const std = @import("std.zig"); const math = std.math; const assert = std.debug.assert; const mem = std.mem; const builtin = @import("builtin"); const errol = @import("fmt/errol.zig"); const lossyCast = std.math.lossyCast; pub const default_max_depth = 3; pub const Alignment = enum { Left, Center, Right, }; pub const FormatOptions = struct { precision: ?usize = null, width: ?usize = null, alignment: ?Alignment = null, fill: u8 = ' ', }; fn peekIsAlign(comptime fmt: []const u8) bool { // Should only be called during a state transition to the format segment. comptime assert(fmt[0] == ':'); inline for (([_]u8{ 1, 2 })[0..]) |i| { if (fmt.len > i and (fmt[i] == '<' or fmt[i] == '^' or fmt[i] == '>')) { return true; } } return false; } /// Renders fmt string with args, calling output with slices of bytes. /// If `output` returns an error, the error is returned from `format` and /// `output` is not called again. /// /// The format string must be comptime known and may contain placeholders following /// this format: /// `{[position][specifier]:[fill][alignment][width].[precision]}` /// /// Each word between `[` and `]` is a parameter you have to replace with something: /// /// - *position* is the index of the argument that should be inserted /// - *specifier* is a type-dependent formatting option that determines how a type should formatted (see below) /// - *fill* is a single character which is used to pad the formatted text /// - *alignment* is one of the three characters `<`, `^` or `>`. they define if the text is *left*, *center*, or *right* aligned /// - *width* is the total width of the field in characters /// - *precision* specifies how many decimals a formatted number should have /// /// Note that most of the parameters are optional and may be omitted. Also you can leave out separators like `:` and `.` when /// all parameters after the separator are omitted. /// Only exception is the *fill* parameter. If *fill* is required, one has to specify *alignment* as well, as otherwise /// the digits after `:` is interpreted as *width*, not *fill*. /// /// The *specifier* has several options for types: /// - `x` and `X`: /// - format the non-numeric value as a string of bytes in hexadecimal notation ("binary dump") in either lower case or upper case /// - output numeric value in hexadecimal notation /// - `s`: print a pointer-to-many as a c-string, use zero-termination /// - `B` and `Bi`: output a memory size in either metric (1000) or power-of-two (1024) based notation. works for both float and integer values. /// - `e`: output floating point value in scientific notation /// - `d`: output numeric value in decimal notation /// - `b`: output integer value in binary notation /// - `c`: output integer as an ASCII character. Integer type must have 8 bits at max. /// - `*`: output the address of the value instead of the value itself. /// /// If a formatted user type contains a function of the type /// ``` /// fn format(value: ?, comptime fmt: []const u8, options: std.fmt.FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void) Errors!void /// ``` /// with `?` being the type formatted, this function will be called instead of the default implementation. /// This allows user types to be formatted in a logical manner instead of dumping all fields of the type. /// /// A user type may be a `struct`, `vector`, `union` or `enum` type. pub fn format( context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, comptime fmt: []const u8, args: var, ) Errors!void { const ArgSetType = @IntType(false, 32); if (@typeInfo(@TypeOf(args)) != .Struct) { @compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(args))); } if (args.len > ArgSetType.bit_count) { @compileError("32 arguments max are supported per format call"); } const State = enum { Start, Positional, CloseBrace, Specifier, FormatFillAndAlign, FormatWidth, FormatPrecision, }; comptime var start_index = 0; comptime var state = State.Start; comptime var maybe_pos_arg: ?comptime_int = null; comptime var specifier_start = 0; comptime var specifier_end = 0; comptime var options = FormatOptions{}; comptime var arg_state: struct { next_arg: usize = 0, used_args: ArgSetType = 0, args_len: usize = args.len, fn hasUnusedArgs(comptime self: *@This()) bool { return (@popCount(ArgSetType, self.used_args) != self.args_len); } fn nextArg(comptime self: *@This(), comptime pos_arg: ?comptime_int) comptime_int { const next_idx = pos_arg orelse blk: { const arg = self.next_arg; self.next_arg += 1; break :blk arg; }; if (next_idx >= self.args_len) { @compileError("Too few arguments"); } // Mark this argument as used self.used_args |= 1 << next_idx; return next_idx; } } = .{}; inline for (fmt) |c, i| { switch (state) { .Start => switch (c) { '{' => { if (start_index < i) { try output(context, fmt[start_index..i]); } start_index = i; specifier_start = i + 1; specifier_end = i + 1; maybe_pos_arg = null; state = .Positional; options = FormatOptions{}; }, '}' => { if (start_index < i) { try output(context, fmt[start_index..i]); } state = .CloseBrace; }, else => {}, }, .Positional => switch (c) { '{' => { state = .Start; start_index = i; }, ':' => { state = if (comptime peekIsAlign(fmt[i..])) State.FormatFillAndAlign else State.FormatWidth; specifier_end = i; }, '0'...'9' => { if (maybe_pos_arg == null) { maybe_pos_arg = 0; } maybe_pos_arg.? *= 10; maybe_pos_arg.? += c - '0'; specifier_start = i + 1; if (maybe_pos_arg.? >= args.len) { @compileError("Positional value refers to non-existent argument"); } }, '}' => { const arg_to_print = comptime arg_state.nextArg(maybe_pos_arg); try formatType( args[arg_to_print], fmt[0..0], options, context, Errors, output, default_max_depth, ); state = .Start; start_index = i + 1; }, else => { state = .Specifier; specifier_start = i; }, }, .CloseBrace => switch (c) { '}' => { state = .Start; start_index = i; }, else => @compileError("Single '}' encountered in format string"), }, .Specifier => switch (c) { ':' => { specifier_end = i; state = if (comptime peekIsAlign(fmt[i..])) State.FormatFillAndAlign else State.FormatWidth; }, '}' => { const arg_to_print = comptime arg_state.nextArg(maybe_pos_arg); try formatType( args[arg_to_print], fmt[specifier_start..i], options, context, Errors, output, default_max_depth, ); state = .Start; start_index = i + 1; }, else => {}, }, // Only entered if the format string contains a fill/align segment. .FormatFillAndAlign => switch (c) { '<' => { options.alignment = Alignment.Left; state = .FormatWidth; }, '^' => { options.alignment = Alignment.Center; state = .FormatWidth; }, '>' => { options.alignment = Alignment.Right; state = .FormatWidth; }, else => { options.fill = c; }, }, .FormatWidth => switch (c) { '0'...'9' => { if (options.width == null) { options.width = 0; } options.width.? *= 10; options.width.? += c - '0'; }, '.' => { state = .FormatPrecision; }, '}' => { const arg_to_print = comptime arg_state.nextArg(maybe_pos_arg); try formatType( args[arg_to_print], fmt[specifier_start..specifier_end], options, context, Errors, output, default_max_depth, ); state = .Start; start_index = i + 1; }, else => { @compileError("Unexpected character in width value: " ++ [_]u8{c}); }, }, .FormatPrecision => switch (c) { '0'...'9' => { if (options.precision == null) { options.precision = 0; } options.precision.? *= 10; options.precision.? += c - '0'; }, '}' => { const arg_to_print = comptime arg_state.nextArg(maybe_pos_arg); try formatType( args[arg_to_print], fmt[specifier_start..specifier_end], options, context, Errors, output, default_max_depth, ); state = .Start; start_index = i + 1; }, else => { @compileError("Unexpected character in precision value: " ++ [_]u8{c}); }, }, } } comptime { if (comptime arg_state.hasUnusedArgs()) { @compileError("Unused arguments"); } if (state != State.Start) { @compileError("Incomplete format string: " ++ fmt); } } if (start_index < fmt.len) { try output(context, fmt[start_index..]); } } pub fn formatType( value: var, comptime fmt: []const u8, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, max_depth: usize, ) Errors!void { if (comptime std.mem.eql(u8, fmt, "*")) { try output(context, @typeName(@TypeOf(value).Child)); try output(context, "@"); try formatInt(@ptrToInt(value), 16, false, FormatOptions{}, context, Errors, output); return; } const T = @TypeOf(value); switch (@typeInfo(T)) { .ComptimeInt, .Int, .Float => { return formatValue(value, fmt, options, context, Errors, output); }, .Void => { return output(context, "void"); }, .Bool => { return output(context, if (value) "true" else "false"); }, .Optional => { if (value) |payload| { return formatType(payload, fmt, options, context, Errors, output, max_depth); } else { return output(context, "null"); } }, .ErrorUnion => { if (value) |payload| { return formatType(payload, fmt, options, context, Errors, output, max_depth); } else |err| { return formatType(err, fmt, options, context, Errors, output, max_depth); } }, .ErrorSet => { try output(context, "error."); return output(context, @errorName(value)); }, .Enum => |enumInfo| { if (comptime std.meta.trait.hasFn("format")(T)) { return value.format(fmt, options, context, Errors, output); } try output(context, @typeName(T)); if (enumInfo.is_exhaustive) { try output(context, "."); try output(context, @tagName(value)); } else { // TODO: when @tagName works on exhaustive enums print known enum strings try output(context, "("); try formatType(@enumToInt(value), fmt, options, context, Errors, output, max_depth); try output(context, ")"); } }, .Union => { if (comptime std.meta.trait.hasFn("format")(T)) { return value.format(fmt, options, context, Errors, output); } try output(context, @typeName(T)); if (max_depth == 0) { return output(context, "{ ... }"); } const info = @typeInfo(T).Union; if (info.tag_type) |UnionTagType| { try output(context, "{ ."); try output(context, @tagName(@as(UnionTagType, value))); try output(context, " = "); inline for (info.fields) |u_field| { if (@enumToInt(@as(UnionTagType, value)) == u_field.enum_field.?.value) { try formatType(@field(value, u_field.name), fmt, options, context, Errors, output, max_depth - 1); } } try output(context, " }"); } else { try format(context, Errors, output, "@{x}", .{@ptrToInt(&value)}); } }, .Struct => |StructT| { if (comptime std.meta.trait.hasFn("format")(T)) { return value.format(fmt, options, context, Errors, output); } try output(context, @typeName(T)); if (max_depth == 0) { return output(context, "{ ... }"); } comptime var field_i = 0; try output(context, "{"); inline for (StructT.fields) |f| { if (field_i == 0) { try output(context, " ."); } else { try output(context, ", ."); } try output(context, f.name); try output(context, " = "); try formatType(@field(value, f.name), fmt, options, context, Errors, output, max_depth - 1); field_i += 1; } try output(context, " }"); }, .Pointer => |ptr_info| switch (ptr_info.size) { .One => switch (@typeInfo(ptr_info.child)) { .Array => |info| { if (info.child == u8) { return formatText(value, fmt, options, context, Errors, output); } return format(context, Errors, output, "{}@{x}", .{ @typeName(T.Child), @ptrToInt(value) }); }, .Enum, .Union, .Struct => { return formatType(value.*, fmt, options, context, Errors, output, max_depth); }, else => return format(context, Errors, output, "{}@{x}", .{ @typeName(T.Child), @ptrToInt(value) }), }, .Many, .C => { if (ptr_info.child == u8) { if (fmt.len > 0 and fmt[0] == 's') { const len = mem.len(u8, value); return formatText(value[0..len], fmt, options, context, Errors, output); } } return format(context, Errors, output, "{}@{x}", .{ @typeName(T.Child), @ptrToInt(value) }); }, .Slice => { if (fmt.len > 0 and ((fmt[0] == 'x') or (fmt[0] == 'X'))) { return formatText(value, fmt, options, context, Errors, output); } if (ptr_info.child == u8) { return formatText(value, fmt, options, context, Errors, output); } return format(context, Errors, output, "{}@{x}", .{ @typeName(ptr_info.child), @ptrToInt(value.ptr) }); }, }, .Array => |info| { const Slice = @Type(builtin.TypeInfo{ .Pointer = .{ .size = .Slice, .is_const = true, .is_volatile = false, .is_allowzero = false, .alignment = @alignOf(info.child), .child = info.child, .sentinel = null, }, }); return formatType(@as(Slice, &value), fmt, options, context, Errors, output, max_depth); }, .Vector => { const len = @typeInfo(T).Vector.len; try output(context, "{ "); var i: usize = 0; while (i < len) : (i += 1) { try formatValue(value[i], fmt, options, context, Errors, output); if (i < len - 1) { try output(context, ", "); } } try output(context, " }"); }, .Fn => { return format(context, Errors, output, "{}@{x}", .{ @typeName(T), @ptrToInt(value) }); }, .Type => return output(context, @typeName(T)), else => @compileError("Unable to format type '" ++ @typeName(T) ++ "'"), } } fn formatValue( value: var, comptime fmt: []const u8, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { if (comptime std.mem.eql(u8, fmt, "B")) { return formatBytes(value, options, 1000, context, Errors, output); } else if (comptime std.mem.eql(u8, fmt, "Bi")) { return formatBytes(value, options, 1024, context, Errors, output); } const T = @TypeOf(value); switch (@typeInfo(T)) { .Float => return formatFloatValue(value, fmt, options, context, Errors, output), .Int, .ComptimeInt => return formatIntValue(value, fmt, options, context, Errors, output), .Bool => return output(context, if (value) "true" else "false"), else => comptime unreachable, } } pub fn formatIntValue( value: var, comptime fmt: []const u8, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { comptime var radix = 10; comptime var uppercase = false; const int_value = if (@TypeOf(value) == comptime_int) blk: { const Int = math.IntFittingRange(value, value); break :blk @as(Int, value); } else value; if (fmt.len == 0 or comptime std.mem.eql(u8, fmt, "d")) { radix = 10; uppercase = false; } else if (comptime std.mem.eql(u8, fmt, "c")) { if (@TypeOf(int_value).bit_count <= 8) { return formatAsciiChar(@as(u8, int_value), options, context, Errors, output); } else { @compileError("Cannot print integer that is larger than 8 bits as a ascii"); } } else if (comptime std.mem.eql(u8, fmt, "b")) { radix = 2; uppercase = false; } else if (comptime std.mem.eql(u8, fmt, "x")) { radix = 16; uppercase = false; } else if (comptime std.mem.eql(u8, fmt, "X")) { radix = 16; uppercase = true; } else { @compileError("Unknown format string: '" ++ fmt ++ "'"); } return formatInt(int_value, radix, uppercase, options, context, Errors, output); } fn formatFloatValue( value: var, comptime fmt: []const u8, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { if (fmt.len == 0 or comptime std.mem.eql(u8, fmt, "e")) { return formatFloatScientific(value, options, context, Errors, output); } else if (comptime std.mem.eql(u8, fmt, "d")) { return formatFloatDecimal(value, options, context, Errors, output); } else { @compileError("Unknown format string: '" ++ fmt ++ "'"); } } pub fn formatText( bytes: []const u8, comptime fmt: []const u8, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { if (fmt.len == 0) { return output(context, bytes); } else if (comptime std.mem.eql(u8, fmt, "s")) { return formatBuf(bytes, options, context, Errors, output); } else if (comptime (std.mem.eql(u8, fmt, "x") or std.mem.eql(u8, fmt, "X"))) { for (bytes) |c| { try formatInt(c, 16, fmt[0] == 'X', FormatOptions{ .width = 2, .fill = '0' }, context, Errors, output); } return; } else { @compileError("Unknown format string: '" ++ fmt ++ "'"); } } pub fn formatAsciiChar( c: u8, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { return output(context, @as(*const [1]u8, &c)[0..]); } pub fn formatBuf( buf: []const u8, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { try output(context, buf); const width = options.width orelse 0; var leftover_padding = if (width > buf.len) (width - buf.len) else return; const pad_byte: u8 = options.fill; while (leftover_padding > 0) : (leftover_padding -= 1) { try output(context, @as(*const [1]u8, &pad_byte)[0..1]); } } // Print a float in scientific notation to the specified precision. Null uses full precision. // It should be the case that every full precision, printed value can be re-parsed back to the // same type unambiguously. pub fn formatFloatScientific( value: var, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { var x = @floatCast(f64, value); // Errol doesn't handle these special cases. if (math.signbit(x)) { try output(context, "-"); x = -x; } if (math.isNan(x)) { return output(context, "nan"); } if (math.isPositiveInf(x)) { return output(context, "inf"); } if (x == 0.0) { try output(context, "0"); if (options.precision) |precision| { if (precision != 0) { try output(context, "."); var i: usize = 0; while (i < precision) : (i += 1) { try output(context, "0"); } } } else { try output(context, ".0"); } try output(context, "e+00"); return; } var buffer: [32]u8 = undefined; var float_decimal = errol.errol3(x, buffer[0..]); if (options.precision) |precision| { errol.roundToPrecision(&float_decimal, precision, errol.RoundMode.Scientific); try output(context, float_decimal.digits[0..1]); // {e0} case prints no `.` if (precision != 0) { try output(context, "."); var printed: usize = 0; if (float_decimal.digits.len > 1) { const num_digits = math.min(float_decimal.digits.len, precision + 1); try output(context, float_decimal.digits[1..num_digits]); printed += num_digits - 1; } while (printed < precision) : (printed += 1) { try output(context, "0"); } } } else { try output(context, float_decimal.digits[0..1]); try output(context, "."); if (float_decimal.digits.len > 1) { const num_digits = if (@TypeOf(value) == f32) math.min(@as(usize, 9), float_decimal.digits.len) else float_decimal.digits.len; try output(context, float_decimal.digits[1..num_digits]); } else { try output(context, "0"); } } try output(context, "e"); const exp = float_decimal.exp - 1; if (exp >= 0) { try output(context, "+"); if (exp > -10 and exp < 10) { try output(context, "0"); } try formatInt(exp, 10, false, FormatOptions{ .width = 0 }, context, Errors, output); } else { try output(context, "-"); if (exp > -10 and exp < 10) { try output(context, "0"); } try formatInt(-exp, 10, false, FormatOptions{ .width = 0 }, context, Errors, output); } } // Print a float of the format x.yyyyy where the number of y is specified by the precision argument. // By default floats are printed at full precision (no rounding). pub fn formatFloatDecimal( value: var, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { var x = @as(f64, value); // Errol doesn't handle these special cases. if (math.signbit(x)) { try output(context, "-"); x = -x; } if (math.isNan(x)) { return output(context, "nan"); } if (math.isPositiveInf(x)) { return output(context, "inf"); } if (x == 0.0) { try output(context, "0"); if (options.precision) |precision| { if (precision != 0) { try output(context, "."); var i: usize = 0; while (i < precision) : (i += 1) { try output(context, "0"); } } else { try output(context, ".0"); } } return; } // non-special case, use errol3 var buffer: [32]u8 = undefined; var float_decimal = errol.errol3(x, buffer[0..]); if (options.precision) |precision| { errol.roundToPrecision(&float_decimal, precision, errol.RoundMode.Decimal); // exp < 0 means the leading is always 0 as errol result is normalized. var num_digits_whole = if (float_decimal.exp > 0) @intCast(usize, float_decimal.exp) else 0; // the actual slice into the buffer, we may need to zero-pad between num_digits_whole and this. var num_digits_whole_no_pad = math.min(num_digits_whole, float_decimal.digits.len); if (num_digits_whole > 0) { // We may have to zero pad, for instance 1e4 requires zero padding. try output(context, float_decimal.digits[0..num_digits_whole_no_pad]); var i = num_digits_whole_no_pad; while (i < num_digits_whole) : (i += 1) { try output(context, "0"); } } else { try output(context, "0"); } // {.0} special case doesn't want a trailing '.' if (precision == 0) { return; } try output(context, "."); // Keep track of fractional count printed for case where we pre-pad then post-pad with 0's. var printed: usize = 0; // Zero-fill until we reach significant digits or run out of precision. if (float_decimal.exp <= 0) { const zero_digit_count = @intCast(usize, -float_decimal.exp); const zeros_to_print = math.min(zero_digit_count, precision); var i: usize = 0; while (i < zeros_to_print) : (i += 1) { try output(context, "0"); printed += 1; } if (printed >= precision) { return; } } // Remaining fractional portion, zero-padding if insufficient. assert(precision >= printed); if (num_digits_whole_no_pad + precision - printed < float_decimal.digits.len) { try output(context, float_decimal.digits[num_digits_whole_no_pad .. num_digits_whole_no_pad + precision - printed]); return; } else { try output(context, float_decimal.digits[num_digits_whole_no_pad..]); printed += float_decimal.digits.len - num_digits_whole_no_pad; while (printed < precision) : (printed += 1) { try output(context, "0"); } } } else { // exp < 0 means the leading is always 0 as errol result is normalized. var num_digits_whole = if (float_decimal.exp > 0) @intCast(usize, float_decimal.exp) else 0; // the actual slice into the buffer, we may need to zero-pad between num_digits_whole and this. var num_digits_whole_no_pad = math.min(num_digits_whole, float_decimal.digits.len); if (num_digits_whole > 0) { // We may have to zero pad, for instance 1e4 requires zero padding. try output(context, float_decimal.digits[0..num_digits_whole_no_pad]); var i = num_digits_whole_no_pad; while (i < num_digits_whole) : (i += 1) { try output(context, "0"); } } else { try output(context, "0"); } // Omit `.` if no fractional portion if (float_decimal.exp >= 0 and num_digits_whole_no_pad == float_decimal.digits.len) { return; } try output(context, "."); // Zero-fill until we reach significant digits or run out of precision. if (float_decimal.exp < 0) { const zero_digit_count = @intCast(usize, -float_decimal.exp); var i: usize = 0; while (i < zero_digit_count) : (i += 1) { try output(context, "0"); } } try output(context, float_decimal.digits[num_digits_whole_no_pad..]); } } pub fn formatBytes( value: var, options: FormatOptions, comptime radix: usize, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { if (value == 0) { return output(context, "0B"); } const mags_si = " kMGTPEZY"; const mags_iec = " KMGTPEZY"; const magnitude = switch (radix) { 1000 => math.min(math.log2(value) / comptime math.log2(1000), mags_si.len - 1), 1024 => math.min(math.log2(value) / 10, mags_iec.len - 1), else => unreachable, }; const new_value = lossyCast(f64, value) / math.pow(f64, lossyCast(f64, radix), lossyCast(f64, magnitude)); const suffix = switch (radix) { 1000 => mags_si[magnitude], 1024 => mags_iec[magnitude], else => unreachable, }; try formatFloatDecimal(new_value, options, context, Errors, output); if (suffix == ' ') { return output(context, "B"); } const buf = switch (radix) { 1000 => &[_]u8{ suffix, 'B' }, 1024 => &[_]u8{ suffix, 'i', 'B' }, else => unreachable, }; return output(context, buf); } pub fn formatInt( value: var, base: u8, uppercase: bool, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { const int_value = if (@TypeOf(value) == comptime_int) blk: { const Int = math.IntFittingRange(value, value); break :blk @as(Int, value); } else value; if (@TypeOf(int_value).is_signed) { return formatIntSigned(int_value, base, uppercase, options, context, Errors, output); } else { return formatIntUnsigned(int_value, base, uppercase, options, context, Errors, output); } } fn formatIntSigned( value: var, base: u8, uppercase: bool, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { const new_options = FormatOptions{ .width = if (options.width) |w| (if (w == 0) 0 else w - 1) else null, .precision = options.precision, .fill = options.fill, }; const uint = @IntType(false, @TypeOf(value).bit_count); if (value < 0) { const minus_sign: u8 = '-'; try output(context, @as(*const [1]u8, &minus_sign)[0..]); const new_value = @intCast(uint, -(value + 1)) + 1; return formatIntUnsigned(new_value, base, uppercase, new_options, context, Errors, output); } else if (options.width == null or options.width.? == 0) { return formatIntUnsigned(@intCast(uint, value), base, uppercase, options, context, Errors, output); } else { const plus_sign: u8 = '+'; try output(context, @as(*const [1]u8, &plus_sign)[0..]); const new_value = @intCast(uint, value); return formatIntUnsigned(new_value, base, uppercase, new_options, context, Errors, output); } } fn formatIntUnsigned( value: var, base: u8, uppercase: bool, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { assert(base >= 2); var buf: [math.max(@TypeOf(value).bit_count, 1)]u8 = undefined; const min_int_bits = comptime math.max(@TypeOf(value).bit_count, @TypeOf(base).bit_count); const MinInt = @IntType(@TypeOf(value).is_signed, min_int_bits); var a: MinInt = value; var index: usize = buf.len; while (true) { const digit = a % base; index -= 1; buf[index] = digitToChar(@intCast(u8, digit), uppercase); a /= base; if (a == 0) break; } const digits_buf = buf[index..]; const width = options.width orelse 0; const padding = if (width > digits_buf.len) (width - digits_buf.len) else 0; if (padding > index) { const zero_byte: u8 = options.fill; var leftover_padding = padding - index; while (true) { try output(context, @as(*const [1]u8, &zero_byte)[0..]); leftover_padding -= 1; if (leftover_padding == 0) break; } mem.set(u8, buf[0..index], options.fill); return output(context, &buf); } else { const padded_buf = buf[index - padding ..]; mem.set(u8, padded_buf[0..padding], options.fill); return output(context, padded_buf); } } pub fn formatIntBuf(out_buf: []u8, value: var, base: u8, uppercase: bool, options: FormatOptions) usize { var context = FormatIntBuf{ .out_buf = out_buf, .index = 0, }; formatInt(value, base, uppercase, options, &context, error{}, formatIntCallback) catch unreachable; return context.index; } const FormatIntBuf = struct { out_buf: []u8, index: usize, }; fn formatIntCallback(context: *FormatIntBuf, bytes: []const u8) (error{}!void) { mem.copy(u8, context.out_buf[context.index..], bytes); context.index += bytes.len; } pub fn parseInt(comptime T: type, buf: []const u8, radix: u8) !T { if (!T.is_signed) return parseUnsigned(T, buf, radix); if (buf.len == 0) return @as(T, 0); if (buf[0] == '-') { return math.negate(try parseUnsigned(T, buf[1..], radix)); } else if (buf[0] == '+') { return parseUnsigned(T, buf[1..], radix); } else { return parseUnsigned(T, buf, radix); } } test "parseInt" { std.testing.expect((parseInt(i32, "-10", 10) catch unreachable) == -10); std.testing.expect((parseInt(i32, "+10", 10) catch unreachable) == 10); std.testing.expect(if (parseInt(i32, " 10", 10)) |_| false else |err| err == error.InvalidCharacter); std.testing.expect(if (parseInt(i32, "10 ", 10)) |_| false else |err| err == error.InvalidCharacter); std.testing.expect(if (parseInt(u32, "-10", 10)) |_| false else |err| err == error.InvalidCharacter); std.testing.expect((parseInt(u8, "255", 10) catch unreachable) == 255); std.testing.expect(if (parseInt(u8, "256", 10)) |_| false else |err| err == error.Overflow); } pub const ParseUnsignedError = error{ /// The result cannot fit in the type specified Overflow, /// The input had a byte that was not a digit InvalidCharacter, }; pub fn parseUnsigned(comptime T: type, buf: []const u8, radix: u8) ParseUnsignedError!T { var x: T = 0; for (buf) |c| { const digit = try charToDigit(c, radix); if (x != 0) x = try math.mul(T, x, try math.cast(T, radix)); x = try math.add(T, x, try math.cast(T, digit)); } return x; } test "parseUnsigned" { std.testing.expect((try parseUnsigned(u16, "050124", 10)) == 50124); std.testing.expect((try parseUnsigned(u16, "65535", 10)) == 65535); std.testing.expectError(error.Overflow, parseUnsigned(u16, "65536", 10)); std.testing.expect((try parseUnsigned(u64, "0ffffffffffffffff", 16)) == 0xffffffffffffffff); std.testing.expectError(error.Overflow, parseUnsigned(u64, "10000000000000000", 16)); std.testing.expect((try parseUnsigned(u32, "DeadBeef", 16)) == 0xDEADBEEF); std.testing.expect((try parseUnsigned(u7, "1", 10)) == 1); std.testing.expect((try parseUnsigned(u7, "1000", 2)) == 8); std.testing.expectError(error.InvalidCharacter, parseUnsigned(u32, "f", 10)); std.testing.expectError(error.InvalidCharacter, parseUnsigned(u8, "109", 8)); std.testing.expect((try parseUnsigned(u32, "NUMBER", 36)) == 1442151747); // these numbers should fit even though the radix itself doesn't fit in the destination type std.testing.expect((try parseUnsigned(u1, "0", 10)) == 0); std.testing.expect((try parseUnsigned(u1, "1", 10)) == 1); std.testing.expectError(error.Overflow, parseUnsigned(u1, "2", 10)); std.testing.expect((try parseUnsigned(u1, "001", 16)) == 1); std.testing.expect((try parseUnsigned(u2, "3", 16)) == 3); std.testing.expectError(error.Overflow, parseUnsigned(u2, "4", 16)); } pub const parseFloat = @import("fmt/parse_float.zig").parseFloat; test "parseFloat" { _ = @import("fmt/parse_float.zig"); } pub fn charToDigit(c: u8, radix: u8) (error{InvalidCharacter}!u8) { const value = switch (c) { '0'...'9' => c - '0', 'A'...'Z' => c - 'A' + 10, 'a'...'z' => c - 'a' + 10, else => return error.InvalidCharacter, }; if (value >= radix) return error.InvalidCharacter; return value; } fn digitToChar(digit: u8, uppercase: bool) u8 { return switch (digit) { 0...9 => digit + '0', 10...35 => digit + ((if (uppercase) @as(u8, 'A') else @as(u8, 'a')) - 10), else => unreachable, }; } const BufPrintContext = struct { remaining: []u8, }; fn bufPrintWrite(context: *BufPrintContext, bytes: []const u8) !void { if (context.remaining.len < bytes.len) { mem.copy(u8, context.remaining, bytes[0..context.remaining.len]); return error.BufferTooSmall; } mem.copy(u8, context.remaining, bytes); context.remaining = context.remaining[bytes.len..]; } pub const BufPrintError = error{ /// As much as possible was written to the buffer, but it was too small to fit all the printed bytes. BufferTooSmall, }; pub fn bufPrint(buf: []u8, comptime fmt: []const u8, args: var) BufPrintError![]u8 { var context = BufPrintContext{ .remaining = buf }; try format(&context, BufPrintError, bufPrintWrite, fmt, args); return buf[0 .. buf.len - context.remaining.len]; } pub const AllocPrintError = error{OutOfMemory}; pub fn allocPrint(allocator: *mem.Allocator, comptime fmt: []const u8, args: var) AllocPrintError![]u8 { var size: usize = 0; format(&size, error{}, countSize, fmt, args) catch |err| switch (err) {}; const buf = try allocator.alloc(u8, size); return bufPrint(buf, fmt, args) catch |err| switch (err) { error.BufferTooSmall => unreachable, // we just counted the size above }; } fn countSize(size: *usize, bytes: []const u8) (error{}!void) { size.* += bytes.len; } pub fn allocPrint0(allocator: *mem.Allocator, comptime fmt: []const u8, args: var) AllocPrintError![:0]u8 { const result = try allocPrint(allocator, fmt ++ "\x00", args); return result[0 .. result.len - 1 :0]; } test "bufPrintInt" { var buffer: [100]u8 = undefined; const buf = buffer[0..]; std.testing.expect(mem.eql(u8, bufPrintIntToSlice(buf, @as(i32, -12345678), 2, false, FormatOptions{}), "-101111000110000101001110")); std.testing.expect(mem.eql(u8, bufPrintIntToSlice(buf, @as(i32, -12345678), 10, false, FormatOptions{}), "-12345678")); std.testing.expect(mem.eql(u8, bufPrintIntToSlice(buf, @as(i32, -12345678), 16, false, FormatOptions{}), "-bc614e")); std.testing.expect(mem.eql(u8, bufPrintIntToSlice(buf, @as(i32, -12345678), 16, true, FormatOptions{}), "-BC614E")); std.testing.expect(mem.eql(u8, bufPrintIntToSlice(buf, @as(u32, 12345678), 10, true, FormatOptions{}), "12345678")); std.testing.expect(mem.eql(u8, bufPrintIntToSlice(buf, @as(u32, 666), 10, false, FormatOptions{ .width = 6 }), " 666")); std.testing.expect(mem.eql(u8, bufPrintIntToSlice(buf, @as(u32, 0x1234), 16, false, FormatOptions{ .width = 6 }), " 1234")); std.testing.expect(mem.eql(u8, bufPrintIntToSlice(buf, @as(u32, 0x1234), 16, false, FormatOptions{ .width = 1 }), "1234")); std.testing.expect(mem.eql(u8, bufPrintIntToSlice(buf, @as(i32, 42), 10, false, FormatOptions{ .width = 3 }), "+42")); std.testing.expect(mem.eql(u8, bufPrintIntToSlice(buf, @as(i32, -42), 10, false, FormatOptions{ .width = 3 }), "-42")); } fn bufPrintIntToSlice(buf: []u8, value: var, base: u8, uppercase: bool, options: FormatOptions) []u8 { return buf[0..formatIntBuf(buf, value, base, uppercase, options)]; } test "parse u64 digit too big" { _ = parseUnsigned(u64, "123a", 10) catch |err| { if (err == error.InvalidCharacter) return; unreachable; }; unreachable; } test "parse unsigned comptime" { comptime { std.testing.expect((try parseUnsigned(usize, "2", 10)) == 2); } } test "optional" { { const value: ?i32 = 1234; try testFmt("optional: 1234\n", "optional: {}\n", .{value}); } { const value: ?i32 = null; try testFmt("optional: null\n", "optional: {}\n", .{value}); } } test "error" { { const value: anyerror!i32 = 1234; try testFmt("error union: 1234\n", "error union: {}\n", .{value}); } { const value: anyerror!i32 = error.InvalidChar; try testFmt("error union: error.InvalidChar\n", "error union: {}\n", .{value}); } } test "int.small" { { const value: u3 = 0b101; try testFmt("u3: 5\n", "u3: {}\n", .{value}); } } test "int.specifier" { { const value: u8 = 'a'; try testFmt("u8: a\n", "u8: {c}\n", .{value}); } { const value: u8 = 0b1100; try testFmt("u8: 0b1100\n", "u8: 0b{b}\n", .{value}); } } test "int.padded" { try testFmt("u8: ' 1'", "u8: '{:4}'", .{@as(u8, 1)}); try testFmt("u8: 'xxx1'", "u8: '{:x<4}'", .{@as(u8, 1)}); } test "buffer" { { var buf1: [32]u8 = undefined; var context = BufPrintContext{ .remaining = buf1[0..] }; try formatType(1234, "", FormatOptions{}, &context, error{BufferTooSmall}, bufPrintWrite, default_max_depth); var res = buf1[0 .. buf1.len - context.remaining.len]; std.testing.expect(mem.eql(u8, res, "1234")); context = BufPrintContext{ .remaining = buf1[0..] }; try formatType('a', "c", FormatOptions{}, &context, error{BufferTooSmall}, bufPrintWrite, default_max_depth); res = buf1[0 .. buf1.len - context.remaining.len]; std.testing.expect(mem.eql(u8, res, "a")); context = BufPrintContext{ .remaining = buf1[0..] }; try formatType(0b1100, "b", FormatOptions{}, &context, error{BufferTooSmall}, bufPrintWrite, default_max_depth); res = buf1[0 .. buf1.len - context.remaining.len]; std.testing.expect(mem.eql(u8, res, "1100")); } } test "array" { { const value: [3]u8 = "abc".*; try testFmt("array: abc\n", "array: {}\n", .{value}); try testFmt("array: abc\n", "array: {}\n", .{&value}); var buf: [100]u8 = undefined; try testFmt( try bufPrint(buf[0..], "array: [3]u8@{x}\n", .{@ptrToInt(&value)}), "array: {*}\n", .{&value}, ); } } test "slice" { { const value: []const u8 = "abc"; try testFmt("slice: abc\n", "slice: {}\n", .{value}); } { const value = @intToPtr([*]align(1) const []const u8, 0xdeadbeef)[0..0]; try testFmt("slice: []const u8@deadbeef\n", "slice: {}\n", .{value}); } try testFmt("buf: Test \n", "buf: {s:5}\n", .{"Test"}); try testFmt("buf: Test\n Other text", "buf: {s}\n Other text", .{"Test"}); } test "pointer" { { const value = @intToPtr(*align(1) i32, 0xdeadbeef); try testFmt("pointer: i32@deadbeef\n", "pointer: {}\n", .{value}); try testFmt("pointer: i32@deadbeef\n", "pointer: {*}\n", .{value}); } { const value = @intToPtr(fn () void, 0xdeadbeef); try testFmt("pointer: fn() void@deadbeef\n", "pointer: {}\n", .{value}); } { const value = @intToPtr(fn () void, 0xdeadbeef); try testFmt("pointer: fn() void@deadbeef\n", "pointer: {}\n", .{value}); } } test "cstr" { try testFmt( "cstr: Test C\n", "cstr: {s}\n", .{@ptrCast([*c]const u8, "Test C")}, ); try testFmt( "cstr: Test C \n", "cstr: {s:10}\n", .{@ptrCast([*c]const u8, "Test C")}, ); } test "filesize" { try testFmt("file size: 63MiB\n", "file size: {Bi}\n", .{@as(usize, 63 * 1024 * 1024)}); try testFmt("file size: 66.06MB\n", "file size: {B:.2}\n", .{@as(usize, 63 * 1024 * 1024)}); } test "struct" { { const Struct = struct { field: u8, }; const value = Struct{ .field = 42 }; try testFmt("struct: Struct{ .field = 42 }\n", "struct: {}\n", .{value}); try testFmt("struct: Struct{ .field = 42 }\n", "struct: {}\n", .{&value}); } { const Struct = struct { a: u0, b: u1, }; const value = Struct{ .a = 0, .b = 1 }; try testFmt("struct: Struct{ .a = 0, .b = 1 }\n", "struct: {}\n", .{value}); } } test "enum" { const Enum = enum { One, Two, }; const value = Enum.Two; try testFmt("enum: Enum.Two\n", "enum: {}\n", .{value}); try testFmt("enum: Enum.Two\n", "enum: {}\n", .{&value}); } test "non-exhaustive enum" { const Enum = enum(u16) { One = 0x000f, Two = 0xbeef, _, }; try testFmt("enum: Enum(15)\n", "enum: {}\n", .{Enum.One}); try testFmt("enum: Enum(48879)\n", "enum: {}\n", .{Enum.Two}); try testFmt("enum: Enum(4660)\n", "enum: {}\n", .{@intToEnum(Enum, 0x1234)}); try testFmt("enum: Enum(f)\n", "enum: {x}\n", .{Enum.One}); try testFmt("enum: Enum(beef)\n", "enum: {x}\n", .{Enum.Two}); try testFmt("enum: Enum(1234)\n", "enum: {x}\n", .{@intToEnum(Enum, 0x1234)}); } test "float.scientific" { try testFmt("f32: 1.34000003e+00", "f32: {e}", .{@as(f32, 1.34)}); try testFmt("f32: 1.23400001e+01", "f32: {e}", .{@as(f32, 12.34)}); try testFmt("f64: -1.234e+11", "f64: {e}", .{@as(f64, -12.34e10)}); try testFmt("f64: 9.99996e-40", "f64: {e}", .{@as(f64, 9.999960e-40)}); } test "float.scientific.precision" { try testFmt("f64: 1.40971e-42", "f64: {e:.5}", .{@as(f64, 1.409706e-42)}); try testFmt("f64: 1.00000e-09", "f64: {e:.5}", .{@as(f64, @bitCast(f32, @as(u32, 814313563)))}); try testFmt("f64: 7.81250e-03", "f64: {e:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1006632960)))}); // libc rounds 1.000005e+05 to 1.00000e+05 but zig does 1.00001e+05. // In fact, libc doesn't round a lot of 5 cases up when one past the precision point. try testFmt("f64: 1.00001e+05", "f64: {e:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1203982400)))}); } test "float.special" { try testFmt("f64: nan", "f64: {}", .{math.nan_f64}); // negative nan is not defined by IEE 754, // and ARM thus normalizes it to positive nan if (builtin.arch != builtin.Arch.arm) { try testFmt("f64: -nan", "f64: {}", .{-math.nan_f64}); } try testFmt("f64: inf", "f64: {}", .{math.inf_f64}); try testFmt("f64: -inf", "f64: {}", .{-math.inf_f64}); } test "float.decimal" { try testFmt("f64: 152314000000000000000000000000", "f64: {d}", .{@as(f64, 1.52314e+29)}); try testFmt("f32: 0", "f32: {d}", .{@as(f32, 0.0)}); try testFmt("f32: 1.1", "f32: {d:.1}", .{@as(f32, 1.1234)}); try testFmt("f32: 1234.57", "f32: {d:.2}", .{@as(f32, 1234.567)}); // -11.1234 is converted to f64 -11.12339... internally (errol3() function takes f64). // -11.12339... is rounded back up to -11.1234 try testFmt("f32: -11.1234", "f32: {d:.4}", .{@as(f32, -11.1234)}); try testFmt("f32: 91.12345", "f32: {d:.5}", .{@as(f32, 91.12345)}); try testFmt("f64: 91.1234567890", "f64: {d:.10}", .{@as(f64, 91.12345678901235)}); try testFmt("f64: 0.00000", "f64: {d:.5}", .{@as(f64, 0.0)}); try testFmt("f64: 6", "f64: {d:.0}", .{@as(f64, 5.700)}); try testFmt("f64: 10.0", "f64: {d:.1}", .{@as(f64, 9.999)}); try testFmt("f64: 1.000", "f64: {d:.3}", .{@as(f64, 1.0)}); try testFmt("f64: 0.00030000", "f64: {d:.8}", .{@as(f64, 0.0003)}); try testFmt("f64: 0.00000", "f64: {d:.5}", .{@as(f64, 1.40130e-45)}); try testFmt("f64: 0.00000", "f64: {d:.5}", .{@as(f64, 9.999960e-40)}); } test "float.libc.sanity" { try testFmt("f64: 0.00001", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 916964781)))}); try testFmt("f64: 0.00001", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 925353389)))}); try testFmt("f64: 0.10000", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1036831278)))}); try testFmt("f64: 1.00000", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1065353133)))}); try testFmt("f64: 10.00000", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1092616192)))}); // libc differences // // This is 0.015625 exactly according to gdb. We thus round down, // however glibc rounds up for some reason. This occurs for all // floats of the form x.yyyy25 on a precision point. try testFmt("f64: 0.01563", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1015021568)))}); // errol3 rounds to ... 630 but libc rounds to ...632. Grisu3 // also rounds to 630 so I'm inclined to believe libc is not // optimal here. try testFmt("f64: 18014400656965630.00000", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1518338049)))}); } test "custom" { const Vec2 = struct { const SelfType = @This(); x: f32, y: f32, pub fn format( self: SelfType, comptime fmt: []const u8, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { if (fmt.len == 0 or comptime std.mem.eql(u8, fmt, "p")) { return std.fmt.format(context, Errors, output, "({d:.3},{d:.3})", .{ self.x, self.y }); } else if (comptime std.mem.eql(u8, fmt, "d")) { return std.fmt.format(context, Errors, output, "{d:.3}x{d:.3}", .{ self.x, self.y }); } else { @compileError("Unknown format character: '" ++ fmt ++ "'"); } } }; var buf1: [32]u8 = undefined; var value = Vec2{ .x = 10.2, .y = 2.22, }; try testFmt("point: (10.200,2.220)\n", "point: {}\n", .{&value}); try testFmt("dim: 10.200x2.220\n", "dim: {d}\n", .{&value}); // same thing but not passing a pointer try testFmt("point: (10.200,2.220)\n", "point: {}\n", .{value}); try testFmt("dim: 10.200x2.220\n", "dim: {d}\n", .{value}); } test "struct" { const S = struct { a: u32, b: anyerror, }; const inst = S{ .a = 456, .b = error.Unused, }; try testFmt("S{ .a = 456, .b = error.Unused }", "{}", .{inst}); } test "union" { const TU = union(enum) { float: f32, int: u32, }; const UU = union { float: f32, int: u32, }; const EU = extern union { float: f32, int: u32, }; const tu_inst = TU{ .int = 123 }; const uu_inst = UU{ .int = 456 }; const eu_inst = EU{ .float = 321.123 }; try testFmt("TU{ .int = 123 }", "{}", .{tu_inst}); var buf: [100]u8 = undefined; const uu_result = try bufPrint(buf[0..], "{}", .{uu_inst}); std.testing.expect(mem.eql(u8, uu_result[0..3], "UU@")); const eu_result = try bufPrint(buf[0..], "{}", .{eu_inst}); std.testing.expect(mem.eql(u8, uu_result[0..3], "EU@")); } test "enum" { const E = enum { One, Two, Three, }; const inst = E.Two; try testFmt("E.Two", "{}", .{inst}); } test "struct.self-referential" { const S = struct { const SelfType = @This(); a: ?*SelfType, }; var inst = S{ .a = null, }; inst.a = &inst; try testFmt("S{ .a = S{ .a = S{ .a = S{ ... } } } }", "{}", .{inst}); } test "struct.zero-size" { const A = struct { fn foo() void {} }; const B = struct { a: A, c: i32, }; const a = A{}; const b = B{ .a = a, .c = 0 }; try testFmt("B{ .a = A{ }, .c = 0 }", "{}", .{b}); } test "bytes.hex" { const some_bytes = "\xCA\xFE\xBA\xBE"; try testFmt("lowercase: cafebabe\n", "lowercase: {x}\n", .{some_bytes}); try testFmt("uppercase: CAFEBABE\n", "uppercase: {X}\n", .{some_bytes}); //Test Slices try testFmt("uppercase: CAFE\n", "uppercase: {X}\n", .{some_bytes[0..2]}); try testFmt("lowercase: babe\n", "lowercase: {x}\n", .{some_bytes[2..]}); const bytes_with_zeros = "\x00\x0E\xBA\xBE"; try testFmt("lowercase: 000ebabe\n", "lowercase: {x}\n", .{bytes_with_zeros}); } fn testFmt(expected: []const u8, comptime template: []const u8, args: var) !void { var buf: [100]u8 = undefined; const result = try bufPrint(buf[0..], template, args); if (mem.eql(u8, result, expected)) return; std.debug.warn("\n====== expected this output: =========\n", .{}); std.debug.warn("{}", .{expected}); std.debug.warn("\n======== instead found this: =========\n", .{}); std.debug.warn("{}", .{result}); std.debug.warn("\n======================================\n", .{}); return error.TestFailed; } pub fn trim(buf: []const u8) []const u8 { var start: usize = 0; while (start < buf.len and isWhiteSpace(buf[start])) : (start += 1) {} var end: usize = buf.len; while (true) { if (end > start) { const new_end = end - 1; if (isWhiteSpace(buf[new_end])) { end = new_end; continue; } } break; } return buf[start..end]; } test "trim" { std.testing.expect(mem.eql(u8, "abc", trim("\n abc \t"))); std.testing.expect(mem.eql(u8, "", trim(" "))); std.testing.expect(mem.eql(u8, "", trim(""))); std.testing.expect(mem.eql(u8, "abc", trim(" abc"))); std.testing.expect(mem.eql(u8, "abc", trim("abc "))); } pub fn isWhiteSpace(byte: u8) bool { return switch (byte) { ' ', '\t', '\n', '\r' => true, else => false, }; } pub fn hexToBytes(out: []u8, input: []const u8) !void { if (out.len * 2 < input.len) return error.InvalidLength; var in_i: usize = 0; while (in_i != input.len) : (in_i += 2) { const hi = try charToDigit(input[in_i], 16); const lo = try charToDigit(input[in_i + 1], 16); out[in_i / 2] = (hi << 4) | lo; } } test "hexToBytes" { const test_hex_str = "909A312BB12ED1F819B3521AC4C1E896F2160507FFC1C8381E3B07BB16BD1706"; var pb: [32]u8 = undefined; try hexToBytes(pb[0..], test_hex_str); try testFmt(test_hex_str, "{X}", .{pb}); } test "formatIntValue with comptime_int" { const value: comptime_int = 123456789123456789; var buf = try std.Buffer.init(std.testing.allocator, ""); defer buf.deinit(); try formatIntValue(value, "", FormatOptions{}, &buf, @TypeOf(std.Buffer.append).ReturnType.ErrorSet, std.Buffer.append); std.testing.expect(mem.eql(u8, buf.toSlice(), "123456789123456789")); } test "formatType max_depth" { const Vec2 = struct { const SelfType = @This(); x: f32, y: f32, pub fn format( self: SelfType, comptime fmt: []const u8, options: FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void, ) Errors!void { if (fmt.len == 0) { return std.fmt.format(context, Errors, output, "({d:.3},{d:.3})", .{ self.x, self.y }); } else { @compileError("Unknown format string: '" ++ fmt ++ "'"); } } }; const E = enum { One, Two, Three, }; const TU = union(enum) { const SelfType = @This(); float: f32, int: u32, ptr: ?*SelfType, }; const S = struct { const SelfType = @This(); a: ?*SelfType, tu: TU, e: E, vec: Vec2, }; var inst = S{ .a = null, .tu = TU{ .ptr = null }, .e = E.Two, .vec = Vec2{ .x = 10.2, .y = 2.22 }, }; inst.a = &inst; inst.tu.ptr = &inst.tu; var buf0 = try std.Buffer.init(std.testing.allocator, ""); defer buf0.deinit(); try formatType(inst, "", FormatOptions{}, &buf0, @TypeOf(std.Buffer.append).ReturnType.ErrorSet, std.Buffer.append, 0); std.testing.expect(mem.eql(u8, buf0.toSlice(), "S{ ... }")); var buf1 = try std.Buffer.init(std.testing.allocator, ""); defer buf1.deinit(); try formatType(inst, "", FormatOptions{}, &buf1, @TypeOf(std.Buffer.append).ReturnType.ErrorSet, std.Buffer.append, 1); std.testing.expect(mem.eql(u8, buf1.toSlice(), "S{ .a = S{ ... }, .tu = TU{ ... }, .e = E.Two, .vec = (10.200,2.220) }")); var buf2 = try std.Buffer.init(std.testing.allocator, ""); defer buf2.deinit(); try formatType(inst, "", FormatOptions{}, &buf2, @TypeOf(std.Buffer.append).ReturnType.ErrorSet, std.Buffer.append, 2); std.testing.expect(mem.eql(u8, buf2.toSlice(), "S{ .a = S{ .a = S{ ... }, .tu = TU{ ... }, .e = E.Two, .vec = (10.200,2.220) }, .tu = TU{ .ptr = TU{ ... } }, .e = E.Two, .vec = (10.200,2.220) }")); var buf3 = try std.Buffer.init(std.testing.allocator, ""); defer buf3.deinit(); try formatType(inst, "", FormatOptions{}, &buf3, @TypeOf(std.Buffer.append).ReturnType.ErrorSet, std.Buffer.append, 3); std.testing.expect(mem.eql(u8, buf3.toSlice(), "S{ .a = S{ .a = S{ .a = S{ ... }, .tu = TU{ ... }, .e = E.Two, .vec = (10.200,2.220) }, .tu = TU{ .ptr = TU{ ... } }, .e = E.Two, .vec = (10.200,2.220) }, .tu = TU{ .ptr = TU{ .ptr = TU{ ... } } }, .e = E.Two, .vec = (10.200,2.220) }")); } test "positional" { try testFmt("2 1 0", "{2} {1} {0}", .{ @as(usize, 0), @as(usize, 1), @as(usize, 2) }); try testFmt("2 1 0", "{2} {1} {}", .{ @as(usize, 0), @as(usize, 1), @as(usize, 2) }); try testFmt("0 0", "{0} {0}", .{@as(usize, 0)}); try testFmt("0 1", "{} {1}", .{ @as(usize, 0), @as(usize, 1) }); try testFmt("1 0 0 1", "{1} {} {0} {}", .{ @as(usize, 0), @as(usize, 1) }); } test "positional with specifier" { try testFmt("10.0", "{0d:.1}", .{@as(f64, 9.999)}); } test "positional/alignment/width/precision" { try testFmt("10.0", "{0d: >3.1}", .{@as(f64, 9.999)}); } test "vector" { // https://github.com/ziglang/zig/issues/3317 if (builtin.arch == .mipsel) return error.SkipZigTest; const vbool: @Vector(4, bool) = [_]bool{ true, false, true, false }; const vi64: @Vector(4, i64) = [_]i64{ -2, -1, 0, 1 }; const vu64: @Vector(4, u64) = [_]u64{ 1000, 2000, 3000, 4000 }; try testFmt("{ true, false, true, false }", "{}", .{vbool}); try testFmt("{ -2, -1, 0, 1 }", "{}", .{vi64}); try testFmt("{ - 2, - 1, + 0, + 1 }", "{d:5}", .{vi64}); try testFmt("{ 1000, 2000, 3000, 4000 }", "{}", .{vu64}); try testFmt("{ 3e8, 7d0, bb8, fa0 }", "{x}", .{vu64}); try testFmt("{ 1kB, 2kB, 3kB, 4kB }", "{B}", .{vu64}); try testFmt("{ 1000B, 1.953125KiB, 2.9296875KiB, 3.90625KiB }", "{Bi}", .{vu64}); }