBool: case TypeTableEntryIdUnreachable: case TypeTableEntryIdInt: case TypeTableEntryIdFloat: case TypeTableEntryIdPointer: case TypeTableEntryIdArray: case TypeTableEntryIdStruct: case TypeTableEntryIdMaybe: case TypeTableEntryIdErrorUnion: case TypeTableEntryIdPureError: case TypeTableEntryIdEnum: case TypeTableEntryIdFn: case TypeTableEntryIdTypeDecl: return resolve_expr_const_val_as_type(g, node, type_entry); } } case BuiltinFnIdCInclude: { if (!context->c_import_buf) { add_node_error(g, node, buf_sprintf("@c_include valid only in c_import blocks")); return g->builtin_types.entry_invalid; } AstNode **str_node = node->data.fn_call_expr.params.at(0)->parent_field; TypeTableEntry *str_type = get_unknown_size_array_type(g, g->builtin_types.entry_u8, true); TypeTableEntry *resolved_type = analyze_expression(g, import, context, str_type, *str_node); if (resolved_type->id == TypeTableEntryIdInvalid) { return resolved_type; } ConstExprValue *const_str_val = &get_resolved_expr(*str_node)->const_val; if (!const_str_val->ok) { add_node_error(g, *str_node, buf_sprintf("@c_include requires constant expression")); return g->builtin_types.entry_void; } buf_appendf(context->c_import_buf, "#include <"); ConstExprValue *ptr_field = const_str_val->data.x_struct.fields[0]; uint64_t len = ptr_field->data.x_ptr.len; for (uint64_t i = 0; i < len; i += 1) { ConstExprValue *char_val = ptr_field->data.x_ptr.ptr[i]; uint64_t big_c = char_val->data.x_bignum.data.x_uint; assert(big_c <= UINT8_MAX); uint8_t c = big_c; buf_appendf(context->c_import_buf, "%c", c); } buf_appendf(context->c_import_buf, ">\n"); return g->builtin_types.entry_void; } case BuiltinFnIdCDefine: zig_panic("TODO"); case BuiltinFnIdCUndef: zig_panic("TODO"); } zig_unreachable(); } static TypeTableEntry *analyze_fn_call_ptr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node, TypeTableEntry *fn_type, TypeTableEntry *struct_type) { assert(node->type == NodeTypeFnCallExpr); // count parameters int src_param_count = fn_type->data.fn.fn_type_id.param_count; int actual_param_count = node->data.fn_call_expr.params.length; if (struct_type) { actual_param_count += 1; } if (fn_type->data.fn.fn_type_id.is_var_args) { if (actual_param_count < src_param_count) { add_node_error(g, node, buf_sprintf("expected at least %d arguments, got %d", src_param_count, actual_param_count)); } } else if (src_param_count != actual_param_count) { add_node_error(g, node, buf_sprintf("expected %d arguments, got %d", src_param_count, actual_param_count)); } // analyze each parameter. in the case of a method, we already analyzed the // first parameter in order to figure out which struct we were calling a method on. for (int i = 0; i < node->data.fn_call_expr.params.length; i += 1) { AstNode *child = node->data.fn_call_expr.params.at(i); // determine the expected type for each parameter TypeTableEntry *expected_param_type = nullptr; int fn_proto_i = i + (struct_type ? 1 : 0); if (fn_proto_i < src_param_count) { expected_param_type = fn_type->data.fn.fn_type_id.param_info[fn_proto_i].type; } analyze_expression(g, import, context, expected_param_type, child); } TypeTableEntry *return_type = fn_type->data.fn.fn_type_id.return_type; if (return_type->id == TypeTableEntryIdInvalid) { return return_type; } if (handle_is_ptr(return_type)) { context->cast_alloca_list.append(node); } return return_type; } static TypeTableEntry *analyze_fn_call_raw(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node, FnTableEntry *fn_table_entry, TypeTableEntry *struct_type) { assert(node->type == NodeTypeFnCallExpr); node->data.fn_call_expr.fn_entry = fn_table_entry; return analyze_fn_call_ptr(g, import, context, expected_type, node, fn_table_entry->type_entry, struct_type); } static TypeTableEntry *analyze_fn_call_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { AstNode *fn_ref_expr = node->data.fn_call_expr.fn_ref_expr; if (node->data.fn_call_expr.is_builtin) { return analyze_builtin_fn_call_expr(g, import, context, expected_type, node); } if (fn_ref_expr->type == NodeTypeFieldAccessExpr) { fn_ref_expr->block_context = context; AstNode *first_param_expr = fn_ref_expr->data.field_access_expr.struct_expr; TypeTableEntry *struct_type = analyze_expression(g, import, context, nullptr, first_param_expr); Buf *name = &fn_ref_expr->data.field_access_expr.field_name; if (struct_type->id == TypeTableEntryIdStruct || (struct_type->id == TypeTableEntryIdPointer && struct_type->data.pointer.child_type->id == TypeTableEntryIdStruct)) { TypeTableEntry *bare_struct_type = (struct_type->id == TypeTableEntryIdStruct) ? struct_type : struct_type->data.pointer.child_type; auto table_entry = bare_struct_type->data.structure.fn_table.maybe_get(name); if (table_entry) { return analyze_fn_call_raw(g, import, context, expected_type, node, table_entry->value, bare_struct_type); } else { add_node_error(g, fn_ref_expr, buf_sprintf("no function named '%s' in '%s'", buf_ptr(name), buf_ptr(&bare_struct_type->name))); // still analyze the parameters, even though we don't know what to expect for (int i = 0; i < node->data.fn_call_expr.params.length; i += 1) { AstNode *child = node->data.fn_call_expr.params.at(i); analyze_expression(g, import, context, nullptr, child); } return g->builtin_types.entry_invalid; } } else if (struct_type->id == TypeTableEntryIdInvalid) { return struct_type; } else if (struct_type->id == TypeTableEntryIdMetaType) { TypeTableEntry *child_type = resolve_type(g, first_param_expr); if (child_type->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } else if (child_type->id == TypeTableEntryIdEnum) { Buf *field_name = &fn_ref_expr->data.field_access_expr.field_name; int param_count = node->data.fn_call_expr.params.length; if (param_count > 1) { add_node_error(g, first_executing_node(node->data.fn_call_expr.params.at(1)), buf_sprintf("enum values accept only one parameter")); return child_type; } else { AstNode *value_node; if (param_count == 1) { value_node = node->data.fn_call_expr.params.at(0); } else { value_node = nullptr; } return analyze_enum_value_expr(g, import, context, fn_ref_expr, value_node, child_type, field_name); } } else if (child_type->id == TypeTableEntryIdStruct) { Buf *field_name = &fn_ref_expr->data.field_access_expr.field_name; auto entry = child_type->data.structure.fn_table.maybe_get(field_name); if (entry) { return analyze_fn_call_raw(g, import, context, expected_type, node, entry->value, nullptr); } else { add_node_error(g, node, buf_sprintf("struct '%s' has no function called '%s'", buf_ptr(&child_type->name), buf_ptr(field_name))); return g->builtin_types.entry_invalid; } } else { add_node_error(g, first_param_expr, buf_sprintf("member reference base type not struct or enum")); return g->builtin_types.entry_invalid; } } else { add_node_error(g, first_param_expr, buf_sprintf("member reference base type not struct or enum")); return g->builtin_types.entry_invalid; } } TypeTableEntry *invoke_type_entry = analyze_expression(g, import, context, nullptr, fn_ref_expr); if (invoke_type_entry->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } // use constant expression evaluator to figure out the function at compile time. // otherwise we treat this as a function pointer. ConstExprValue *const_val = &get_resolved_expr(fn_ref_expr)->const_val; if (const_val->ok) { if (invoke_type_entry->id == TypeTableEntryIdMetaType) { return analyze_cast_expr(g, import, context, node); } else if (invoke_type_entry->id == TypeTableEntryIdFn) { return analyze_fn_call_raw(g, import, context, expected_type, node, const_val->data.x_fn, nullptr); } else { add_node_error(g, fn_ref_expr, buf_sprintf("type '%s' not a function", buf_ptr(&invoke_type_entry->name))); return g->builtin_types.entry_invalid; } } // function pointer if (invoke_type_entry->id == TypeTableEntryIdFn) { return analyze_fn_call_ptr(g, import, context, expected_type, node, invoke_type_entry, nullptr); } else { add_node_error(g, fn_ref_expr, buf_sprintf("type '%s' not a function", buf_ptr(&invoke_type_entry->name))); return g->builtin_types.entry_invalid; } } static TypeTableEntry *analyze_prefix_op_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { PrefixOp prefix_op = node->data.prefix_op_expr.prefix_op; AstNode *expr_node = node->data.prefix_op_expr.primary_expr; switch (prefix_op) { case PrefixOpInvalid: zig_unreachable(); case PrefixOpBoolNot: { TypeTableEntry *type_entry = analyze_expression(g, import, context, g->builtin_types.entry_bool, expr_node); if (type_entry->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_bool; } ConstExprValue *target_const_val = &get_resolved_expr(expr_node)->const_val; if (!target_const_val->ok) { return g->builtin_types.entry_bool; } bool answer = !target_const_val->data.x_bool; return resolve_expr_const_val_as_bool(g, node, answer); } case PrefixOpBinNot: { TypeTableEntry *expr_type = analyze_expression(g, import, context, expected_type, expr_node); if (expr_type->id == TypeTableEntryIdInvalid) { return expr_type; } else if (expr_type->id == TypeTableEntryIdInt || expr_type->id == TypeTableEntryIdNumLitInt) { return expr_type; } else { add_node_error(g, expr_node, buf_sprintf("invalid binary not type: '%s'", buf_ptr(&expr_type->name))); return g->builtin_types.entry_invalid; } // TODO const expr eval } case PrefixOpNegation: { TypeTableEntry *expr_type = analyze_expression(g, import, context, expected_type, expr_node); if (expr_type->id == TypeTableEntryIdInvalid) { return expr_type; } else if ((expr_type->id == TypeTableEntryIdInt && expr_type->data.integral.is_signed) || expr_type->id == TypeTableEntryIdFloat || expr_type->id == TypeTableEntryIdNumLitInt || expr_type->id == TypeTableEntryIdNumLitFloat) { ConstExprValue *target_const_val = &get_resolved_expr(expr_node)->const_val; if (!target_const_val->ok) { return expr_type; } ConstExprValue *const_val = &get_resolved_expr(node)->const_val; const_val->ok = true; bignum_negate(&const_val->data.x_bignum, &target_const_val->data.x_bignum); return expr_type; } else { add_node_error(g, node, buf_sprintf("invalid negation type: '%s'", buf_ptr(&expr_type->name))); return g->builtin_types.entry_invalid; } } case PrefixOpAddressOf: case PrefixOpConstAddressOf: { bool is_const = (prefix_op == PrefixOpConstAddressOf); TypeTableEntry *child_type = analyze_lvalue(g, import, context, expr_node, LValPurposeAddressOf, is_const); if (child_type->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } else if (child_type->id == TypeTableEntryIdMetaType) { TypeTableEntry *meta_type = analyze_type_expr(g, import, context, expr_node); if (meta_type->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } else if (meta_type->id == TypeTableEntryIdUnreachable) { add_node_error(g, node, buf_create_from_str("pointer to unreachable not allowed")); return g->builtin_types.entry_invalid; } else { return resolve_expr_const_val_as_type(g, node, get_pointer_to_type(g, meta_type, is_const)); } } else if (child_type->id == TypeTableEntryIdNumLitInt || child_type->id == TypeTableEntryIdNumLitFloat) { add_node_error(g, expr_node, buf_sprintf("unable to get address of type '%s'", buf_ptr(&child_type->name))); return g->builtin_types.entry_invalid; } else { return get_pointer_to_type(g, child_type, is_const); } } case PrefixOpDereference: { TypeTableEntry *type_entry = analyze_expression(g, import, context, nullptr, expr_node); if (type_entry->id == TypeTableEntryIdInvalid) { return type_entry; } else if (type_entry->id == TypeTableEntryIdPointer) { return type_entry->data.pointer.child_type; } else { add_node_error(g, expr_node, buf_sprintf("indirection requires pointer operand ('%s' invalid)", buf_ptr(&type_entry->name))); return g->builtin_types.entry_invalid; } } case PrefixOpMaybe: { TypeTableEntry *type_entry = analyze_expression(g, import, context, nullptr, expr_node); if (type_entry->id == TypeTableEntryIdInvalid) { return type_entry; } else if (type_entry->id == TypeTableEntryIdMetaType) { TypeTableEntry *meta_type = resolve_type(g, expr_node); if (meta_type->id == TypeTableEntryIdInvalid) { return g->builtin_types.entry_invalid; } else if (meta_type->id == TypeTableEntryIdUnreachable) { add_node_error(g, node, buf_create_from_str("unable to wrap unreachable in maybe type")); return g->builtin_types.entry_invalid; } else { return resolve_expr_const_val_as_type(g, node, get_maybe_type(g, meta_type)); } } else if (type_entry->id == TypeTableEntryIdUnreachable) { add_node_error(g, expr_node, buf_sprintf("unable to wrap unreachable in maybe type")); return g->builtin_types.entry_invalid; } else { // TODO eval const expr return get_maybe_type(g, type_entry); } } case PrefixOpError: { TypeTableEntry *type_entry = analyze_expression(g, import, context, nullptr, expr_node); if (type_entry->id == TypeTableEntryIdInvalid) { return type_entry; } else if (type_entry->id == TypeTableEntryIdMetaType) { TypeTableEntry *meta_type = resolve_type(g, expr_node); if (meta_type->id == TypeTableEntryIdInvalid) { return meta_type; } else if (meta_type->id == TypeTableEntryIdUnreachable) { add_node_error(g, node, buf_create_from_str("unable to wrap unreachable in error type")); return g->builtin_types.entry_invalid; } else { return resolve_expr_const_val_as_type(g, node, get_error_type(g, meta_type)); } } else if (type_entry->id == TypeTableEntryIdUnreachable) { add_node_error(g, expr_node, buf_sprintf("unable to wrap unreachable in error type")); return g->builtin_types.entry_invalid; } else { // TODO eval const expr return get_error_type(g, type_entry); } } case PrefixOpUnwrapError: { TypeTableEntry *type_entry = analyze_expression(g, import, context, nullptr, expr_node); if (type_entry->id == TypeTableEntryIdInvalid) { return type_entry; } else if (type_entry->id == TypeTableEntryIdErrorUnion) { return type_entry->data.error.child_type; } else { add_node_error(g, expr_node, buf_sprintf("expected error type, got '%s'", buf_ptr(&type_entry->name))); return g->builtin_types.entry_invalid; } } } zig_unreachable(); } static TypeTableEntry *analyze_switch_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { AstNode *expr_node = node->data.switch_expr.expr; TypeTableEntry *expr_type = analyze_expression(g, import, context, nullptr, expr_node); if (expected_type == nullptr) { zig_panic("TODO resolve peer compatibility of switch prongs"); } if (expr_type->id == TypeTableEntryIdInvalid) { return expr_type; } else if (expr_type->id == TypeTableEntryIdUnreachable) { add_node_error(g, first_executing_node(expr_node), buf_sprintf("switch on unreachable expression not allowed")); return g->builtin_types.entry_invalid; } else { AstNode *else_prong = nullptr; for (int prong_i = 0; prong_i < node->data.switch_expr.prongs.length; prong_i += 1) { AstNode *prong_node = node->data.switch_expr.prongs.at(prong_i); TypeTableEntry *var_type; if (prong_node->data.switch_prong.items.length == 0) { if (else_prong) { add_node_error(g, prong_node, buf_sprintf("multiple else prongs in switch expression")); } else { else_prong = prong_node; } var_type = expr_type; } else { for (int item_i = 0; item_i < prong_node->data.switch_prong.items.length; item_i += 1) { AstNode *item_node = prong_node->data.switch_prong.items.at(item_i); if (item_node->type == NodeTypeSwitchRange) { zig_panic("TODO range in switch statement"); } analyze_expression(g, import, context, expr_type, item_node); ConstExprValue *const_val = &get_resolved_expr(item_node)->const_val; if (!const_val->ok) { add_node_error(g, item_node, buf_sprintf("unable to resolve constant expression")); } } var_type = expr_type; } BlockContext *child_context = new_block_context(node, context); prong_node->data.switch_prong.block_context = child_context; AstNode *var_node = prong_node->data.switch_prong.var_symbol; if (var_node) { assert(var_node->type == NodeTypeSymbol); Buf *var_name = &var_node->data.symbol_expr.symbol; var_node->block_context = child_context; prong_node->data.switch_prong.var = add_local_var(g, var_node, child_context, var_name, var_type, true); } analyze_expression(g, import, child_context, expected_type, prong_node->data.switch_prong.expr); } } return expected_type; } static TypeTableEntry *analyze_return_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { if (!context->fn_entry) { add_node_error(g, node, buf_sprintf("return expression outside function definition")); return g->builtin_types.entry_invalid; } if (!node->data.return_expr.expr) { node->data.return_expr.expr = create_ast_void_node(g, import, node); normalize_parent_ptrs(node); } TypeTableEntry *expected_return_type = get_return_type(context); switch (node->data.return_expr.kind) { case ReturnKindUnconditional: { analyze_expression(g, import, context, expected_return_type, node->data.return_expr.expr); return g->builtin_types.entry_unreachable; } case ReturnKindError: { TypeTableEntry *expected_err_type; if (expected_type) { expected_err_type = get_error_type(g, expected_type); } else { expected_err_type = nullptr; } TypeTableEntry *resolved_type = analyze_expression(g, import, context, expected_err_type, node->data.return_expr.expr); if (resolved_type->id == TypeTableEntryIdInvalid) { return resolved_type; } else if (resolved_type->id == TypeTableEntryIdErrorUnion) { return resolved_type->data.error.child_type; } else { add_node_error(g, node->data.return_expr.expr, buf_sprintf("expected error type, got '%s'", buf_ptr(&resolved_type->name))); return g->builtin_types.entry_invalid; } } case ReturnKindMaybe: zig_panic("TODO"); } } static TypeTableEntry *analyze_string_literal_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { if (node->data.string_literal.c) { return resolve_expr_const_val_as_c_string_lit(g, node, &node->data.string_literal.buf); } else { return resolve_expr_const_val_as_string_lit(g, node, &node->data.string_literal.buf); } } static TypeTableEntry *analyze_block_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { BlockContext *child_context = new_block_context(node, context); node->data.block.block_context = child_context; TypeTableEntry *return_type = g->builtin_types.entry_void; for (int i = 0; i < node->data.block.statements.length; i += 1) { AstNode *child = node->data.block.statements.at(i); if (child->type == NodeTypeLabel) { child->block_context = child_context; LabelTableEntry *label_entry = child->data.label.label_entry; assert(label_entry); label_entry->entered_from_fallthrough = (return_type->id != TypeTableEntryIdUnreachable); return_type = g->builtin_types.entry_void; continue; } if (return_type->id == TypeTableEntryIdUnreachable) { if (is_node_void_expr(child)) { // {unreachable;void;void} is allowed. // ignore void statements once we enter unreachable land. analyze_expression(g, import, context, g->builtin_types.entry_void, child); continue; } add_node_error(g, first_executing_node(child), buf_sprintf("unreachable code")); break; } bool is_last = (i == node->data.block.statements.length - 1); TypeTableEntry *passed_expected_type = is_last ? expected_type : nullptr; return_type = analyze_expression(g, import, child_context, passed_expected_type, child); if (!is_last) { if (return_type->id == TypeTableEntryIdMetaType) { add_node_error(g, child, buf_sprintf("expected expression, found type")); } else if (return_type->id == TypeTableEntryIdErrorUnion) { add_node_error(g, child, buf_sprintf("statement ignores error value")); } } } return return_type; } // When you call analyze_expression, the node you pass might no longer be the child node // you thought it was due to implicit casting rewriting the AST. static TypeTableEntry *analyze_expression(CodeGen *g, ImportTableEntry *import, BlockContext *context, TypeTableEntry *expected_type, AstNode *node) { TypeTableEntry *return_type = nullptr; switch (node->type) { case NodeTypeBlock: return_type = analyze_block_expr(g, import, context, expected_type, node); break; case NodeTypeReturnExpr: return_type = analyze_return_expr(g, import, context, expected_type, node); break; case NodeTypeVariableDeclaration: analyze_variable_declaration(g, import, context, expected_type, node); return_type = g->builtin_types.entry_void; break; case NodeTypeGoto: { FnTableEntry *fn_table_entry = get_context_fn_entry(context); auto table_entry = fn_table_entry->label_table.maybe_get(&node->data.goto_expr.name); if (table_entry) { node->data.goto_expr.label_entry = table_entry->value; table_entry->value->used = true; } else { add_node_error(g, node, buf_sprintf("use of undeclared label '%s'", buf_ptr(&node->data.goto_expr.name))); } return_type = g->builtin_types.entry_unreachable; break; } case NodeTypeBreak: return_type = analyze_break_expr(g, import, context, expected_type, node); break; case NodeTypeContinue: return_type = analyze_continue_expr(g, import, context, expected_type, node); break; case NodeTypeAsmExpr: { node->data.asm_expr.return_count = 0; return_type = g->builtin_types.entry_void; for (int i = 0; i < node->data.asm_expr.output_list.length; i += 1) { AsmOutput *asm_output = node->data.asm_expr.output_list.at(i); if (asm_output->return_type) { node->data.asm_expr.return_count += 1; return_type = analyze_type_expr(g, import, context, asm_output->return_type); if (node->data.asm_expr.return_count > 1) { add_node_error(g, node, buf_sprintf("inline assembly allows up to one output value")); break; } } else { analyze_variable_name(g, import, context, node, &asm_output->variable_name); } } for (int i = 0; i < node->data.asm_expr.input_list.length; i += 1) { AsmInput *asm_input = node->data.asm_expr.input_list.at(i); analyze_expression(g, import, context, nullptr, asm_input->expr); } break; } case NodeTypeBinOpExpr: return_type = analyze_bin_op_expr(g, import, context, expected_type, node); break; case NodeTypeUnwrapErrorExpr: return_type = analyze_unwrap_error_expr(g, import, context, expected_type, node); break; case NodeTypeFnCallExpr: return_type = analyze_fn_call_expr(g, import, context, expected_type, node); break; case NodeTypeArrayAccessExpr: // for reading array access; assignment handled elsewhere return_type = analyze_array_access_expr(g, import, context, node); break; case NodeTypeSliceExpr: return_type = analyze_slice_expr(g, import, context, node); break; case NodeTypeFieldAccessExpr: return_type = analyze_field_access_expr(g, import, context, node); break; case NodeTypeContainerInitExpr: return_type = analyze_container_init_expr(g, import, context, node); break; case NodeTypeNumberLiteral: return_type = analyze_number_literal_expr(g, import, context, expected_type, node); break; case NodeTypeStringLiteral: return_type = analyze_string_literal_expr(g, import, context, expected_type, node); break; case NodeTypeCharLiteral: return_type = resolve_expr_const_val_as_unsigned_num_lit(g, node, expected_type, node->data.char_literal.value); break; case NodeTypeBoolLiteral: return_type = resolve_expr_const_val_as_bool(g, node, node->data.bool_literal.value); break; case NodeTypeNullLiteral: return_type = analyze_null_literal_expr(g, import, context, expected_type, node); break; case NodeTypeUndefinedLiteral: return_type = analyze_undefined_literal_expr(g, import, context, expected_type, node); break; case NodeTypeSymbol: return_type = analyze_symbol_expr(g, import, context, expected_type, node); break; case NodeTypePrefixOpExpr: return_type = analyze_prefix_op_expr(g, import, context, expected_type, node); break; case NodeTypeIfBoolExpr: return_type = analyze_if_bool_expr(g, import, context, expected_type, node); break; case NodeTypeIfVarExpr: return_type = analyze_if_var_expr(g, import, context, expected_type, node); break; case NodeTypeWhileExpr: return_type = analyze_while_expr(g, import, context, expected_type, node); break; case NodeTypeForExpr: return_type = analyze_for_expr(g, import, context, expected_type, node); break; case NodeTypeArrayType: return_type = analyze_array_type(g, import, context, expected_type, node); break; case NodeTypeFnProto: return_type = analyze_fn_proto_expr(g, import, context, expected_type, node); break; case NodeTypeErrorType: return_type = resolve_expr_const_val_as_type(g, node, g->builtin_types.entry_pure_error); break; case NodeTypeTypeLiteral: return_type = resolve_expr_const_val_as_type(g, node, g->builtin_types.entry_type); break; case NodeTypeSwitchExpr: return_type = analyze_switch_expr(g, import, context, expected_type, node); break; case NodeTypeSwitchProng: case NodeTypeSwitchRange: case NodeTypeDirective: case NodeTypeFnDecl: case NodeTypeParamDecl: case NodeTypeRoot: case NodeTypeRootExportDecl: case NodeTypeFnDef: case NodeTypeImport: case NodeTypeCImport: case NodeTypeLabel: case NodeTypeStructDecl: case NodeTypeStructField: case NodeTypeStructValueField: case NodeTypeErrorValueDecl: case NodeTypeTypeDecl: zig_unreachable(); } assert(return_type); // resolve_type_compatibility might do implicit cast which means node is now a child // of the actual node that we want to return the type of. //AstNode **field = node->parent_field; TypeTableEntry *resolved_type = resolve_type_compatibility(g, import, context, node, expected_type, return_type); Expr *expr = get_resolved_expr(node); expr->type_entry = return_type; node->block_context = context; add_global_const_expr(g, expr); return resolved_type; } static void analyze_top_level_fn_def(CodeGen *g, ImportTableEntry *import, AstNode *node) { assert(node->type == NodeTypeFnDef); AstNode *fn_proto_node = node->data.fn_def.fn_proto; assert(fn_proto_node->type == NodeTypeFnProto); if (fn_proto_node->data.fn_proto.skip) { // we detected an error with this function definition which prevents us // from further analyzing it. return; } BlockContext *context = node->data.fn_def.block_context; FnTableEntry *fn_table_entry = fn_proto_node->data.fn_proto.fn_table_entry; TypeTableEntry *fn_type = fn_table_entry->type_entry; AstNodeFnProto *fn_proto = &fn_proto_node->data.fn_proto; for (int i = 0; i < fn_proto->params.length; i += 1) { AstNode *param_decl_node = fn_proto->params.at(i); assert(param_decl_node->type == NodeTypeParamDecl); // define local variables for parameters AstNodeParamDecl *param_decl = ¶m_decl_node->data.param_decl; TypeTableEntry *type = unwrapped_node_type(param_decl->type); if (param_decl->is_noalias && type->id != TypeTableEntryIdPointer) { add_node_error(g, param_decl_node, buf_sprintf("noalias on non-pointer parameter")); } if (fn_type->data.fn.fn_type_id.is_extern && type->id == TypeTableEntryIdStruct) { add_node_error(g, param_decl_node, buf_sprintf("byvalue struct parameters not yet supported on extern functions")); } if (buf_len(¶m_decl->name) == 0) { add_node_error(g, param_decl_node, buf_sprintf("missing parameter name")); } VariableTableEntry *var = add_local_var(g, param_decl_node, context, ¶m_decl->name, type, true); var->src_arg_index = i; param_decl_node->data.param_decl.variable = var; var->gen_arg_index = fn_type->data.fn.gen_param_info[i].gen_index; } TypeTableEntry *expected_type = fn_type->data.fn.fn_type_id.return_type; TypeTableEntry *block_return_type = analyze_expression(g, import, context, expected_type, node->data.fn_def.body); node->data.fn_def.implicit_return_type = block_return_type; { auto it = fn_table_entry->label_table.entry_iterator(); for (;;) { auto *entry = it.next(); if (!entry) break; LabelTableEntry *label_entry = entry->value; if (!label_entry->used) { add_node_error(g, label_entry->label_node, buf_sprintf("label '%s' defined but not used", buf_ptr(&label_entry->label_node->data.label.name))); } } } } static void analyze_top_level_decl(CodeGen *g, ImportTableEntry *import, AstNode *node) { switch (node->type) { case NodeTypeFnDef: analyze_top_level_fn_def(g, import, node); break; case NodeTypeStructDecl: { for (int i = 0; i < node->data.struct_decl.fns.length; i += 1) { AstNode *fn_def_node = node->data.struct_decl.fns.at(i); analyze_top_level_fn_def(g, import, fn_def_node); } break; } case NodeTypeRootExportDecl: case NodeTypeImport: case NodeTypeCImport: case NodeTypeVariableDeclaration: case NodeTypeErrorValueDecl: case NodeTypeFnProto: case NodeTypeTypeDecl: // already took care of these break; case NodeTypeDirective: case NodeTypeParamDecl: case NodeTypeFnDecl: case NodeTypeReturnExpr: case NodeTypeRoot: case NodeTypeBlock: case NodeTypeBinOpExpr: case NodeTypeUnwrapErrorExpr: case NodeTypeFnCallExpr: case NodeTypeArrayAccessExpr: case NodeTypeSliceExpr: case NodeTypeNumberLiteral: case NodeTypeStringLiteral: case NodeTypeCharLiteral: case NodeTypeBoolLiteral: case NodeTypeNullLiteral: case NodeTypeUndefinedLiteral: case NodeTypeSymbol: case NodeTypePrefixOpExpr: case NodeTypeIfBoolExpr: case NodeTypeIfVarExpr: case NodeTypeWhileExpr: case NodeTypeForExpr: case NodeTypeSwitchExpr: case NodeTypeSwitchProng: case NodeTypeSwitchRange: case NodeTypeLabel: case NodeTypeGoto: case NodeTypeBreak: case NodeTypeContinue: case NodeTypeAsmExpr: case NodeTypeFieldAccessExpr: case NodeTypeStructField: case NodeTypeStructValueField: case NodeTypeContainerInitExpr: case NodeTypeArrayType: case NodeTypeErrorType: case NodeTypeTypeLiteral: zig_unreachable(); } } static void collect_expr_decl_deps(CodeGen *g, ImportTableEntry *import, AstNode *node, TopLevelDecl *decl_node) { switch (node->type) { case NodeTypeNumberLiteral: case NodeTypeStringLiteral: case NodeTypeCharLiteral: case NodeTypeBoolLiteral: case NodeTypeNullLiteral: case NodeTypeUndefinedLiteral: case NodeTypeGoto: case NodeTypeBreak: case NodeTypeContinue: case NodeTypeErrorValueDecl: case NodeTypeErrorType: case NodeTypeTypeLiteral: // no dependencies on other top level declarations break; case NodeTypeSymbol: { if (node->data.symbol_expr.override_type_entry) { break; } Buf *name = &node->data.symbol_expr.symbol; auto table_entry = g->primitive_type_table.maybe_get(name); if (!table_entry) { table_entry = import->block_context->type_table.maybe_get(name); } if (!table_entry) { decl_node->deps.put(name, node); } break; } case NodeTypeBinOpExpr: collect_expr_decl_deps(g, import, node->data.bin_op_expr.op1, decl_node); collect_expr_decl_deps(g, import, node->data.bin_op_expr.op2, decl_node); break; case NodeTypeUnwrapErrorExpr: collect_expr_decl_deps(g, import, node->data.unwrap_err_expr.op1, decl_node); collect_expr_decl_deps(g, import, node->data.unwrap_err_expr.op2, decl_node); break; case NodeTypeReturnExpr: collect_expr_decl_deps(g, import, node->data.return_expr.expr, decl_node); break; case NodeTypePrefixOpExpr: collect_expr_decl_deps(g, import, node->data.prefix_op_expr.primary_expr, decl_node); break; case NodeTypeFnCallExpr: collect_expr_decl_deps(g, import, node->data.fn_call_expr.fn_ref_expr, decl_node); for (int i = 0; i < node->data.fn_call_expr.params.length; i += 1) { AstNode *arg_node = node->data.fn_call_expr.params.at(i); collect_expr_decl_deps(g, import, arg_node, decl_node); } break; case NodeTypeArrayAccessExpr: collect_expr_decl_deps(g, import, node->data.array_access_expr.array_ref_expr, decl_node); collect_expr_decl_deps(g, import, node->data.array_access_expr.subscript, decl_node); break; case NodeTypeSliceExpr: collect_expr_decl_deps(g, import, node->data.slice_expr.array_ref_expr, decl_node); collect_expr_decl_deps(g, import, node->data.slice_expr.start, decl_node); if (node->data.slice_expr.end) { collect_expr_decl_deps(g, import, node->data.slice_expr.end, decl_node); } break; case NodeTypeFieldAccessExpr: collect_expr_decl_deps(g, import, node->data.field_access_expr.struct_expr, decl_node); break; case NodeTypeIfBoolExpr: collect_expr_decl_deps(g, import, node->data.if_bool_expr.condition, decl_node); collect_expr_decl_deps(g, import, node->data.if_bool_expr.then_block, decl_node); if (node->data.if_bool_expr.else_node) { collect_expr_decl_deps(g, import, node->data.if_bool_expr.else_node, decl_node); } break; case NodeTypeIfVarExpr: if (node->data.if_var_expr.var_decl.type) { collect_expr_decl_deps(g, import, node->data.if_var_expr.var_decl.type, decl_node); } if (node->data.if_var_expr.var_decl.expr) { collect_expr_decl_deps(g, import, node->data.if_var_expr.var_decl.expr, decl_node); } collect_expr_decl_deps(g, import, node->data.if_var_expr.then_block, decl_node); if (node->data.if_bool_expr.else_node) { collect_expr_decl_deps(g, import, node->data.if_var_expr.else_node, decl_node); } break; case NodeTypeWhileExpr: collect_expr_decl_deps(g, import, node->data.while_expr.condition, decl_node); collect_expr_decl_deps(g, import, node->data.while_expr.body, decl_node); break; case NodeTypeForExpr: collect_expr_decl_deps(g, import, node->data.for_expr.array_expr, decl_node); collect_expr_decl_deps(g, import, node->data.for_expr.body, decl_node); break; case NodeTypeBlock: for (int i = 0; i < node->data.block.statements.length; i += 1) { AstNode *stmt = node->data.block.statements.at(i); collect_expr_decl_deps(g, import, stmt, decl_node); } break; case NodeTypeAsmExpr: for (int i = 0; i < node->data.asm_expr.output_list.length; i += 1) { AsmOutput *asm_output = node->data.asm_expr.output_list.at(i); if (asm_output->return_type) { collect_expr_decl_deps(g, import, asm_output->return_type, decl_node); } else { decl_node->deps.put(&asm_output->variable_name, node); } } for (int i = 0; i < node->data.asm_expr.input_list.length; i += 1) { AsmInput *asm_input = node->data.asm_expr.input_list.at(i); collect_expr_decl_deps(g, import, asm_input->expr, decl_node); } break; case NodeTypeContainerInitExpr: collect_expr_decl_deps(g, import, node->data.container_init_expr.type, decl_node); for (int i = 0; i < node->data.container_init_expr.entries.length; i += 1) { AstNode *child_node = node->data.container_init_expr.entries.at(i); collect_expr_decl_deps(g, import, child_node, decl_node); } break; case NodeTypeStructValueField: collect_expr_decl_deps(g, import, node->data.struct_val_field.expr, decl_node); break; case NodeTypeArrayType: if (node->data.array_type.size) { collect_expr_decl_deps(g, import, node->data.array_type.size, decl_node); } collect_expr_decl_deps(g, import, node->data.array_type.child_type, decl_node); break; case NodeTypeSwitchExpr: collect_expr_decl_deps(g, import, node->data.switch_expr.expr, decl_node); for (int i = 0; i < node->data.switch_expr.prongs.length; i += 1) { AstNode *prong = node->data.switch_expr.prongs.at(i); collect_expr_decl_deps(g, import, prong, decl_node); } break; case NodeTypeSwitchProng: for (int i = 0; i < node->data.switch_prong.items.length; i += 1) { AstNode *child = node->data.switch_prong.items.at(i); collect_expr_decl_deps(g, import, child, decl_node); } collect_expr_decl_deps(g, import, node->data.switch_prong.expr, decl_node); break; case NodeTypeSwitchRange: collect_expr_decl_deps(g, import, node->data.switch_range.start, decl_node); collect_expr_decl_deps(g, import, node->data.switch_range.end, decl_node); break; case NodeTypeFnProto: // remember that fn proto node is used for function definitions as well // as types for (int i = 0; i < node->data.fn_proto.params.length; i += 1) { AstNode *param = node->data.fn_proto.params.at(i); collect_expr_decl_deps(g, import, param, decl_node); } collect_expr_decl_deps(g, import, node->data.fn_proto.return_type, decl_node); break; case NodeTypeParamDecl: collect_expr_decl_deps(g, import, node->data.param_decl.type, decl_node); break; case NodeTypeTypeDecl: collect_expr_decl_deps(g, import, node->data.type_decl.child_type, decl_node); break; case NodeTypeVariableDeclaration: case NodeTypeRootExportDecl: case NodeTypeFnDef: case NodeTypeRoot: case NodeTypeFnDecl: case NodeTypeDirective: case NodeTypeImport: case NodeTypeCImport: case NodeTypeLabel: case NodeTypeStructDecl: case NodeTypeStructField: zig_unreachable(); } } static void detect_top_level_decl_deps(CodeGen *g, ImportTableEntry *import, AstNode *node) { switch (node->type) { case NodeTypeRoot: for (int i = 0; i < import->root->data.root.top_level_decls.length; i += 1) { AstNode *child = import->root->data.root.top_level_decls.at(i); detect_top_level_decl_deps(g, import, child); } break; case NodeTypeStructDecl: { Buf *name = &node->data.struct_decl.name; auto table_entry = g->primitive_type_table.maybe_get(name); if (!table_entry) { table_entry = import->block_context->type_table.maybe_get(name); } if (table_entry) { node->data.struct_decl.type_entry = table_entry->value; add_node_error(g, node, buf_sprintf("redefinition of '%s'", buf_ptr(name))); } else { TypeTableEntry *entry; if (node->data.struct_decl.type_entry) { entry = node->data.struct_decl.type_entry; } else { entry = get_partial_container_type(g, import, node->data.struct_decl.kind, node, buf_ptr(name)); } import->block_context->type_table.put(&entry->name, entry); node->data.struct_decl.type_entry = entry; bool is_pub = (node->data.struct_decl.visib_mod != VisibModPrivate); if (is_pub) { for (int i = 0; i < import->importers.length; i += 1) { ImporterInfo importer = import->importers.at(i); auto table_entry = importer.import->block_context->type_table.maybe_get(&entry->name); if (table_entry) { add_node_error(g, importer.source_node, buf_sprintf("import of type '%s' overrides existing definition", buf_ptr(&entry->name))); } else { importer.import->block_context->type_table.put(&entry->name, entry); } } } } // determine which other top level declarations this struct depends on. TopLevelDecl *decl_node = &node->data.struct_decl.top_level_decl; decl_node->deps.init(1); for (int i = 0; i < node->data.struct_decl.fields.length; i += 1) { AstNode *field_node = node->data.struct_decl.fields.at(i); AstNode *type_node = field_node->data.struct_field.type; collect_expr_decl_deps(g, import, type_node, decl_node); } decl_node->name = name; decl_node->import = import; if (decl_node->deps.size() > 0) { g->unresolved_top_level_decls.put(name, node); } else { resolve_top_level_decl(g, import, node); } // handle the member function definitions independently for (int i = 0; i < node->data.struct_decl.fns.length; i += 1) { AstNode *fn_def_node = node->data.struct_decl.fns.at(i); AstNode *fn_proto_node = fn_def_node->data.fn_def.fn_proto; fn_proto_node->data.fn_proto.struct_node = node; detect_top_level_decl_deps(g, import, fn_def_node); } break; } case NodeTypeFnDef: node->data.fn_def.fn_proto->data.fn_proto.fn_def_node = node; detect_top_level_decl_deps(g, import, node->data.fn_def.fn_proto); break; case NodeTypeVariableDeclaration: { // determine which other top level declarations this variable declaration depends on. TopLevelDecl *decl_node = &node->data.variable_declaration.top_level_decl; decl_node->deps.init(1); if (node->data.variable_declaration.type) { collect_expr_decl_deps(g, import, node->data.variable_declaration.type, decl_node); } if (node->data.variable_declaration.expr) { collect_expr_decl_deps(g, import, node->data.variable_declaration.expr, decl_node); } Buf *name = &node->data.variable_declaration.symbol; decl_node->name = name; decl_node->import = import; if (decl_node->deps.size() > 0) { g->unresolved_top_level_decls.put(name, node); } else { resolve_top_level_decl(g, import, node); } break; } case NodeTypeTypeDecl: { // determine which other top level declarations this variable declaration depends on. TopLevelDecl *decl_node = &node->data.type_decl.top_level_decl; decl_node->deps.init(1); collect_expr_decl_deps(g, import, node, decl_node); Buf *name = &node->data.type_decl.symbol; decl_node->name = name; decl_node->import = import; if (decl_node->deps.size() > 0) { g->unresolved_top_level_decls.put(name, node); } else { resolve_top_level_decl(g, import, node); } break; } case NodeTypeFnProto: { // if the name is missing, we immediately announce an error Buf *name = &node->data.fn_proto.name; if (buf_len(name) == 0) { node->data.fn_proto.skip = true; add_node_error(g, node, buf_sprintf("missing function name")); break; } // determine which other top level declarations this function prototype depends on. TopLevelDecl *decl_node = &node->data.fn_proto.top_level_decl; decl_node->deps.init(1); collect_expr_decl_deps(g, import, node, decl_node); decl_node->name = name; decl_node->import = import; if (decl_node->deps.size() > 0) { g->unresolved_top_level_decls.put(name, node); } else { resolve_top_level_decl(g, import, node); } break; } case NodeTypeRootExportDecl: resolve_top_level_decl(g, import, node); break; case NodeTypeImport: // already taken care of break; case NodeTypeCImport: { TopLevelDecl *decl_node = &node->data.c_import.top_level_decl; decl_node->deps.init(1); collect_expr_decl_deps(g, import, node->data.c_import.block, decl_node); decl_node->name = buf_sprintf("c_import_%" PRIu32, node->create_index); decl_node->import = import; if (decl_node->deps.size() > 0) { g->unresolved_top_level_decls.put(decl_node->name, node); } else { resolve_top_level_decl(g, import, node); } break; } case NodeTypeErrorValueDecl: // error value declarations do not depend on other top level decls resolve_top_level_decl(g, import, node); break; case NodeTypeDirective: case NodeTypeParamDecl: case NodeTypeFnDecl: case NodeTypeReturnExpr: case NodeTypeBlock: case NodeTypeBinOpExpr: case NodeTypeUnwrapErrorExpr: case NodeTypeFnCallExpr: case NodeTypeArrayAccessExpr: case NodeTypeSliceExpr: case NodeTypeNumberLiteral: case NodeTypeStringLiteral: case NodeTypeCharLiteral: case NodeTypeBoolLiteral: case NodeTypeNullLiteral: case NodeTypeUndefinedLiteral: case NodeTypeSymbol: case NodeTypePrefixOpExpr: case NodeTypeIfBoolExpr: case NodeTypeIfVarExpr: case NodeTypeWhileExpr: case NodeTypeForExpr: case NodeTypeSwitchExpr: case NodeTypeSwitchProng: case NodeTypeSwitchRange: case NodeTypeLabel: case NodeTypeGoto: case NodeTypeBreak: case NodeTypeContinue: case NodeTypeAsmExpr: case NodeTypeFieldAccessExpr: case NodeTypeStructField: case NodeTypeContainerInitExpr: case NodeTypeStructValueField: case NodeTypeArrayType: case NodeTypeErrorType: case NodeTypeTypeLiteral: zig_unreachable(); } } static void recursive_resolve_decl(CodeGen *g, ImportTableEntry *import, AstNode *node) { auto it = get_resolved_top_level_decl(node)->deps.entry_iterator(); for (;;) { auto *entry = it.next(); if (!entry) break; auto unresolved_entry = g->unresolved_top_level_decls.maybe_get(entry->key); if (!unresolved_entry) { continue; } AstNode *child_node = unresolved_entry->value; if (get_resolved_top_level_decl(child_node)->in_current_deps) { // dependency loop. we'll let the fact that it's not in the respective // table cause an error in resolve_top_level_decl. continue; } // set temporary flag TopLevelDecl *top_level_decl = get_resolved_top_level_decl(child_node); top_level_decl->in_current_deps = true; recursive_resolve_decl(g, top_level_decl->import, child_node); // unset temporary flag top_level_decl->in_current_deps = false; } resolve_top_level_decl(g, import, node); } static void resolve_top_level_declarations_root(CodeGen *g, ImportTableEntry *import, AstNode *node) { assert(node->type == NodeTypeRoot); while (g->unresolved_top_level_decls.size() > 0) { // for the sake of determinism, find the element with the lowest // insert index and resolve that one. AstNode *decl_node = nullptr; auto it = g->unresolved_top_level_decls.entry_iterator(); for (;;) { auto *entry = it.next(); if (!entry) break; AstNode *this_node = entry->value; if (!decl_node || this_node->create_index < decl_node->create_index) { decl_node = this_node; } } // set temporary flag TopLevelDecl *top_level_decl = get_resolved_top_level_decl(decl_node); top_level_decl->in_current_deps = true; recursive_resolve_decl(g, top_level_decl->import, decl_node); // unset temporary flag top_level_decl->in_current_deps = false; } } static void analyze_top_level_decls_root(CodeGen *g, ImportTableEntry *import, AstNode *node) { assert(node->type == NodeTypeRoot); for (int i = 0; i < node->data.root.top_level_decls.length; i += 1) { AstNode *child = node->data.root.top_level_decls.at(i); analyze_top_level_decl(g, import, child); } } void semantic_analyze(CodeGen *g) { { auto it = g->import_table.entry_iterator(); for (;;) { auto *entry = it.next(); if (!entry) break; ImportTableEntry *import = entry->value; for (int i = 0; i < import->root->data.root.top_level_decls.length; i += 1) { AstNode *child = import->root->data.root.top_level_decls.at(i); if (child->type == NodeTypeImport) { for (int i = 0; i < child->data.import.directives->length; i += 1) { AstNode *directive_node = child->data.import.directives->at(i); Buf *name = &directive_node->data.directive.name; add_node_error(g, directive_node, buf_sprintf("invalid directive: '%s'", buf_ptr(name))); } ImportTableEntry *target_import = child->data.import.import; assert(target_import); target_import->importers.append({import, child}); } else if (child->type == NodeTypeErrorValueDecl) { g->error_value_count += 1; } } } } { g->err_tag_type = get_smallest_unsigned_int_type(g, g->error_value_count); g->builtin_types.entry_pure_error->type_ref = g->err_tag_type->type_ref; g->builtin_types.entry_pure_error->size_in_bits = g->err_tag_type->size_in_bits; g->builtin_types.entry_pure_error->align_in_bits = g->err_tag_type->align_in_bits; g->builtin_types.entry_pure_error->di_type = g->err_tag_type->di_type; } { auto it = g->import_table.entry_iterator(); for (;;) { auto *entry = it.next(); if (!entry) break; ImportTableEntry *import = entry->value; detect_top_level_decl_deps(g, import, import->root); } } assert(g->error_value_count == g->next_error_index); { auto it = g->import_table.entry_iterator(); for (;;) { auto *entry = it.next(); if (!entry) break; ImportTableEntry *import = entry->value; resolve_top_level_declarations_root(g, import, import->root); } } { auto it = g->import_table.entry_iterator(); for (;;) { auto *entry = it.next(); if (!entry) break; ImportTableEntry *import = entry->value; analyze_top_level_decls_root(g, import, import->root); } } } Expr *get_resolved_expr(AstNode *node) { switch (node->type) { case NodeTypeReturnExpr: return &node->data.return_expr.resolved_expr; case NodeTypeBinOpExpr: return &node->data.bin_op_expr.resolved_expr; case NodeTypeUnwrapErrorExpr: return &node->data.unwrap_err_expr.resolved_expr; case NodeTypePrefixOpExpr: return &node->data.prefix_op_expr.resolved_expr; case NodeTypeFnCallExpr: return &node->data.fn_call_expr.resolved_expr; case NodeTypeArrayAccessExpr: return &node->data.array_access_expr.resolved_expr; case NodeTypeSliceExpr: return &node->data.slice_expr.resolved_expr; case NodeTypeFieldAccessExpr: return &node->data.field_access_expr.resolved_expr; case NodeTypeIfBoolExpr: return &node->data.if_bool_expr.resolved_expr; case NodeTypeIfVarExpr: return &node->data.if_var_expr.resolved_expr; case NodeTypeWhileExpr: return &node->data.while_expr.resolved_expr; case NodeTypeForExpr: return &node->data.for_expr.resolved_expr; case NodeTypeAsmExpr: return &node->data.asm_expr.resolved_expr; case NodeTypeContainerInitExpr: return &node->data.container_init_expr.resolved_expr; case NodeTypeNumberLiteral: return &node->data.number_literal.resolved_expr; case NodeTypeStringLiteral: return &node->data.string_literal.resolved_expr; case NodeTypeBlock: return &node->data.block.resolved_expr; case NodeTypeSymbol: return &node->data.symbol_expr.resolved_expr; case NodeTypeVariableDeclaration: return &node->data.variable_declaration.resolved_expr; case NodeTypeCharLiteral: return &node->data.char_literal.resolved_expr; case NodeTypeBoolLiteral: return &node->data.bool_literal.resolved_expr; case NodeTypeNullLiteral: return &node->data.null_literal.resolved_expr; case NodeTypeUndefinedLiteral: return &node->data.undefined_literal.resolved_expr; case NodeTypeGoto: return &node->data.goto_expr.resolved_expr; case NodeTypeBreak: return &node->data.break_expr.resolved_expr; case NodeTypeContinue: return &node->data.continue_expr.resolved_expr; case NodeTypeLabel: return &node->data.label.resolved_expr; case NodeTypeArrayType: return &node->data.array_type.resolved_expr; case NodeTypeErrorType: return &node->data.error_type.resolved_expr; case NodeTypeTypeLiteral: return &node->data.type_literal.resolved_expr; case NodeTypeSwitchExpr: return &node->data.switch_expr.resolved_expr; case NodeTypeFnProto: return &node->data.fn_proto.resolved_expr; case NodeTypeSwitchProng: case NodeTypeSwitchRange: case NodeTypeRoot: case NodeTypeRootExportDecl: case NodeTypeFnDef: case NodeTypeFnDecl: case NodeTypeParamDecl: case NodeTypeDirective: case NodeTypeImport: case NodeTypeCImport: case NodeTypeStructDecl: case NodeTypeStructField: case NodeTypeStructValueField: case NodeTypeErrorValueDecl: case NodeTypeTypeDecl: zig_unreachable(); } zig_unreachable(); } TopLevelDecl *get_resolved_top_level_decl(AstNode *node) { switch (node->type) { case NodeTypeVariableDeclaration: return &node->data.variable_declaration.top_level_decl; case NodeTypeFnProto: return &node->data.fn_proto.top_level_decl; case NodeTypeStructDecl: return &node->data.struct_decl.top_level_decl; case NodeTypeErrorValueDecl: return &node->data.error_value_decl.top_level_decl; case NodeTypeCImport: return &node->data.c_import.top_level_decl; case NodeTypeTypeDecl: return &node->data.type_decl.top_level_decl; case NodeTypeNumberLiteral: case NodeTypeReturnExpr: case NodeTypeBinOpExpr: case NodeTypeUnwrapErrorExpr: case NodeTypePrefixOpExpr: case NodeTypeFnCallExpr: case NodeTypeArrayAccessExpr: case NodeTypeSliceExpr: case NodeTypeFieldAccessExpr: case NodeTypeIfBoolExpr: case NodeTypeIfVarExpr: case NodeTypeWhileExpr: case NodeTypeForExpr: case NodeTypeSwitchExpr: case NodeTypeSwitchProng: case NodeTypeSwitchRange: case NodeTypeAsmExpr: case NodeTypeContainerInitExpr: case NodeTypeRoot: case NodeTypeRootExportDecl: case NodeTypeFnDef: case NodeTypeFnDecl: case NodeTypeParamDecl: case NodeTypeBlock: case NodeTypeDirective: case NodeTypeStringLiteral: case NodeTypeCharLiteral: case NodeTypeSymbol: case NodeTypeImport: case NodeTypeBoolLiteral: case NodeTypeNullLiteral: case NodeTypeUndefinedLiteral: case NodeTypeLabel: case NodeTypeGoto: case NodeTypeBreak: case NodeTypeContinue: case NodeTypeStructField: case NodeTypeStructValueField: case NodeTypeArrayType: case NodeTypeErrorType: case NodeTypeTypeLiteral: zig_unreachable(); } zig_unreachable(); } bool is_node_void_expr(AstNode *node) { if (node->type == NodeTypeContainerInitExpr && node->data.container_init_expr.kind == ContainerInitKindArray) { AstNode *type_node = node->data.container_init_expr.type; if (type_node->type == NodeTypeSymbol && buf_eql_str(&type_node->data.symbol_expr.symbol, "void")) { return true; } } return false; } TypeTableEntry **get_int_type_ptr(CodeGen *g, bool is_signed, int size_in_bits) { int index; if (size_in_bits == 8) { index = 0; } else if (size_in_bits == 16) { index = 1; } else if (size_in_bits == 32) { index = 2; } else if (size_in_bits == 64) { index = 3; } else { zig_unreachable(); } return &g->builtin_types.entry_int[is_signed ? 0 : 1][index]; } TypeTableEntry *get_int_type(CodeGen *g, bool is_signed, int size_in_bits) { return *get_int_type_ptr(g, is_signed, size_in_bits); } TypeTableEntry **get_c_int_type_ptr(CodeGen *g, CIntType c_int_type) { return &g->builtin_types.entry_c_int[c_int_type]; } TypeTableEntry *get_c_int_type(CodeGen *g, CIntType c_int_type) { return *get_c_int_type_ptr(g, c_int_type); } bool handle_is_ptr(TypeTableEntry *type_entry) { switch (type_entry->id) { case TypeTableEntryIdInvalid: case TypeTableEntryIdMetaType: case TypeTableEntryIdNumLitFloat: case TypeTableEntryIdNumLitInt: case TypeTableEntryIdUndefLit: zig_unreachable(); case TypeTableEntryIdUnreachable: case TypeTableEntryIdVoid: case TypeTableEntryIdBool: case TypeTableEntryIdInt: case TypeTableEntryIdFloat: case TypeTableEntryIdPointer: case TypeTableEntryIdPureError: case TypeTableEntryIdFn: return false; case TypeTableEntryIdArray: case TypeTableEntryIdStruct: return true; case TypeTableEntryIdErrorUnion: return type_entry->data.error.child_type->size_in_bits > 0; case TypeTableEntryIdEnum: return type_entry->data.enumeration.gen_field_count != 0; case TypeTableEntryIdMaybe: return type_entry->data.maybe.child_type->id != TypeTableEntryIdPointer; case TypeTableEntryIdTypeDecl: return handle_is_ptr(type_entry->data.type_decl.canonical_type); } zig_unreachable(); } void find_libc_path(CodeGen *g) { if (!g->libc_path || buf_len(g->libc_path) == 0) { g->libc_path = buf_create_from_str(ZIG_LIBC_DIR); if (!g->libc_path || buf_len(g->libc_path) == 0) { // later we can handle this better by reporting an error via the normal mechanism zig_panic("Unable to determine libc path. You can use `--libc-path`"); } } if (!g->libc_lib_path) { g->libc_lib_path = buf_alloc(); os_path_join(g->libc_path, buf_create_from_str("lib"), g->libc_lib_path); } if (!g->libc_include_path) { g->libc_include_path = buf_alloc(); os_path_join(g->libc_path, buf_create_from_str("include"), g->libc_include_path); } } static uint32_t hash_ptr(void *ptr) { uint64_t x = (uint64_t)(uintptr_t)(ptr); uint32_t a = x >> 32; uint32_t b = x & 0xffffffff; return a ^ b; } uint32_t fn_type_id_hash(FnTypeId id) { uint32_t result = 0; result += id.is_extern ? 3349388391 : 0; result += id.is_naked ? 608688877 : 0; result += id.is_var_args ? 1931444534 : 0; result += hash_ptr(id.return_type); result += id.param_count; for (int i = 0; i < id.param_count; i += 1) { FnTypeParamInfo *info = &id.param_info[i]; result += info->is_noalias ? 892356923 : 0; result += hash_ptr(info->type); } return result; } bool fn_type_id_eql(FnTypeId a, FnTypeId b) { if (a.is_extern != b.is_extern || a.is_naked != b.is_naked || a.return_type != b.return_type || a.is_var_args != b.is_var_args || a.param_count != b.param_count) { return false; } for (int i = 0; i < a.param_count; i += 1) { FnTypeParamInfo *a_param_info = &a.param_info[i]; FnTypeParamInfo *b_param_info = &b.param_info[i]; if (a_param_info->type != b_param_info->type) { return false; } if (a_param_info->is_noalias != b_param_info->is_noalias) { return false; } } return true; }