const builtin = @import("builtin"); const Os = builtin.Os; const std = @import("std.zig"); const mem = std.mem; const cstr = std.cstr; const os = std.os; const assert = std.debug.assert; const testing = std.testing; const elf = std.elf; const linux = os.linux; const windows = os.windows; const win_util = @import("os/windows/util.zig"); const maxInt = std.math.maxInt; pub const DynLib = switch (builtin.os) { Os.linux => LinuxDynLib, Os.windows => WindowsDynLib, else => void, }; // The link_map structure is not completely specified beside the fields // reported below, any libc is free to store additional data in the remaining // space. // An iterator is provided in order to traverse the linked list in a idiomatic // fashion. const LinkMap = extern struct { l_addr: usize, l_name: [*]const u8, l_ld: ?*elf.Dyn, l_next: ?*LinkMap, l_prev: ?*LinkMap, pub const Iterator = struct { current: ?*LinkMap, fn end(self: *Iterator) bool { return self.current == null; } fn next(self: *Iterator) ?*LinkMap { if (self.current) |it| { self.current = it.l_next; return it; } return null; } }; }; const RDebug = extern struct { r_version: i32, r_map: ?*LinkMap, r_brk: usize, r_ldbase: usize, }; fn elf_get_va_offset(phdrs: []elf.Phdr) !usize { for (phdrs) |*phdr| { if (phdr.p_type == elf.PT_LOAD) { return @ptrToInt(phdr) - phdr.p_vaddr; } } return error.InvalidExe; } pub fn linkmap_iterator(phdrs: []elf.Phdr) !LinkMap.Iterator { const va_offset = try elf_get_va_offset(phdrs); const dyn_table = init: { for (phdrs) |*phdr| { if (phdr.p_type == elf.PT_DYNAMIC) { const ptr = @intToPtr([*]elf.Dyn, va_offset + phdr.p_vaddr); break :init ptr[0..phdr.p_memsz / @sizeOf(elf.Dyn)]; } } // No PT_DYNAMIC means this is either a statically-linked program or a // badly corrupted one return LinkMap.Iterator{.current = null}; }; const link_map_ptr = init: { for (dyn_table) |*dyn| { switch (dyn.d_tag) { elf.DT_DEBUG => { const r_debug = @intToPtr(*RDebug, dyn.d_un.d_ptr); if (r_debug.r_version != 1) return error.InvalidExe; break :init r_debug.r_map; }, elf.DT_PLTGOT => { const got_table = @intToPtr([*]usize, dyn.d_un.d_ptr); // The address to the link_map structure is stored in the // second slot break :init @intToPtr(?*LinkMap, got_table[1]); }, else => { } } } return error.InvalidExe; }; return LinkMap.Iterator{.current = link_map_ptr}; } pub const LinuxDynLib = struct { elf_lib: ElfLib, fd: i32, map_addr: usize, map_size: usize, /// Trusts the file pub fn open(allocator: *mem.Allocator, path: []const u8) !DynLib { const fd = try std.os.posixOpen(path, 0, linux.O_RDONLY | linux.O_CLOEXEC); errdefer std.os.close(fd); const size = @intCast(usize, (try std.os.posixFStat(fd)).size); const addr = linux.mmap( null, size, linux.PROT_READ | linux.PROT_EXEC, linux.MAP_PRIVATE | linux.MAP_LOCKED, fd, 0, ); errdefer _ = linux.munmap(addr, size); const bytes = @intToPtr([*]align(std.os.page_size) u8, addr)[0..size]; return DynLib{ .elf_lib = try ElfLib.init(bytes), .fd = fd, .map_addr = addr, .map_size = size, }; } pub fn close(self: *DynLib) void { _ = linux.munmap(self.map_addr, self.map_size); std.os.close(self.fd); self.* = undefined; } pub fn lookup(self: *DynLib, name: []const u8) ?usize { return self.elf_lib.lookup("", name); } }; pub const ElfLib = struct { strings: [*]u8, syms: [*]elf.Sym, hashtab: [*]linux.Elf_Symndx, versym: ?[*]u16, verdef: ?*elf.Verdef, base: usize, // Trusts the memory pub fn init(bytes: []align(@alignOf(elf.Ehdr)) u8) !ElfLib { const eh = @ptrCast(*elf.Ehdr, bytes.ptr); if (!mem.eql(u8, eh.e_ident[0..4], "\x7fELF")) return error.NotElfFile; if (eh.e_type != elf.ET_DYN) return error.NotDynamicLibrary; const elf_addr = @ptrToInt(bytes.ptr); var ph_addr: usize = elf_addr + eh.e_phoff; var base: usize = maxInt(usize); var maybe_dynv: ?[*]usize = null; { var i: usize = 0; while (i < eh.e_phnum) : ({ i += 1; ph_addr += eh.e_phentsize; }) { const ph = @intToPtr(*elf.Phdr, ph_addr); switch (ph.p_type) { elf.PT_LOAD => base = elf_addr + ph.p_offset - ph.p_vaddr, elf.PT_DYNAMIC => maybe_dynv = @intToPtr([*]usize, elf_addr + ph.p_offset), else => {}, } } } const dynv = maybe_dynv orelse return error.MissingDynamicLinkingInformation; if (base == maxInt(usize)) return error.BaseNotFound; var maybe_strings: ?[*]u8 = null; var maybe_syms: ?[*]elf.Sym = null; var maybe_hashtab: ?[*]linux.Elf_Symndx = null; var maybe_versym: ?[*]u16 = null; var maybe_verdef: ?*elf.Verdef = null; { var i: usize = 0; while (dynv[i] != 0) : (i += 2) { const p = base + dynv[i + 1]; switch (dynv[i]) { elf.DT_STRTAB => maybe_strings = @intToPtr([*]u8, p), elf.DT_SYMTAB => maybe_syms = @intToPtr([*]elf.Sym, p), elf.DT_HASH => maybe_hashtab = @intToPtr([*]linux.Elf_Symndx, p), elf.DT_VERSYM => maybe_versym = @intToPtr([*]u16, p), elf.DT_VERDEF => maybe_verdef = @intToPtr(*elf.Verdef, p), else => {}, } } } return ElfLib{ .base = base, .strings = maybe_strings orelse return error.ElfStringSectionNotFound, .syms = maybe_syms orelse return error.ElfSymSectionNotFound, .hashtab = maybe_hashtab orelse return error.ElfHashTableNotFound, .versym = maybe_versym, .verdef = maybe_verdef, }; } /// Returns the address of the symbol pub fn lookup(self: *const ElfLib, vername: []const u8, name: []const u8) ?usize { const maybe_versym = if (self.verdef == null) null else self.versym; const OK_TYPES = (1 << elf.STT_NOTYPE | 1 << elf.STT_OBJECT | 1 << elf.STT_FUNC | 1 << elf.STT_COMMON); const OK_BINDS = (1 << elf.STB_GLOBAL | 1 << elf.STB_WEAK | 1 << elf.STB_GNU_UNIQUE); var i: usize = 0; while (i < self.hashtab[1]) : (i += 1) { if (0 == (u32(1) << @intCast(u5, self.syms[i].st_info & 0xf) & OK_TYPES)) continue; if (0 == (u32(1) << @intCast(u5, self.syms[i].st_info >> 4) & OK_BINDS)) continue; if (0 == self.syms[i].st_shndx) continue; if (!mem.eql(u8, name, cstr.toSliceConst(self.strings + self.syms[i].st_name))) continue; if (maybe_versym) |versym| { if (!checkver(self.verdef.?, versym[i], vername, self.strings)) continue; } return self.base + self.syms[i].st_value; } return null; } }; fn checkver(def_arg: *elf.Verdef, vsym_arg: i32, vername: []const u8, strings: [*]u8) bool { var def = def_arg; const vsym = @bitCast(u32, vsym_arg) & 0x7fff; while (true) { if (0 == (def.vd_flags & elf.VER_FLG_BASE) and (def.vd_ndx & 0x7fff) == vsym) break; if (def.vd_next == 0) return false; def = @intToPtr(*elf.Verdef, @ptrToInt(def) + def.vd_next); } const aux = @intToPtr(*elf.Verdaux, @ptrToInt(def) + def.vd_aux); return mem.eql(u8, vername, cstr.toSliceConst(strings + aux.vda_name)); } pub const WindowsDynLib = struct { allocator: *mem.Allocator, dll: windows.HMODULE, pub fn open(allocator: *mem.Allocator, path: []const u8) !WindowsDynLib { const wpath = try win_util.sliceToPrefixedFileW(path); return WindowsDynLib{ .allocator = allocator, .dll = windows.LoadLibraryW(&wpath) orelse { const err = windows.GetLastError(); switch (err) { windows.ERROR.FILE_NOT_FOUND => return error.FileNotFound, windows.ERROR.PATH_NOT_FOUND => return error.FileNotFound, windows.ERROR.MOD_NOT_FOUND => return error.FileNotFound, else => return os.unexpectedErrorWindows(err), } }, }; } pub fn close(self: *WindowsDynLib) void { assert(windows.FreeLibrary(self.dll) != 0); self.* = undefined; } pub fn lookup(self: *WindowsDynLib, name: []const u8) ?usize { return @ptrToInt(windows.GetProcAddress(self.dll, name.ptr)); } }; test "dynamic_library" { const libname = switch (builtin.os) { Os.linux => "invalid_so.so", Os.windows => "invalid_dll.dll", else => return, }; const dynlib = DynLib.open(std.debug.global_allocator, libname) catch |err| { testing.expect(err == error.FileNotFound); return; }; @panic("Expected error from function"); }