const std = @import("../index.zig"); const builtin = @import("builtin"); const Os = builtin.Os; const debug = std.debug; const assert = debug.assert; const testing = std.testing; const mem = std.mem; const fmt = std.fmt; const Allocator = mem.Allocator; const os = std.os; const math = std.math; const posix = os.posix; const windows = os.windows; const cstr = std.cstr; const windows_util = @import("windows/util.zig"); pub const sep_windows = '\\'; pub const sep_posix = '/'; pub const sep = if (is_windows) sep_windows else sep_posix; pub const sep_str = [1]u8{sep}; pub const delimiter_windows = ';'; pub const delimiter_posix = ':'; pub const delimiter = if (is_windows) delimiter_windows else delimiter_posix; const is_windows = builtin.os == builtin.Os.windows; pub fn isSep(byte: u8) bool { if (is_windows) { return byte == '/' or byte == '\\'; } else { return byte == '/'; } } /// This is different from mem.join in that the separator will not be repeated if /// it is found at the end or beginning of a pair of consecutive paths. fn joinSep(allocator: *Allocator, separator: u8, paths: []const []const u8) ![]u8 { if (paths.len == 0) return (([*]u8)(undefined))[0..0]; const total_len = blk: { var sum: usize = paths[0].len; var i: usize = 1; while (i < paths.len) : (i += 1) { const prev_path = paths[i - 1]; const this_path = paths[i]; const prev_sep = (prev_path.len != 0 and prev_path[prev_path.len - 1] == separator); const this_sep = (this_path.len != 0 and this_path[0] == separator); sum += @boolToInt(!prev_sep and !this_sep); sum += if (prev_sep and this_sep) this_path.len - 1 else this_path.len; } break :blk sum; }; const buf = try allocator.alloc(u8, total_len); errdefer allocator.free(buf); mem.copy(u8, buf, paths[0]); var buf_index: usize = paths[0].len; var i: usize = 1; while (i < paths.len) : (i += 1) { const prev_path = paths[i - 1]; const this_path = paths[i]; const prev_sep = (prev_path.len != 0 and prev_path[prev_path.len - 1] == separator); const this_sep = (this_path.len != 0 and this_path[0] == separator); if (!prev_sep and !this_sep) { buf[buf_index] = separator; buf_index += 1; } const adjusted_path = if (prev_sep and this_sep) this_path[1..] else this_path; mem.copy(u8, buf[buf_index..], adjusted_path); buf_index += adjusted_path.len; } // No need for shrink since buf is exactly the correct size. return buf; } pub const join = if (is_windows) joinWindows else joinPosix; /// Naively combines a series of paths with the native path seperator. /// Allocates memory for the result, which must be freed by the caller. pub fn joinWindows(allocator: *Allocator, paths: []const []const u8) ![]u8 { return joinSep(allocator, sep_windows, paths); } /// Naively combines a series of paths with the native path seperator. /// Allocates memory for the result, which must be freed by the caller. pub fn joinPosix(allocator: *Allocator, paths: []const []const u8) ![]u8 { return joinSep(allocator, sep_posix, paths); } fn testJoinWindows(paths: []const []const u8, expected: []const u8) void { var buf: [1024]u8 = undefined; const a = &std.heap.FixedBufferAllocator.init(&buf).allocator; const actual = joinWindows(a, paths) catch @panic("fail"); testing.expectEqualSlices(u8, expected, actual); } fn testJoinPosix(paths: []const []const u8, expected: []const u8) void { var buf: [1024]u8 = undefined; const a = &std.heap.FixedBufferAllocator.init(&buf).allocator; const actual = joinPosix(a, paths) catch @panic("fail"); testing.expectEqualSlices(u8, expected, actual); } test "os.path.join" { testJoinWindows([][]const u8{ "c:\\a\\b", "c" }, "c:\\a\\b\\c"); testJoinWindows([][]const u8{ "c:\\a\\b", "c" }, "c:\\a\\b\\c"); testJoinWindows([][]const u8{ "c:\\a\\b\\", "c" }, "c:\\a\\b\\c"); testJoinWindows([][]const u8{ "c:\\", "a", "b\\", "c" }, "c:\\a\\b\\c"); testJoinWindows([][]const u8{ "c:\\a\\", "b\\", "c" }, "c:\\a\\b\\c"); testJoinWindows( [][]const u8{ "c:\\home\\andy\\dev\\zig\\build\\lib\\zig\\std", "io.zig" }, "c:\\home\\andy\\dev\\zig\\build\\lib\\zig\\std\\io.zig", ); testJoinPosix([][]const u8{ "/a/b", "c" }, "/a/b/c"); testJoinPosix([][]const u8{ "/a/b/", "c" }, "/a/b/c"); testJoinPosix([][]const u8{ "/", "a", "b/", "c" }, "/a/b/c"); testJoinPosix([][]const u8{ "/a/", "b/", "c" }, "/a/b/c"); testJoinPosix( [][]const u8{ "/home/andy/dev/zig/build/lib/zig/std", "io.zig" }, "/home/andy/dev/zig/build/lib/zig/std/io.zig", ); testJoinPosix([][]const u8{ "a", "/c" }, "a/c"); testJoinPosix([][]const u8{ "a/", "/c" }, "a/c"); } pub fn isAbsolute(path: []const u8) bool { if (is_windows) { return isAbsoluteWindows(path); } else { return isAbsolutePosix(path); } } pub fn isAbsoluteWindows(path: []const u8) bool { if (path[0] == '/') return true; if (path[0] == '\\') { return true; } if (path.len < 3) { return false; } if (path[1] == ':') { if (path[2] == '/') return true; if (path[2] == '\\') return true; } return false; } pub fn isAbsolutePosix(path: []const u8) bool { return path[0] == sep_posix; } test "os.path.isAbsoluteWindows" { testIsAbsoluteWindows("/", true); testIsAbsoluteWindows("//", true); testIsAbsoluteWindows("//server", true); testIsAbsoluteWindows("//server/file", true); testIsAbsoluteWindows("\\\\server\\file", true); testIsAbsoluteWindows("\\\\server", true); testIsAbsoluteWindows("\\\\", true); testIsAbsoluteWindows("c", false); testIsAbsoluteWindows("c:", false); testIsAbsoluteWindows("c:\\", true); testIsAbsoluteWindows("c:/", true); testIsAbsoluteWindows("c://", true); testIsAbsoluteWindows("C:/Users/", true); testIsAbsoluteWindows("C:\\Users\\", true); testIsAbsoluteWindows("C:cwd/another", false); testIsAbsoluteWindows("C:cwd\\another", false); testIsAbsoluteWindows("directory/directory", false); testIsAbsoluteWindows("directory\\directory", false); testIsAbsoluteWindows("/usr/local", true); } test "os.path.isAbsolutePosix" { testIsAbsolutePosix("/home/foo", true); testIsAbsolutePosix("/home/foo/..", true); testIsAbsolutePosix("bar/", false); testIsAbsolutePosix("./baz", false); } fn testIsAbsoluteWindows(path: []const u8, expected_result: bool) void { testing.expectEqual(expected_result, isAbsoluteWindows(path)); } fn testIsAbsolutePosix(path: []const u8, expected_result: bool) void { testing.expectEqual(expected_result, isAbsolutePosix(path)); } pub const WindowsPath = struct { is_abs: bool, kind: Kind, disk_designator: []const u8, pub const Kind = enum { None, Drive, NetworkShare, }; }; pub fn windowsParsePath(path: []const u8) WindowsPath { if (path.len >= 2 and path[1] == ':') { return WindowsPath{ .is_abs = isAbsoluteWindows(path), .kind = WindowsPath.Kind.Drive, .disk_designator = path[0..2], }; } if (path.len >= 1 and (path[0] == '/' or path[0] == '\\') and (path.len == 1 or (path[1] != '/' and path[1] != '\\'))) { return WindowsPath{ .is_abs = true, .kind = WindowsPath.Kind.None, .disk_designator = path[0..0], }; } const relative_path = WindowsPath{ .kind = WindowsPath.Kind.None, .disk_designator = []u8{}, .is_abs = false, }; if (path.len < "//a/b".len) { return relative_path; } // TODO when I combined these together with `inline for` the compiler crashed { const this_sep = '/'; const two_sep = []u8{ this_sep, this_sep }; if (mem.startsWith(u8, path, two_sep)) { if (path[2] == this_sep) { return relative_path; } var it = mem.tokenize(path, []u8{this_sep}); _ = (it.next() orelse return relative_path); _ = (it.next() orelse return relative_path); return WindowsPath{ .is_abs = isAbsoluteWindows(path), .kind = WindowsPath.Kind.NetworkShare, .disk_designator = path[0..it.index], }; } } { const this_sep = '\\'; const two_sep = []u8{ this_sep, this_sep }; if (mem.startsWith(u8, path, two_sep)) { if (path[2] == this_sep) { return relative_path; } var it = mem.tokenize(path, []u8{this_sep}); _ = (it.next() orelse return relative_path); _ = (it.next() orelse return relative_path); return WindowsPath{ .is_abs = isAbsoluteWindows(path), .kind = WindowsPath.Kind.NetworkShare, .disk_designator = path[0..it.index], }; } } return relative_path; } test "os.path.windowsParsePath" { { const parsed = windowsParsePath("//a/b"); testing.expect(parsed.is_abs); testing.expect(parsed.kind == WindowsPath.Kind.NetworkShare); testing.expect(mem.eql(u8, parsed.disk_designator, "//a/b")); } { const parsed = windowsParsePath("\\\\a\\b"); testing.expect(parsed.is_abs); testing.expect(parsed.kind == WindowsPath.Kind.NetworkShare); testing.expect(mem.eql(u8, parsed.disk_designator, "\\\\a\\b")); } { const parsed = windowsParsePath("\\\\a\\"); testing.expect(!parsed.is_abs); testing.expect(parsed.kind == WindowsPath.Kind.None); testing.expect(mem.eql(u8, parsed.disk_designator, "")); } { const parsed = windowsParsePath("/usr/local"); testing.expect(parsed.is_abs); testing.expect(parsed.kind == WindowsPath.Kind.None); testing.expect(mem.eql(u8, parsed.disk_designator, "")); } { const parsed = windowsParsePath("c:../"); testing.expect(!parsed.is_abs); testing.expect(parsed.kind == WindowsPath.Kind.Drive); testing.expect(mem.eql(u8, parsed.disk_designator, "c:")); } } pub fn diskDesignator(path: []const u8) []const u8 { if (is_windows) { return diskDesignatorWindows(path); } else { return ""; } } pub fn diskDesignatorWindows(path: []const u8) []const u8 { return windowsParsePath(path).disk_designator; } fn networkShareServersEql(ns1: []const u8, ns2: []const u8) bool { const sep1 = ns1[0]; const sep2 = ns2[0]; var it1 = mem.tokenize(ns1, []u8{sep1}); var it2 = mem.tokenize(ns2, []u8{sep2}); // TODO ASCII is wrong, we actually need full unicode support to compare paths. return asciiEqlIgnoreCase(it1.next().?, it2.next().?); } fn compareDiskDesignators(kind: WindowsPath.Kind, p1: []const u8, p2: []const u8) bool { switch (kind) { WindowsPath.Kind.None => { assert(p1.len == 0); assert(p2.len == 0); return true; }, WindowsPath.Kind.Drive => { return asciiUpper(p1[0]) == asciiUpper(p2[0]); }, WindowsPath.Kind.NetworkShare => { const sep1 = p1[0]; const sep2 = p2[0]; var it1 = mem.tokenize(p1, []u8{sep1}); var it2 = mem.tokenize(p2, []u8{sep2}); // TODO ASCII is wrong, we actually need full unicode support to compare paths. return asciiEqlIgnoreCase(it1.next().?, it2.next().?) and asciiEqlIgnoreCase(it1.next().?, it2.next().?); }, } } fn asciiUpper(byte: u8) u8 { return switch (byte) { 'a'...'z' => 'A' + (byte - 'a'), else => byte, }; } fn asciiEqlIgnoreCase(s1: []const u8, s2: []const u8) bool { if (s1.len != s2.len) return false; var i: usize = 0; while (i < s1.len) : (i += 1) { if (asciiUpper(s1[i]) != asciiUpper(s2[i])) return false; } return true; } /// On Windows, this calls `resolveWindows` and on POSIX it calls `resolvePosix`. pub fn resolve(allocator: *Allocator, paths: []const []const u8) ![]u8 { if (is_windows) { return resolveWindows(allocator, paths); } else { return resolvePosix(allocator, paths); } } /// This function is like a series of `cd` statements executed one after another. /// It resolves "." and "..". /// The result does not have a trailing path separator. /// If all paths are relative it uses the current working directory as a starting point. /// Each drive has its own current working directory. /// Path separators are canonicalized to '\\' and drives are canonicalized to capital letters. /// Note: all usage of this function should be audited due to the existence of symlinks. /// Without performing actual syscalls, resolving `..` could be incorrect. pub fn resolveWindows(allocator: *Allocator, paths: []const []const u8) ![]u8 { if (paths.len == 0) { assert(is_windows); // resolveWindows called on non windows can't use getCwd return os.getCwdAlloc(allocator); } // determine which disk designator we will result with, if any var result_drive_buf = "_:"; var result_disk_designator: []const u8 = ""; var have_drive_kind = WindowsPath.Kind.None; var have_abs_path = false; var first_index: usize = 0; var max_size: usize = 0; for (paths) |p, i| { const parsed = windowsParsePath(p); if (parsed.is_abs) { have_abs_path = true; first_index = i; max_size = result_disk_designator.len; } switch (parsed.kind) { WindowsPath.Kind.Drive => { result_drive_buf[0] = asciiUpper(parsed.disk_designator[0]); result_disk_designator = result_drive_buf[0..]; have_drive_kind = WindowsPath.Kind.Drive; }, WindowsPath.Kind.NetworkShare => { result_disk_designator = parsed.disk_designator; have_drive_kind = WindowsPath.Kind.NetworkShare; }, WindowsPath.Kind.None => {}, } max_size += p.len + 1; } // if we will result with a disk designator, loop again to determine // which is the last time the disk designator is absolutely specified, if any // and count up the max bytes for paths related to this disk designator if (have_drive_kind != WindowsPath.Kind.None) { have_abs_path = false; first_index = 0; max_size = result_disk_designator.len; var correct_disk_designator = false; for (paths) |p, i| { const parsed = windowsParsePath(p); if (parsed.kind != WindowsPath.Kind.None) { if (parsed.kind == have_drive_kind) { correct_disk_designator = compareDiskDesignators(have_drive_kind, result_disk_designator, parsed.disk_designator); } else { continue; } } if (!correct_disk_designator) { continue; } if (parsed.is_abs) { first_index = i; max_size = result_disk_designator.len; have_abs_path = true; } max_size += p.len + 1; } } // Allocate result and fill in the disk designator, calling getCwd if we have to. var result: []u8 = undefined; var result_index: usize = 0; if (have_abs_path) { switch (have_drive_kind) { WindowsPath.Kind.Drive => { result = try allocator.alloc(u8, max_size); mem.copy(u8, result, result_disk_designator); result_index += result_disk_designator.len; }, WindowsPath.Kind.NetworkShare => { result = try allocator.alloc(u8, max_size); var it = mem.tokenize(paths[first_index], "/\\"); const server_name = it.next().?; const other_name = it.next().?; result[result_index] = '\\'; result_index += 1; result[result_index] = '\\'; result_index += 1; mem.copy(u8, result[result_index..], server_name); result_index += server_name.len; result[result_index] = '\\'; result_index += 1; mem.copy(u8, result[result_index..], other_name); result_index += other_name.len; result_disk_designator = result[0..result_index]; }, WindowsPath.Kind.None => { assert(is_windows); // resolveWindows called on non windows can't use getCwd const cwd = try os.getCwdAlloc(allocator); defer allocator.free(cwd); const parsed_cwd = windowsParsePath(cwd); result = try allocator.alloc(u8, max_size + parsed_cwd.disk_designator.len + 1); mem.copy(u8, result, parsed_cwd.disk_designator); result_index += parsed_cwd.disk_designator.len; result_disk_designator = result[0..parsed_cwd.disk_designator.len]; if (parsed_cwd.kind == WindowsPath.Kind.Drive) { result[0] = asciiUpper(result[0]); } have_drive_kind = parsed_cwd.kind; }, } } else { assert(is_windows); // resolveWindows called on non windows can't use getCwd // TODO call get cwd for the result_disk_designator instead of the global one const cwd = try os.getCwdAlloc(allocator); defer allocator.free(cwd); result = try allocator.alloc(u8, max_size + cwd.len + 1); mem.copy(u8, result, cwd); result_index += cwd.len; const parsed_cwd = windowsParsePath(result[0..result_index]); result_disk_designator = parsed_cwd.disk_designator; if (parsed_cwd.kind == WindowsPath.Kind.Drive) { result[0] = asciiUpper(result[0]); } have_drive_kind = parsed_cwd.kind; } errdefer allocator.free(result); // Now we know the disk designator to use, if any, and what kind it is. And our result // is big enough to append all the paths to. var correct_disk_designator = true; for (paths[first_index..]) |p, i| { const parsed = windowsParsePath(p); if (parsed.kind != WindowsPath.Kind.None) { if (parsed.kind == have_drive_kind) { correct_disk_designator = compareDiskDesignators(have_drive_kind, result_disk_designator, parsed.disk_designator); } else { continue; } } if (!correct_disk_designator) { continue; } var it = mem.tokenize(p[parsed.disk_designator.len..], "/\\"); while (it.next()) |component| { if (mem.eql(u8, component, ".")) { continue; } else if (mem.eql(u8, component, "..")) { while (true) { if (result_index == 0 or result_index == result_disk_designator.len) break; result_index -= 1; if (result[result_index] == '\\' or result[result_index] == '/') break; } } else { result[result_index] = sep_windows; result_index += 1; mem.copy(u8, result[result_index..], component); result_index += component.len; } } } if (result_index == result_disk_designator.len) { result[result_index] = '\\'; result_index += 1; } return allocator.shrink(u8, result, result_index); } /// This function is like a series of `cd` statements executed one after another. /// It resolves "." and "..". /// The result does not have a trailing path separator. /// If all paths are relative it uses the current working directory as a starting point. /// Note: all usage of this function should be audited due to the existence of symlinks. /// Without performing actual syscalls, resolving `..` could be incorrect. pub fn resolvePosix(allocator: *Allocator, paths: []const []const u8) ![]u8 { if (paths.len == 0) { assert(!is_windows); // resolvePosix called on windows can't use getCwd return os.getCwdAlloc(allocator); } var first_index: usize = 0; var have_abs = false; var max_size: usize = 0; for (paths) |p, i| { if (isAbsolutePosix(p)) { first_index = i; have_abs = true; max_size = 0; } max_size += p.len + 1; } var result: []u8 = undefined; var result_index: usize = 0; if (have_abs) { result = try allocator.alloc(u8, max_size); } else { assert(!is_windows); // resolvePosix called on windows can't use getCwd const cwd = try os.getCwdAlloc(allocator); defer allocator.free(cwd); result = try allocator.alloc(u8, max_size + cwd.len + 1); mem.copy(u8, result, cwd); result_index += cwd.len; } errdefer allocator.free(result); for (paths[first_index..]) |p, i| { var it = mem.tokenize(p, "/"); while (it.next()) |component| { if (mem.eql(u8, component, ".")) { continue; } else if (mem.eql(u8, component, "..")) { while (true) { if (result_index == 0) break; result_index -= 1; if (result[result_index] == '/') break; } } else { result[result_index] = '/'; result_index += 1; mem.copy(u8, result[result_index..], component); result_index += component.len; } } } if (result_index == 0) { result[0] = '/'; result_index += 1; } return allocator.shrink(u8, result, result_index); } test "os.path.resolve" { const cwd = try os.getCwdAlloc(debug.global_allocator); if (is_windows) { if (windowsParsePath(cwd).kind == WindowsPath.Kind.Drive) { cwd[0] = asciiUpper(cwd[0]); } testing.expect(mem.eql(u8, testResolveWindows([][]const u8{"."}), cwd)); } else { testing.expect(mem.eql(u8, testResolvePosix([][]const u8{ "a/b/c/", "../../.." }), cwd)); testing.expect(mem.eql(u8, testResolvePosix([][]const u8{"."}), cwd)); } } test "os.path.resolveWindows" { if (is_windows) { const cwd = try os.getCwdAlloc(debug.global_allocator); const parsed_cwd = windowsParsePath(cwd); { const result = testResolveWindows([][]const u8{ "/usr/local", "lib\\zig\\std\\array_list.zig" }); const expected = try join(debug.global_allocator, [][]const u8{ parsed_cwd.disk_designator, "usr\\local\\lib\\zig\\std\\array_list.zig", }); if (parsed_cwd.kind == WindowsPath.Kind.Drive) { expected[0] = asciiUpper(parsed_cwd.disk_designator[0]); } testing.expect(mem.eql(u8, result, expected)); } { const result = testResolveWindows([][]const u8{ "usr/local", "lib\\zig" }); const expected = try join(debug.global_allocator, [][]const u8{ cwd, "usr\\local\\lib\\zig", }); if (parsed_cwd.kind == WindowsPath.Kind.Drive) { expected[0] = asciiUpper(parsed_cwd.disk_designator[0]); } testing.expect(mem.eql(u8, result, expected)); } } testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "c:\\a\\b\\c", "/hi", "ok" }), "C:\\hi\\ok")); testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "c:/blah\\blah", "d:/games", "c:../a" }), "C:\\blah\\a")); testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "c:/blah\\blah", "d:/games", "C:../a" }), "C:\\blah\\a")); testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "c:/ignore", "d:\\a/b\\c/d", "\\e.exe" }), "D:\\e.exe")); testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "c:/ignore", "c:/some/file" }), "C:\\some\\file")); testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "d:/ignore", "d:some/dir//" }), "D:\\ignore\\some\\dir")); testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "//server/share", "..", "relative\\" }), "\\\\server\\share\\relative")); testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "c:/", "//" }), "C:\\")); testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "c:/", "//dir" }), "C:\\dir")); testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "c:/", "//server/share" }), "\\\\server\\share\\")); testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "c:/", "//server//share" }), "\\\\server\\share\\")); testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "c:/", "///some//dir" }), "C:\\some\\dir")); testing.expect(mem.eql(u8, testResolveWindows([][]const u8{ "C:\\foo\\tmp.3\\", "..\\tmp.3\\cycles\\root.js" }), "C:\\foo\\tmp.3\\cycles\\root.js")); } test "os.path.resolvePosix" { testing.expect(mem.eql(u8, testResolvePosix([][]const u8{ "/a/b", "c" }), "/a/b/c")); testing.expect(mem.eql(u8, testResolvePosix([][]const u8{ "/a/b", "c", "//d", "e///" }), "/d/e")); testing.expect(mem.eql(u8, testResolvePosix([][]const u8{ "/a/b/c", "..", "../" }), "/a")); testing.expect(mem.eql(u8, testResolvePosix([][]const u8{ "/", "..", ".." }), "/")); testing.expect(mem.eql(u8, testResolvePosix([][]const u8{"/a/b/c/"}), "/a/b/c")); testing.expect(mem.eql(u8, testResolvePosix([][]const u8{ "/var/lib", "../", "file/" }), "/var/file")); testing.expect(mem.eql(u8, testResolvePosix([][]const u8{ "/var/lib", "/../", "file/" }), "/file")); testing.expect(mem.eql(u8, testResolvePosix([][]const u8{ "/some/dir", ".", "/absolute/" }), "/absolute")); testing.expect(mem.eql(u8, testResolvePosix([][]const u8{ "/foo/tmp.3/", "../tmp.3/cycles/root.js" }), "/foo/tmp.3/cycles/root.js")); } fn testResolveWindows(paths: []const []const u8) []u8 { return resolveWindows(debug.global_allocator, paths) catch unreachable; } fn testResolvePosix(paths: []const []const u8) []u8 { return resolvePosix(debug.global_allocator, paths) catch unreachable; } /// If the path is a file in the current directory (no directory component) /// then returns null pub fn dirname(path: []const u8) ?[]const u8 { if (is_windows) { return dirnameWindows(path); } else { return dirnamePosix(path); } } pub fn dirnameWindows(path: []const u8) ?[]const u8 { if (path.len == 0) return null; const root_slice = diskDesignatorWindows(path); if (path.len == root_slice.len) return path; const have_root_slash = path.len > root_slice.len and (path[root_slice.len] == '/' or path[root_slice.len] == '\\'); var end_index: usize = path.len - 1; while ((path[end_index] == '/' or path[end_index] == '\\') and end_index > root_slice.len) { if (end_index == 0) return null; end_index -= 1; } while (path[end_index] != '/' and path[end_index] != '\\' and end_index > root_slice.len) { if (end_index == 0) return null; end_index -= 1; } if (have_root_slash and end_index == root_slice.len) { end_index += 1; } if (end_index == 0) return null; return path[0..end_index]; } pub fn dirnamePosix(path: []const u8) ?[]const u8 { if (path.len == 0) return null; var end_index: usize = path.len - 1; while (path[end_index] == '/') { if (end_index == 0) return path[0..1]; end_index -= 1; } while (path[end_index] != '/') { if (end_index == 0) return null; end_index -= 1; } if (end_index == 0 and path[end_index] == '/') return path[0..1]; if (end_index == 0) return null; return path[0..end_index]; } test "os.path.dirnamePosix" { testDirnamePosix("/a/b/c", "/a/b"); testDirnamePosix("/a/b/c///", "/a/b"); testDirnamePosix("/a", "/"); testDirnamePosix("/", "/"); testDirnamePosix("////", "/"); testDirnamePosix("", null); testDirnamePosix("a", null); testDirnamePosix("a/", null); testDirnamePosix("a//", null); } test "os.path.dirnameWindows" { testDirnameWindows("c:\\", "c:\\"); testDirnameWindows("c:\\foo", "c:\\"); testDirnameWindows("c:\\foo\\", "c:\\"); testDirnameWindows("c:\\foo\\bar", "c:\\foo"); testDirnameWindows("c:\\foo\\bar\\", "c:\\foo"); testDirnameWindows("c:\\foo\\bar\\baz", "c:\\foo\\bar"); testDirnameWindows("\\", "\\"); testDirnameWindows("\\foo", "\\"); testDirnameWindows("\\foo\\", "\\"); testDirnameWindows("\\foo\\bar", "\\foo"); testDirnameWindows("\\foo\\bar\\", "\\foo"); testDirnameWindows("\\foo\\bar\\baz", "\\foo\\bar"); testDirnameWindows("c:", "c:"); testDirnameWindows("c:foo", "c:"); testDirnameWindows("c:foo\\", "c:"); testDirnameWindows("c:foo\\bar", "c:foo"); testDirnameWindows("c:foo\\bar\\", "c:foo"); testDirnameWindows("c:foo\\bar\\baz", "c:foo\\bar"); testDirnameWindows("file:stream", null); testDirnameWindows("dir\\file:stream", "dir"); testDirnameWindows("\\\\unc\\share", "\\\\unc\\share"); testDirnameWindows("\\\\unc\\share\\foo", "\\\\unc\\share\\"); testDirnameWindows("\\\\unc\\share\\foo\\", "\\\\unc\\share\\"); testDirnameWindows("\\\\unc\\share\\foo\\bar", "\\\\unc\\share\\foo"); testDirnameWindows("\\\\unc\\share\\foo\\bar\\", "\\\\unc\\share\\foo"); testDirnameWindows("\\\\unc\\share\\foo\\bar\\baz", "\\\\unc\\share\\foo\\bar"); testDirnameWindows("/a/b/", "/a"); testDirnameWindows("/a/b", "/a"); testDirnameWindows("/a", "/"); testDirnameWindows("", null); testDirnameWindows("/", "/"); testDirnameWindows("////", "/"); testDirnameWindows("foo", null); } fn testDirnamePosix(input: []const u8, expected_output: ?[]const u8) void { if (dirnamePosix(input)) |output| { testing.expect(mem.eql(u8, output, expected_output.?)); } else { testing.expect(expected_output == null); } } fn testDirnameWindows(input: []const u8, expected_output: ?[]const u8) void { if (dirnameWindows(input)) |output| { testing.expect(mem.eql(u8, output, expected_output.?)); } else { testing.expect(expected_output == null); } } pub fn basename(path: []const u8) []const u8 { if (is_windows) { return basenameWindows(path); } else { return basenamePosix(path); } } pub fn basenamePosix(path: []const u8) []const u8 { if (path.len == 0) return []u8{}; var end_index: usize = path.len - 1; while (path[end_index] == '/') { if (end_index == 0) return []u8{}; end_index -= 1; } var start_index: usize = end_index; end_index += 1; while (path[start_index] != '/') { if (start_index == 0) return path[0..end_index]; start_index -= 1; } return path[start_index + 1 .. end_index]; } pub fn basenameWindows(path: []const u8) []const u8 { if (path.len == 0) return []u8{}; var end_index: usize = path.len - 1; while (true) { const byte = path[end_index]; if (byte == '/' or byte == '\\') { if (end_index == 0) return []u8{}; end_index -= 1; continue; } if (byte == ':' and end_index == 1) { return []u8{}; } break; } var start_index: usize = end_index; end_index += 1; while (path[start_index] != '/' and path[start_index] != '\\' and !(path[start_index] == ':' and start_index == 1)) { if (start_index == 0) return path[0..end_index]; start_index -= 1; } return path[start_index + 1 .. end_index]; } test "os.path.basename" { testBasename("", ""); testBasename("/", ""); testBasename("/dir/basename.ext", "basename.ext"); testBasename("/basename.ext", "basename.ext"); testBasename("basename.ext", "basename.ext"); testBasename("basename.ext/", "basename.ext"); testBasename("basename.ext//", "basename.ext"); testBasename("/aaa/bbb", "bbb"); testBasename("/aaa/", "aaa"); testBasename("/aaa/b", "b"); testBasename("/a/b", "b"); testBasename("//a", "a"); testBasenamePosix("\\dir\\basename.ext", "\\dir\\basename.ext"); testBasenamePosix("\\basename.ext", "\\basename.ext"); testBasenamePosix("basename.ext", "basename.ext"); testBasenamePosix("basename.ext\\", "basename.ext\\"); testBasenamePosix("basename.ext\\\\", "basename.ext\\\\"); testBasenamePosix("foo", "foo"); testBasenameWindows("\\dir\\basename.ext", "basename.ext"); testBasenameWindows("\\basename.ext", "basename.ext"); testBasenameWindows("basename.ext", "basename.ext"); testBasenameWindows("basename.ext\\", "basename.ext"); testBasenameWindows("basename.ext\\\\", "basename.ext"); testBasenameWindows("foo", "foo"); testBasenameWindows("C:", ""); testBasenameWindows("C:.", "."); testBasenameWindows("C:\\", ""); testBasenameWindows("C:\\dir\\base.ext", "base.ext"); testBasenameWindows("C:\\basename.ext", "basename.ext"); testBasenameWindows("C:basename.ext", "basename.ext"); testBasenameWindows("C:basename.ext\\", "basename.ext"); testBasenameWindows("C:basename.ext\\\\", "basename.ext"); testBasenameWindows("C:foo", "foo"); testBasenameWindows("file:stream", "file:stream"); } fn testBasename(input: []const u8, expected_output: []const u8) void { testing.expectEqualSlices(u8, expected_output, basename(input)); } fn testBasenamePosix(input: []const u8, expected_output: []const u8) void { testing.expectEqualSlices(u8, expected_output, basenamePosix(input)); } fn testBasenameWindows(input: []const u8, expected_output: []const u8) void { testing.expectEqualSlices(u8, expected_output, basenameWindows(input)); } /// Returns the relative path from `from` to `to`. If `from` and `to` each /// resolve to the same path (after calling `resolve` on each), a zero-length /// string is returned. /// On Windows this canonicalizes the drive to a capital letter and paths to `\\`. pub fn relative(allocator: *Allocator, from: []const u8, to: []const u8) ![]u8 { if (is_windows) { return relativeWindows(allocator, from, to); } else { return relativePosix(allocator, from, to); } } pub fn relativeWindows(allocator: *Allocator, from: []const u8, to: []const u8) ![]u8 { const resolved_from = try resolveWindows(allocator, [][]const u8{from}); defer allocator.free(resolved_from); var clean_up_resolved_to = true; const resolved_to = try resolveWindows(allocator, [][]const u8{to}); defer if (clean_up_resolved_to) allocator.free(resolved_to); const parsed_from = windowsParsePath(resolved_from); const parsed_to = windowsParsePath(resolved_to); const result_is_to = x: { if (parsed_from.kind != parsed_to.kind) { break :x true; } else switch (parsed_from.kind) { WindowsPath.Kind.NetworkShare => { break :x !networkShareServersEql(parsed_to.disk_designator, parsed_from.disk_designator); }, WindowsPath.Kind.Drive => { break :x asciiUpper(parsed_from.disk_designator[0]) != asciiUpper(parsed_to.disk_designator[0]); }, else => unreachable, } }; if (result_is_to) { clean_up_resolved_to = false; return resolved_to; } var from_it = mem.tokenize(resolved_from, "/\\"); var to_it = mem.tokenize(resolved_to, "/\\"); while (true) { const from_component = from_it.next() orelse return mem.dupe(allocator, u8, to_it.rest()); const to_rest = to_it.rest(); if (to_it.next()) |to_component| { // TODO ASCII is wrong, we actually need full unicode support to compare paths. if (asciiEqlIgnoreCase(from_component, to_component)) continue; } var up_count: usize = 1; while (from_it.next()) |_| { up_count += 1; } const up_index_end = up_count * "..\\".len; const result = try allocator.alloc(u8, up_index_end + to_rest.len); errdefer allocator.free(result); var result_index: usize = 0; while (result_index < up_index_end) { result[result_index] = '.'; result_index += 1; result[result_index] = '.'; result_index += 1; result[result_index] = '\\'; result_index += 1; } // shave off the trailing slash result_index -= 1; var rest_it = mem.tokenize(to_rest, "/\\"); while (rest_it.next()) |to_component| { result[result_index] = '\\'; result_index += 1; mem.copy(u8, result[result_index..], to_component); result_index += to_component.len; } return result[0..result_index]; } return []u8{}; } pub fn relativePosix(allocator: *Allocator, from: []const u8, to: []const u8) ![]u8 { const resolved_from = try resolvePosix(allocator, [][]const u8{from}); defer allocator.free(resolved_from); const resolved_to = try resolvePosix(allocator, [][]const u8{to}); defer allocator.free(resolved_to); var from_it = mem.tokenize(resolved_from, "/"); var to_it = mem.tokenize(resolved_to, "/"); while (true) { const from_component = from_it.next() orelse return mem.dupe(allocator, u8, to_it.rest()); const to_rest = to_it.rest(); if (to_it.next()) |to_component| { if (mem.eql(u8, from_component, to_component)) continue; } var up_count: usize = 1; while (from_it.next()) |_| { up_count += 1; } const up_index_end = up_count * "../".len; const result = try allocator.alloc(u8, up_index_end + to_rest.len); errdefer allocator.free(result); var result_index: usize = 0; while (result_index < up_index_end) { result[result_index] = '.'; result_index += 1; result[result_index] = '.'; result_index += 1; result[result_index] = '/'; result_index += 1; } if (to_rest.len == 0) { // shave off the trailing slash return result[0 .. result_index - 1]; } mem.copy(u8, result[result_index..], to_rest); return result; } return []u8{}; } test "os.path.relative" { testRelativeWindows("c:/blah\\blah", "d:/games", "D:\\games"); testRelativeWindows("c:/aaaa/bbbb", "c:/aaaa", ".."); testRelativeWindows("c:/aaaa/bbbb", "c:/cccc", "..\\..\\cccc"); testRelativeWindows("c:/aaaa/bbbb", "c:/aaaa/bbbb", ""); testRelativeWindows("c:/aaaa/bbbb", "c:/aaaa/cccc", "..\\cccc"); testRelativeWindows("c:/aaaa/", "c:/aaaa/cccc", "cccc"); testRelativeWindows("c:/", "c:\\aaaa\\bbbb", "aaaa\\bbbb"); testRelativeWindows("c:/aaaa/bbbb", "d:\\", "D:\\"); testRelativeWindows("c:/AaAa/bbbb", "c:/aaaa/bbbb", ""); testRelativeWindows("c:/aaaaa/", "c:/aaaa/cccc", "..\\aaaa\\cccc"); testRelativeWindows("C:\\foo\\bar\\baz\\quux", "C:\\", "..\\..\\..\\.."); testRelativeWindows("C:\\foo\\test", "C:\\foo\\test\\bar\\package.json", "bar\\package.json"); testRelativeWindows("C:\\foo\\bar\\baz-quux", "C:\\foo\\bar\\baz", "..\\baz"); testRelativeWindows("C:\\foo\\bar\\baz", "C:\\foo\\bar\\baz-quux", "..\\baz-quux"); testRelativeWindows("\\\\foo\\bar", "\\\\foo\\bar\\baz", "baz"); testRelativeWindows("\\\\foo\\bar\\baz", "\\\\foo\\bar", ".."); testRelativeWindows("\\\\foo\\bar\\baz-quux", "\\\\foo\\bar\\baz", "..\\baz"); testRelativeWindows("\\\\foo\\bar\\baz", "\\\\foo\\bar\\baz-quux", "..\\baz-quux"); testRelativeWindows("C:\\baz-quux", "C:\\baz", "..\\baz"); testRelativeWindows("C:\\baz", "C:\\baz-quux", "..\\baz-quux"); testRelativeWindows("\\\\foo\\baz-quux", "\\\\foo\\baz", "..\\baz"); testRelativeWindows("\\\\foo\\baz", "\\\\foo\\baz-quux", "..\\baz-quux"); testRelativeWindows("C:\\baz", "\\\\foo\\bar\\baz", "\\\\foo\\bar\\baz"); testRelativeWindows("\\\\foo\\bar\\baz", "C:\\baz", "C:\\baz"); testRelativePosix("/var/lib", "/var", ".."); testRelativePosix("/var/lib", "/bin", "../../bin"); testRelativePosix("/var/lib", "/var/lib", ""); testRelativePosix("/var/lib", "/var/apache", "../apache"); testRelativePosix("/var/", "/var/lib", "lib"); testRelativePosix("/", "/var/lib", "var/lib"); testRelativePosix("/foo/test", "/foo/test/bar/package.json", "bar/package.json"); testRelativePosix("/Users/a/web/b/test/mails", "/Users/a/web/b", "../.."); testRelativePosix("/foo/bar/baz-quux", "/foo/bar/baz", "../baz"); testRelativePosix("/foo/bar/baz", "/foo/bar/baz-quux", "../baz-quux"); testRelativePosix("/baz-quux", "/baz", "../baz"); testRelativePosix("/baz", "/baz-quux", "../baz-quux"); } fn testRelativePosix(from: []const u8, to: []const u8, expected_output: []const u8) void { const result = relativePosix(debug.global_allocator, from, to) catch unreachable; testing.expectEqualSlices(u8, expected_output, result); } fn testRelativeWindows(from: []const u8, to: []const u8, expected_output: []const u8) void { const result = relativeWindows(debug.global_allocator, from, to) catch unreachable; testing.expectEqualSlices(u8, expected_output, result); } pub const RealError = error{ FileNotFound, AccessDenied, NameTooLong, NotSupported, NotDir, SymLinkLoop, InputOutput, FileTooBig, IsDir, ProcessFdQuotaExceeded, SystemFdQuotaExceeded, NoDevice, SystemResources, NoSpaceLeft, FileSystem, BadPathName, DeviceBusy, /// On Windows, file paths must be valid Unicode. InvalidUtf8, /// TODO remove this possibility PathAlreadyExists, /// TODO remove this possibility Unexpected, }; /// Call from Windows-specific code if you already have a UTF-16LE encoded, null terminated string. /// Otherwise use `real` or `realC`. pub fn realW(out_buffer: *[os.MAX_PATH_BYTES]u8, pathname: [*]const u16) RealError![]u8 { const h_file = windows.CreateFileW( pathname, windows.GENERIC_READ, windows.FILE_SHARE_READ, null, windows.OPEN_EXISTING, windows.FILE_ATTRIBUTE_NORMAL, null, ); if (h_file == windows.INVALID_HANDLE_VALUE) { const err = windows.GetLastError(); switch (err) { windows.ERROR.FILE_NOT_FOUND => return error.FileNotFound, windows.ERROR.ACCESS_DENIED => return error.AccessDenied, windows.ERROR.FILENAME_EXCED_RANGE => return error.NameTooLong, else => return os.unexpectedErrorWindows(err), } } defer os.close(h_file); var utf16le_buf: [windows_util.PATH_MAX_WIDE]u16 = undefined; const casted_len = @intCast(windows.DWORD, utf16le_buf.len); // TODO shouldn't need this cast const result = windows.GetFinalPathNameByHandleW(h_file, &utf16le_buf, casted_len, windows.VOLUME_NAME_DOS); assert(result <= utf16le_buf.len); if (result == 0) { const err = windows.GetLastError(); switch (err) { windows.ERROR.FILE_NOT_FOUND => return error.FileNotFound, windows.ERROR.PATH_NOT_FOUND => return error.FileNotFound, windows.ERROR.NOT_ENOUGH_MEMORY => return error.SystemResources, windows.ERROR.FILENAME_EXCED_RANGE => return error.NameTooLong, windows.ERROR.INVALID_PARAMETER => unreachable, else => return os.unexpectedErrorWindows(err), } } const utf16le_slice = utf16le_buf[0..result]; // windows returns \\?\ prepended to the path // we strip it because nobody wants \\?\ prepended to their path const prefix = []u16{ '\\', '\\', '?', '\\' }; const start_index = if (mem.startsWith(u16, utf16le_slice, prefix)) prefix.len else 0; // Trust that Windows gives us valid UTF-16LE. const end_index = std.unicode.utf16leToUtf8(out_buffer, utf16le_slice[start_index..]) catch unreachable; return out_buffer[0..end_index]; } /// See `real` /// Use this when you have a null terminated pointer path. pub fn realC(out_buffer: *[os.MAX_PATH_BYTES]u8, pathname: [*]const u8) RealError![]u8 { switch (builtin.os) { Os.windows => { const pathname_w = try windows_util.cStrToPrefixedFileW(pathname); return realW(out_buffer, pathname_w); }, Os.freebsd, Os.macosx, Os.ios => { // TODO instead of calling the libc function here, port the implementation to Zig const err = posix.getErrno(posix.realpath(pathname, out_buffer)); switch (err) { 0 => return mem.toSlice(u8, out_buffer), posix.EINVAL => unreachable, posix.EBADF => unreachable, posix.EFAULT => unreachable, posix.EACCES => return error.AccessDenied, posix.ENOENT => return error.FileNotFound, posix.ENOTSUP => return error.NotSupported, posix.ENOTDIR => return error.NotDir, posix.ENAMETOOLONG => return error.NameTooLong, posix.ELOOP => return error.SymLinkLoop, posix.EIO => return error.InputOutput, else => return os.unexpectedErrorPosix(err), } }, Os.linux => { const fd = try os.posixOpenC(pathname, posix.O_PATH | posix.O_NONBLOCK | posix.O_CLOEXEC, 0); defer os.close(fd); var buf: ["/proc/self/fd/-2147483648\x00".len]u8 = undefined; const proc_path = fmt.bufPrint(buf[0..], "/proc/self/fd/{}\x00", fd) catch unreachable; return os.readLinkC(out_buffer, proc_path.ptr); }, else => @compileError("TODO implement os.path.real for " ++ @tagName(builtin.os)), } } /// Return the canonicalized absolute pathname. /// Expands all symbolic links and resolves references to `.`, `..`, and /// extra `/` characters in ::pathname. /// The return value is a slice of out_buffer, and not necessarily from the beginning. pub fn real(out_buffer: *[os.MAX_PATH_BYTES]u8, pathname: []const u8) RealError![]u8 { switch (builtin.os) { Os.windows => { const pathname_w = try windows_util.sliceToPrefixedFileW(pathname); return realW(out_buffer, &pathname_w); }, Os.macosx, Os.ios, Os.linux, Os.freebsd => { const pathname_c = try os.toPosixPath(pathname); return realC(out_buffer, &pathname_c); }, else => @compileError("Unsupported OS"), } } /// `real`, except caller must free the returned memory. pub fn realAlloc(allocator: *Allocator, pathname: []const u8) ![]u8 { var buf: [os.MAX_PATH_BYTES]u8 = undefined; return mem.dupe(allocator, u8, try real(&buf, pathname)); } test "os.path.real" { // at least call it so it gets compiled var buf: [os.MAX_PATH_BYTES]u8 = undefined; testing.expectError(error.FileNotFound, real(&buf, "definitely_bogus_does_not_exist1234")); }