const std = @import("../std.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const expect = std.testing.expect; /// Many producer, many consumer, non-allocating, thread-safe. /// Uses a mutex to protect access. /// The queue does not manage ownership and the user is responsible to /// manage the storage of the nodes. pub fn Queue(comptime T: type) type { return struct { head: ?*Node, tail: ?*Node, mutex: std.Mutex, pub const Self = @This(); pub const Node = std.TailQueue(T).Node; /// Initializes a new queue. The queue does not provide a `deinit()` /// function, so the user must take care of cleaning up the queue elements. pub fn init() Self { return Self{ .head = null, .tail = null, .mutex = std.Mutex.init(), }; } /// Appends `node` to the queue. /// The lifetime of `node` must be longer than lifetime of queue. pub fn put(self: *Self, node: *Node) void { node.next = null; const held = self.mutex.acquire(); defer held.release(); node.prev = self.tail; self.tail = node; if (node.prev) |prev_tail| { prev_tail.next = node; } else { assert(self.head == null); self.head = node; } } /// Gets a previously inserted node or returns `null` if there is none. /// It is safe to `get()` a node from the queue while another thread tries /// to `remove()` the same node at the same time. pub fn get(self: *Self) ?*Node { const held = self.mutex.acquire(); defer held.release(); const head = self.head orelse return null; self.head = head.next; if (head.next) |new_head| { new_head.prev = null; } else { self.tail = null; } // This way, a get() and a remove() are thread-safe with each other. head.prev = null; head.next = null; return head; } pub fn unget(self: *Self, node: *Node) void { node.prev = null; const held = self.mutex.acquire(); defer held.release(); const opt_head = self.head; self.head = node; if (opt_head) |head| { head.next = node; } else { assert(self.tail == null); self.tail = node; } } /// Removes a node from the queue, returns whether node was actually removed. /// It is safe to `remove()` a node from the queue while another thread tries /// to `get()` the same node at the same time. pub fn remove(self: *Self, node: *Node) bool { const held = self.mutex.acquire(); defer held.release(); if (node.prev == null and node.next == null and self.head != node) { return false; } if (node.prev) |prev| { prev.next = node.next; } else { self.head = node.next; } if (node.next) |next| { next.prev = node.prev; } else { self.tail = node.prev; } node.prev = null; node.next = null; return true; } /// Returns `true` if the queue is currently empty. /// Note that in a multi-consumer environment a return value of `false` /// does not mean that `get` will yield a non-`null` value! pub fn isEmpty(self: *Self) bool { const held = self.mutex.acquire(); defer held.release(); return self.head == null; } /// Dumps the contents of the queue to `stderr`. pub fn dump(self: *Self) void { self.dumpToStream(std.io.getStdErr().outStream()) catch return; } /// Dumps the contents of the queue to `stream`. /// Up to 4 elements from the head are dumped and the tail of the queue is /// dumped as well. pub fn dumpToStream(self: *Self, stream: var) !void { const S = struct { fn dumpRecursive( s: var, optional_node: ?*Node, indent: usize, comptime depth: comptime_int, ) !void { try s.writeByteNTimes(' ', indent); if (optional_node) |node| { try s.print("0x{x}={}\n", .{ @ptrToInt(node), node.data }); if (depth == 0) { try s.print("(max depth)\n", .{}); return; } try dumpRecursive(s, node.next, indent + 1, depth - 1); } else { try s.print("(null)\n", .{}); } } }; const held = self.mutex.acquire(); defer held.release(); try stream.print("head: ", .{}); try S.dumpRecursive(stream, self.head, 0, 4); try stream.print("tail: ", .{}); try S.dumpRecursive(stream, self.tail, 0, 4); } }; } const Context = struct { allocator: *std.mem.Allocator, queue: *Queue(i32), put_sum: isize, get_sum: isize, get_count: usize, puts_done: bool, }; // TODO add lazy evaluated build options and then put puts_per_thread behind // some option such as: "AggressiveMultithreadedFuzzTest". In the AppVeyor // CI we would use a less aggressive setting since at 1 core, while we still // want this test to pass, we need a smaller value since there is so much thrashing // we would also use a less aggressive setting when running in valgrind const puts_per_thread = 500; const put_thread_count = 3; test "std.atomic.Queue" { var plenty_of_memory = try std.heap.page_allocator.alloc(u8, 300 * 1024); defer std.heap.page_allocator.free(plenty_of_memory); var fixed_buffer_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(plenty_of_memory); var a = &fixed_buffer_allocator.allocator; var queue = Queue(i32).init(); var context = Context{ .allocator = a, .queue = &queue, .put_sum = 0, .get_sum = 0, .puts_done = false, .get_count = 0, }; if (builtin.single_threaded) { expect(context.queue.isEmpty()); { var i: usize = 0; while (i < put_thread_count) : (i += 1) { expect(startPuts(&context) == 0); } } expect(!context.queue.isEmpty()); context.puts_done = true; { var i: usize = 0; while (i < put_thread_count) : (i += 1) { expect(startGets(&context) == 0); } } expect(context.queue.isEmpty()); } else { expect(context.queue.isEmpty()); var putters: [put_thread_count]*std.Thread = undefined; for (putters) |*t| { t.* = try std.Thread.spawn(&context, startPuts); } var getters: [put_thread_count]*std.Thread = undefined; for (getters) |*t| { t.* = try std.Thread.spawn(&context, startGets); } for (putters) |t| t.wait(); @atomicStore(bool, &context.puts_done, true, .SeqCst); for (getters) |t| t.wait(); expect(context.queue.isEmpty()); } if (context.put_sum != context.get_sum) { std.debug.panic("failure\nput_sum:{} != get_sum:{}", .{ context.put_sum, context.get_sum }); } if (context.get_count != puts_per_thread * put_thread_count) { std.debug.panic("failure\nget_count:{} != puts_per_thread:{} * put_thread_count:{}", .{ context.get_count, @as(u32, puts_per_thread), @as(u32, put_thread_count), }); } } fn startPuts(ctx: *Context) u8 { var put_count: usize = puts_per_thread; var r = std.rand.DefaultPrng.init(0xdeadbeef); while (put_count != 0) : (put_count -= 1) { std.time.sleep(1); // let the os scheduler be our fuzz const x = @bitCast(i32, r.random.int(u32)); const node = ctx.allocator.create(Queue(i32).Node) catch unreachable; node.* = .{ .prev = undefined, .next = undefined, .data = x, }; ctx.queue.put(node); _ = @atomicRmw(isize, &ctx.put_sum, .Add, x, .SeqCst); } return 0; } fn startGets(ctx: *Context) u8 { while (true) { const last = @atomicLoad(bool, &ctx.puts_done, .SeqCst); while (ctx.queue.get()) |node| { std.time.sleep(1); // let the os scheduler be our fuzz _ = @atomicRmw(isize, &ctx.get_sum, .Add, node.data, .SeqCst); _ = @atomicRmw(usize, &ctx.get_count, .Add, 1, .SeqCst); } if (last) return 0; } } test "std.atomic.Queue single-threaded" { var queue = Queue(i32).init(); expect(queue.isEmpty()); var node_0 = Queue(i32).Node{ .data = 0, .next = undefined, .prev = undefined, }; queue.put(&node_0); expect(!queue.isEmpty()); var node_1 = Queue(i32).Node{ .data = 1, .next = undefined, .prev = undefined, }; queue.put(&node_1); expect(!queue.isEmpty()); expect(queue.get().?.data == 0); expect(!queue.isEmpty()); var node_2 = Queue(i32).Node{ .data = 2, .next = undefined, .prev = undefined, }; queue.put(&node_2); expect(!queue.isEmpty()); var node_3 = Queue(i32).Node{ .data = 3, .next = undefined, .prev = undefined, }; queue.put(&node_3); expect(!queue.isEmpty()); expect(queue.get().?.data == 1); expect(!queue.isEmpty()); expect(queue.get().?.data == 2); expect(!queue.isEmpty()); var node_4 = Queue(i32).Node{ .data = 4, .next = undefined, .prev = undefined, }; queue.put(&node_4); expect(!queue.isEmpty()); expect(queue.get().?.data == 3); node_3.next = null; expect(!queue.isEmpty()); expect(queue.get().?.data == 4); expect(queue.isEmpty()); expect(queue.get() == null); expect(queue.isEmpty()); } test "std.atomic.Queue dump" { const mem = std.mem; var buffer: [1024]u8 = undefined; var expected_buffer: [1024]u8 = undefined; var fbs = std.io.fixedBufferStream(&buffer); var queue = Queue(i32).init(); // Test empty stream fbs.reset(); try queue.dumpToStream(fbs.outStream()); expect(mem.eql(u8, buffer[0..fbs.pos], \\head: (null) \\tail: (null) \\ )); // Test a stream with one element var node_0 = Queue(i32).Node{ .data = 1, .next = undefined, .prev = undefined, }; queue.put(&node_0); fbs.reset(); try queue.dumpToStream(fbs.outStream()); var expected = try std.fmt.bufPrint(expected_buffer[0..], \\head: 0x{x}=1 \\ (null) \\tail: 0x{x}=1 \\ (null) \\ , .{ @ptrToInt(queue.head), @ptrToInt(queue.tail) }); expect(mem.eql(u8, buffer[0..fbs.pos], expected)); // Test a stream with two elements var node_1 = Queue(i32).Node{ .data = 2, .next = undefined, .prev = undefined, }; queue.put(&node_1); fbs.reset(); try queue.dumpToStream(fbs.outStream()); expected = try std.fmt.bufPrint(expected_buffer[0..], \\head: 0x{x}=1 \\ 0x{x}=2 \\ (null) \\tail: 0x{x}=2 \\ (null) \\ , .{ @ptrToInt(queue.head), @ptrToInt(queue.head.?.next), @ptrToInt(queue.tail) }); expect(mem.eql(u8, buffer[0..fbs.pos], expected)); }